Processing math: 19%

Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000566
Mp00083: Standard tableaux shapeInteger partitions
St000566: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [2]
=> 1
[[1],[2]]
=> [1,1]
=> 0
[[1,2,3]]
=> [3]
=> 3
[[1,3],[2]]
=> [2,1]
=> 1
[[1,2],[3]]
=> [2,1]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> 0
[[1,2,3,4]]
=> [4]
=> 6
[[1,3,4],[2]]
=> [3,1]
=> 3
[[1,2,4],[3]]
=> [3,1]
=> 3
[[1,2,3],[4]]
=> [3,1]
=> 3
[[1,3],[2,4]]
=> [2,2]
=> 2
[[1,2],[3,4]]
=> [2,2]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> 1
[[1,3],[2],[4]]
=> [2,1,1]
=> 1
[[1,2],[3],[4]]
=> [2,1,1]
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> 0
[[1,2,3,4,5]]
=> [5]
=> 10
[[1,3,4,5],[2]]
=> [4,1]
=> 6
[[1,2,4,5],[3]]
=> [4,1]
=> 6
[[1,2,3,5],[4]]
=> [4,1]
=> 6
[[1,2,3,4],[5]]
=> [4,1]
=> 6
[[1,3,5],[2,4]]
=> [3,2]
=> 4
[[1,2,5],[3,4]]
=> [3,2]
=> 4
[[1,3,4],[2,5]]
=> [3,2]
=> 4
[[1,2,4],[3,5]]
=> [3,2]
=> 4
[[1,2,3],[4,5]]
=> [3,2]
=> 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> 0
[[1,2,3,4,5,6]]
=> [6]
=> 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> 7
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if λ=(λ0λ1λm) is an integer partition, then the statistic is 12mi=0λi(λi1).
Matching statistic: St000185
Mp00083: Standard tableaux shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 82% values known / values provided: 86%distinct values known / distinct values provided: 82%
Values
[[1,2]]
=> [2]
=> [1,1]
=> 1
[[1],[2]]
=> [1,1]
=> [2]
=> 0
[[1,2,3]]
=> [3]
=> [1,1,1]
=> 3
[[1,3],[2]]
=> [2,1]
=> [2,1]
=> 1
[[1,2],[3]]
=> [2,1]
=> [2,1]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> [3]
=> 0
[[1,2,3,4]]
=> [4]
=> [1,1,1,1]
=> 6
[[1,3,4],[2]]
=> [3,1]
=> [2,1,1]
=> 3
[[1,2,4],[3]]
=> [3,1]
=> [2,1,1]
=> 3
[[1,2,3],[4]]
=> [3,1]
=> [2,1,1]
=> 3
[[1,3],[2,4]]
=> [2,2]
=> [2,2]
=> 2
[[1,2],[3,4]]
=> [2,2]
=> [2,2]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [3,1]
=> 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [3,1]
=> 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [3,1]
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [4]
=> 0
[[1,2,3,4,5]]
=> [5]
=> [1,1,1,1,1]
=> 10
[[1,3,4,5],[2]]
=> [4,1]
=> [2,1,1,1]
=> 6
[[1,2,4,5],[3]]
=> [4,1]
=> [2,1,1,1]
=> 6
[[1,2,3,5],[4]]
=> [4,1]
=> [2,1,1,1]
=> 6
[[1,2,3,4],[5]]
=> [4,1]
=> [2,1,1,1]
=> 6
[[1,3,5],[2,4]]
=> [3,2]
=> [2,2,1]
=> 4
[[1,2,5],[3,4]]
=> [3,2]
=> [2,2,1]
=> 4
[[1,3,4],[2,5]]
=> [3,2]
=> [2,2,1]
=> 4
[[1,2,4],[3,5]]
=> [3,2]
=> [2,2,1]
=> 4
[[1,2,3],[4,5]]
=> [3,2]
=> [2,2,1]
=> 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [3,2]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [3,2]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [3,2]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [3,2]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [3,2]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [4,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [4,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [5]
=> 0
[[1,2,3,4,5,6]]
=> [6]
=> [1,1,1,1,1,1]
=> 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> [2,1,1,1,1]
=> 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> [2,1,1,1,1]
=> 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> [2,1,1,1,1]
=> 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> [2,1,1,1,1]
=> 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> [2,1,1,1,1]
=> 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2,2,1,1]
=> 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2,2,1,1]
=> 7
[[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 66
[[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> [4,2,2,2,2]
=> [5,5,1,1]
=> ? = 10
[[1,2,4,6,8,10,12],[3,5,7,9,11]]
=> [7,5]
=> [2,2,2,2,2,1,1]
=> ? = 31
[[1,2,4,6,8,10,11,12],[3,5,7,9]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,8,9,10,12],[3,5,7,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,8,9,11,12],[3,5,7,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,8,9,10,11,12],[3,5,7]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,6,7,8,10,12],[3,5,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,7,8,11,12],[3,5,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,7,9,10,12],[3,5,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,7,9,11,12],[3,5,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,6,7,9,10,11,12],[3,5,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,6,7,8,9,10,12],[3,5,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,6,7,8,9,11,12],[3,5,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,6,7,8,10,11,12],[3,5,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,6,7,8,9,10,11,12],[3,5]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,8,10,12],[3,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,6,8,11,12],[3,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,6,9,10,12],[3,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,6,9,11,12],[3,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,6,9,10,11,12],[3,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,7,8,10,12],[3,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,7,8,11,12],[3,6,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,7,9,10,12],[3,6,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,7,9,11,12],[3,6,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,4,5,7,9,10,11,12],[3,6,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,7,8,9,10,12],[3,6,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,7,8,9,11,12],[3,6,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,7,8,10,11,12],[3,6,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,7,8,9,10,11,12],[3,6]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,7,8,10,12],[3,9,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,7,8,11,12],[3,9,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,7,9,10,12],[3,8,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,7,9,11,12],[3,8,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,7,10,11,12],[3,8,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,8,9,10,12],[3,7,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,8,9,11,12],[3,7,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,8,10,11,12],[3,7,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,4,5,6,8,9,10,11,12],[3,7]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,12],[3,11]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,7,8,9,11,12],[3,10]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,7,8,10,11,12],[3,9]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,7,9,10,11,12],[3,8]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,11,12],[3]]
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> ? = 55
[[1,2,3,4,6,8,10,12],[5,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,3,4,6,8,11,12],[5,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,3,4,6,9,10,12],[5,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,3,4,6,9,11,12],[5,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
[[1,2,3,4,6,9,10,11,12],[5,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> ? = 39
[[1,2,3,4,7,8,10,12],[5,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> ? = 34
Description
The weighted size of a partition. Let λ=(λ0λ1λm) be an integer partition. Then the weighted size of λ is mi=0iλi. This is also the sum of the leg lengths of the cells in λ, or \sum_i \binom{\lambda^{\prime}_i}{2} where \lambda^{\prime} is the conjugate partition of \lambda. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape \lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m), obtained uniquely by placing i-1 in all the cells of the ith row of \lambda, see [2, eq.7.103].
Matching statistic: St000169
Mp00083: Standard tableaux shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 82% values known / values provided: 86%distinct values known / distinct values provided: 82%
Values
[[1,2]]
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1
[[1],[2]]
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
[[1,2,3]]
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[[1,3],[2]]
=> [2,1]
=> [2,1]
=> [[1,2],[3]]
=> 1
[[1,2],[3]]
=> [2,1]
=> [2,1]
=> [[1,2],[3]]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[[1,2,3,4]]
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[[1,3,4],[2]]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,2,4],[3]]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,2,3],[4]]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,3],[2,4]]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[1,2],[3,4]]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[[1,2,3,4,5]]
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[[1,3,4,5],[2]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,2,4,5],[3]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,2,3,5],[4]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,2,3,4],[5]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,3,5],[2,4]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,2,5],[3,4]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,3,4],[2,5]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,2,4],[3,5]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,2,3],[4,5]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[[1,2,3,4,5,6]]
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11],[12]]
=> ? = 10
[[1,2,4,6,8,10,12],[3,5,7,9,11]]
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11],[12]]
=> ? = 31
[[1,2,4,6,8,10,11,12],[3,5,7,9]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,8,9,10,12],[3,5,7,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,8,9,11,12],[3,5,7,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,8,9,10,11,12],[3,5,7]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,10,12],[3,5,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,8,11,12],[3,5,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,9,10,12],[3,5,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,9,11,12],[3,5,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,9,10,11,12],[3,5,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,9,10,12],[3,5,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,9,11,12],[3,5,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,10,11,12],[3,5,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,9,10,11,12],[3,5]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,8,10,12],[3,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,8,11,12],[3,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,9,10,12],[3,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,9,11,12],[3,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,9,10,11,12],[3,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,10,12],[3,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,8,11,12],[3,6,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,9,10,12],[3,6,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,9,11,12],[3,6,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,9,10,11,12],[3,6,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,9,10,12],[3,6,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,9,11,12],[3,6,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,10,11,12],[3,6,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,9,10,11,12],[3,6]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,10,12],[3,9,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,8,11,12],[3,9,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,9,10,12],[3,8,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,9,11,12],[3,8,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,10,11,12],[3,8,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,9,10,12],[3,7,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,9,11,12],[3,7,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,10,11,12],[3,7,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,9,10,11,12],[3,7]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,12],[3,11]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,9,11,12],[3,10]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,10,11,12],[3,9]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,9,10,11,12],[3,8]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,11,12],[3]]
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 55
[[1,2,3,4,6,8,10,12],[5,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,8,11,12],[5,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,9,10,12],[5,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,9,11,12],[5,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,9,10,11,12],[5,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,3,4,7,8,10,12],[5,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau T, denoted \mathrm{cc}(T), is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation w_1 w_2\cdots w_n can be computed by the following algorithm: 1) Starting from w_n, scan the entries right-to-left until finding the entry 1 with a superscript 0. 2) Continue scanning until the 2 is found, and label this with a superscript 1. Then scan until the 3 is found, labeling with a 2, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000246
Mp00083: Standard tableaux shapeInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000246: Permutations ⟶ ℤResult quality: 82% values known / values provided: 86%distinct values known / distinct values provided: 82%
Values
[[1,2]]
=> [2]
=> [[1,2]]
=> [1,2] => 1
[[1],[2]]
=> [1,1]
=> [[1],[2]]
=> [2,1] => 0
[[1,2,3]]
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 3
[[1,3],[2]]
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
[[1,2],[3]]
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
[[1],[2],[3]]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0
[[1,2,3,4]]
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 6
[[1,3,4],[2]]
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[[1,2,4],[3]]
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[[1,2,3],[4]]
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[[1,3],[2,4]]
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
[[1,2],[3,4]]
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0
[[1,2,3,4,5]]
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 10
[[1,3,4,5],[2]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 6
[[1,2,4,5],[3]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 6
[[1,2,3,5],[4]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 6
[[1,2,3,4],[5]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 6
[[1,3,5],[2,4]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[[1,2,5],[3,4]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[[1,3,4],[2,5]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[[1,2,4],[3,5]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[[1,2,3],[4,5]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0
[[1,2,3,4,5,6]]
=> [6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 7
[[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [1,2,3,4,5,6,7,8,9,10,11,12] => ? = 66
[[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> [4,2,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> [11,12,9,10,7,8,5,6,1,2,3,4] => ? = 10
[[1,2,4,6,8,10,12],[3,5,7,9,11]]
=> [7,5]
=> [[1,2,3,4,5,6,7],[8,9,10,11,12]]
=> ? => ? = 31
[[1,2,4,6,8,10,11,12],[3,5,7,9]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,8,9,10,12],[3,5,7,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,8,9,11,12],[3,5,7,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,8,9,10,11,12],[3,5,7]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,6,7,8,10,12],[3,5,9,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,7,8,11,12],[3,5,9,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,7,9,10,12],[3,5,8,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,7,9,11,12],[3,5,8,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,6,7,9,10,11,12],[3,5,8]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,6,7,8,9,10,12],[3,5,11]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,6,7,8,9,11,12],[3,5,10]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,6,7,8,10,11,12],[3,5,9]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,6,7,8,9,10,11,12],[3,5]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,8,10,12],[3,7,9,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,6,8,11,12],[3,7,9,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,6,9,10,12],[3,7,8,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,6,9,11,12],[3,7,8,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,6,9,10,11,12],[3,7,8]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,7,8,10,12],[3,6,9,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,7,8,11,12],[3,6,9,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,7,9,10,12],[3,6,8,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,7,9,11,12],[3,6,8,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,4,5,7,9,10,11,12],[3,6,8]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,7,8,9,10,12],[3,6,11]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,7,8,9,11,12],[3,6,10]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,7,8,10,11,12],[3,6,9]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,7,8,9,10,11,12],[3,6]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,7,8,10,12],[3,9,11]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,7,8,11,12],[3,9,10]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,7,9,10,12],[3,8,11]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,7,9,11,12],[3,8,10]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,7,10,11,12],[3,8,9]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,8,9,10,12],[3,7,11]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,8,9,11,12],[3,7,10]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,8,10,11,12],[3,7,9]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,4,5,6,8,9,10,11,12],[3,7]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,7,8,9,10,12],[3,11]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,7,8,9,11,12],[3,10]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,7,8,10,11,12],[3,9]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,7,9,10,11,12],[3,8]]
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? => ? = 46
[[1,2,4,5,6,7,8,9,10,11,12],[3]]
=> [11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? => ? = 55
[[1,2,3,4,6,8,10,12],[5,7,9,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,3,4,6,8,11,12],[5,7,9,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,3,4,6,9,10,12],[5,7,8,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,3,4,6,9,11,12],[5,7,8,10]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
[[1,2,3,4,6,9,10,11,12],[5,7,8]]
=> [9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? => ? = 39
[[1,2,3,4,7,8,10,12],[5,6,9,11]]
=> [8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? => ? = 34
Description
The number of non-inversions of a permutation. For a permutation of \{1,\ldots,n\}, this is given by \operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi).
Matching statistic: St000330
Mp00083: Standard tableaux shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 82% values known / values provided: 86%distinct values known / distinct values provided: 82%
Values
[[1,2]]
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1
[[1],[2]]
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
[[1,2,3]]
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[[1,3],[2]]
=> [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[[1,2],[3]]
=> [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[[1,2,3,4]]
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[[1,3,4],[2]]
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[[1,2,4],[3]]
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[[1,2,3],[4]]
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
[[1,3],[2,4]]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[1,2],[3,4]]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[[1,2,3,4,5]]
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[[1,3,4,5],[2]]
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[[1,2,4,5],[3]]
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[[1,2,3,5],[4]]
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[[1,2,3,4],[5]]
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 6
[[1,3,5],[2,4]]
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[[1,2,5],[3,4]]
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[[1,3,4],[2,5]]
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[[1,2,4],[3,5]]
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[[1,2,3],[4,5]]
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[[1,2,3,4,5,6]]
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 7
[[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 10
[[1,2,4,6,8,10,12],[3,5,7,9,11]]
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? = 31
[[1,2,4,6,8,10,11,12],[3,5,7,9]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,8,9,10,12],[3,5,7,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,8,9,11,12],[3,5,7,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,8,9,10,11,12],[3,5,7]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,6,7,8,10,12],[3,5,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,7,8,11,12],[3,5,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,7,9,10,12],[3,5,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,7,9,11,12],[3,5,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,6,7,9,10,11,12],[3,5,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,6,7,8,9,10,12],[3,5,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,6,7,8,9,11,12],[3,5,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,6,7,8,10,11,12],[3,5,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,6,7,8,9,10,11,12],[3,5]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,8,10,12],[3,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,6,8,11,12],[3,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,6,9,10,12],[3,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,6,9,11,12],[3,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,6,9,10,11,12],[3,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,7,8,10,12],[3,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,7,8,11,12],[3,6,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,7,9,10,12],[3,6,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,7,9,11,12],[3,6,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,4,5,7,9,10,11,12],[3,6,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,7,8,9,10,12],[3,6,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,7,8,9,11,12],[3,6,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,7,8,10,11,12],[3,6,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,7,8,9,10,11,12],[3,6]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,7,8,10,12],[3,9,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,7,8,11,12],[3,9,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,7,9,10,12],[3,8,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,7,9,11,12],[3,8,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,7,10,11,12],[3,8,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,8,9,10,12],[3,7,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,8,9,11,12],[3,7,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,8,10,11,12],[3,7,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,4,5,6,8,9,10,11,12],[3,7]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,12],[3,11]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,7,8,9,11,12],[3,10]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,7,8,10,11,12],[3,9]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,7,9,10,11,12],[3,8]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,11,12],[3]]
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,12],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[[1,2,3,4,6,8,10,12],[5,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,3,4,6,8,11,12],[5,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,3,4,6,9,10,12],[5,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,3,4,6,9,11,12],[5,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
[[1,2,3,4,6,9,10,11,12],[5,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,8],[2,10],[3,12],[4],[5],[6],[7],[9],[11]]
=> ? = 39
[[1,2,3,4,7,8,10,12],[5,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5],[7],[9],[11]]
=> ? = 34
Description
The (standard) major index of a standard tableau. A descent of a standard tableau T is an index i such that i+1 appears in a row strictly below the row of i. The (standard) major index is the the sum of the descents.
Mp00083: Standard tableaux shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000336: Standard tableaux ⟶ ℤResult quality: 82% values known / values provided: 86%distinct values known / distinct values provided: 82%
Values
[[1,2]]
=> [2]
=> [1,1]
=> [[1],[2]]
=> 1
[[1],[2]]
=> [1,1]
=> [2]
=> [[1,2]]
=> 0
[[1,2,3]]
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[[1,3],[2]]
=> [2,1]
=> [2,1]
=> [[1,2],[3]]
=> 1
[[1,2],[3]]
=> [2,1]
=> [2,1]
=> [[1,2],[3]]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[[1,2,3,4]]
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[[1,3,4],[2]]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,2,4],[3]]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,2,3],[4]]
=> [3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,3],[2,4]]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[1,2],[3,4]]
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[[1,2,3,4,5]]
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[[1,3,4,5],[2]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,2,4,5],[3]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,2,3,5],[4]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,2,3,4],[5]]
=> [4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 6
[[1,3,5],[2,4]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,2,5],[3,4]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,3,4],[2,5]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,2,4],[3,5]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,2,3],[4,5]]
=> [3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[[1,2,3,4,5,6]]
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 7
[[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[[1,2,3,4],[5,6],[7,8],[9,10],[11,12]]
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11],[12]]
=> ? = 10
[[1,2,4,6,8,10,12],[3,5,7,9,11]]
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11],[12]]
=> ? = 31
[[1,2,4,6,8,10,11,12],[3,5,7,9]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,8,9,10,12],[3,5,7,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,8,9,11,12],[3,5,7,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,8,9,10,11,12],[3,5,7]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,10,12],[3,5,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,8,11,12],[3,5,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,9,10,12],[3,5,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,9,11,12],[3,5,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,6,7,9,10,11,12],[3,5,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,9,10,12],[3,5,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,9,11,12],[3,5,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,10,11,12],[3,5,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,6,7,8,9,10,11,12],[3,5]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,8,10,12],[3,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,8,11,12],[3,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,9,10,12],[3,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,9,11,12],[3,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,6,9,10,11,12],[3,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,10,12],[3,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,8,11,12],[3,6,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,9,10,12],[3,6,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,9,11,12],[3,6,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,4,5,7,9,10,11,12],[3,6,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,9,10,12],[3,6,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,9,11,12],[3,6,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,10,11,12],[3,6,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,7,8,9,10,11,12],[3,6]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,10,12],[3,9,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,8,11,12],[3,9,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,9,10,12],[3,8,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,9,11,12],[3,8,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,7,10,11,12],[3,8,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,9,10,12],[3,7,11]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,9,11,12],[3,7,10]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,10,11,12],[3,7,9]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,4,5,6,8,9,10,11,12],[3,7]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,12],[3,11]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,9,11,12],[3,10]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,10,11,12],[3,9]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,9,10,11,12],[3,8]]
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 46
[[1,2,4,5,6,7,8,9,10,11,12],[3]]
=> [11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 55
[[1,2,3,4,6,8,10,12],[5,7,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,8,11,12],[5,7,9,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,9,10,12],[5,7,8,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,9,11,12],[5,7,8,10]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
[[1,2,3,4,6,9,10,11,12],[5,7,8]]
=> [9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 39
[[1,2,3,4,7,8,10,12],[5,6,9,11]]
=> [8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 34
Description
The leg major index of a standard tableau. The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition. It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Matching statistic: St000059
Mp00081: Standard tableaux reading word permutationPermutations
Mp00064: Permutations reversePermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 82%
Values
[[1,2]]
=> [1,2] => [2,1] => [[1],[2]]
=> 1
[[1],[2]]
=> [2,1] => [1,2] => [[1,2]]
=> 0
[[1,2,3]]
=> [1,2,3] => [3,2,1] => [[1],[2],[3]]
=> 3
[[1,3],[2]]
=> [2,1,3] => [3,1,2] => [[1,3],[2]]
=> 1
[[1,2],[3]]
=> [3,1,2] => [2,1,3] => [[1,3],[2]]
=> 1
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => [[1,2,3]]
=> 0
[[1,2,3,4]]
=> [1,2,3,4] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[[1,3,4],[2]]
=> [2,1,3,4] => [4,3,1,2] => [[1,4],[2],[3]]
=> 3
[[1,2,4],[3]]
=> [3,1,2,4] => [4,2,1,3] => [[1,4],[2],[3]]
=> 3
[[1,2,3],[4]]
=> [4,1,2,3] => [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[[1,3],[2,4]]
=> [2,4,1,3] => [3,1,4,2] => [[1,3],[2,4]]
=> 2
[[1,2],[3,4]]
=> [3,4,1,2] => [2,1,4,3] => [[1,3],[2,4]]
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [4,1,2,3] => [[1,3,4],[2]]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1,2,4] => [[1,3,4],[2]]
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [2,1,3,4] => [[1,3,4],[2]]
=> 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 10
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> 6
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> 6
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> 6
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 6
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [5,3,1,4,2] => [[1,4],[2,5],[3]]
=> 4
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [5,2,1,4,3] => [[1,4],[2,5],[3]]
=> 4
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [4,3,1,5,2] => [[1,4],[2,5],[3]]
=> 4
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [4,2,1,5,3] => [[1,4],[2,5],[3]]
=> 4
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [3,2,1,5,4] => [[1,4],[2,5],[3]]
=> 4
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [5,4,1,2,3] => [[1,4,5],[2],[3]]
=> 3
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [5,3,1,2,4] => [[1,4,5],[2],[3]]
=> 3
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [5,2,1,3,4] => [[1,4,5],[2],[3]]
=> 3
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [4,3,1,2,5] => [[1,4,5],[2],[3]]
=> 3
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [4,2,1,3,5] => [[1,4,5],[2],[3]]
=> 3
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2,1,4,5] => [[1,4,5],[2],[3]]
=> 3
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,1,5,2,3] => [[1,3,5],[2,4]]
=> 2
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [3,1,5,2,4] => [[1,3,5],[2,4]]
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [2,1,5,3,4] => [[1,3,5],[2,4]]
=> 2
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [3,1,4,2,5] => [[1,3,5],[2,4]]
=> 2
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [2,1,4,3,5] => [[1,3,5],[2,4]]
=> 2
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [5,1,2,3,4] => [[1,3,4,5],[2]]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [4,1,2,3,5] => [[1,3,4,5],[2]]
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [3,1,2,4,5] => [[1,3,4,5],[2]]
=> 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => [[1],[2],[3],[4],[5],[6]]
=> 15
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [6,5,4,3,1,2] => [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [6,5,4,2,1,3] => [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [6,5,3,2,1,4] => [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [6,4,3,2,1,5] => [[1,6],[2],[3],[4],[5]]
=> 10
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [5,4,3,2,1,6] => [[1,6],[2],[3],[4],[5]]
=> 10
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [6,5,3,1,4,2] => [[1,5],[2,6],[3],[4]]
=> 7
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [6,5,2,1,4,3] => [[1,5],[2,6],[3],[4]]
=> 7
[[1,2,4,5,7,8],[3],[6]]
=> [6,3,1,2,4,5,7,8] => [8,7,5,4,2,1,3,6] => ?
=> ? = 15
[[1,3,4,7,8],[2,5,6]]
=> [2,5,6,1,3,4,7,8] => [8,7,4,3,1,6,5,2] => ?
=> ? = 13
[[1,3,5,6,8],[2,4,7]]
=> [2,4,7,1,3,5,6,8] => [8,6,5,3,1,7,4,2] => ?
=> ? = 13
[[1,3,4,6,8],[2,5,7]]
=> [2,5,7,1,3,4,6,8] => [8,6,4,3,1,7,5,2] => ?
=> ? = 13
[[1,2,3,5,8],[4,6,7]]
=> [4,6,7,1,2,3,5,8] => [8,5,3,2,1,7,6,4] => ?
=> ? = 13
[[1,2,4,6,7],[3,5,8]]
=> [3,5,8,1,2,4,6,7] => [7,6,4,2,1,8,5,3] => ?
=> ? = 13
[[1,2,4,5,6],[3,7,8]]
=> [3,7,8,1,2,4,5,6] => [6,5,4,2,1,8,7,3] => ?
=> ? = 13
[[1,3,5,7,8],[2,6],[4]]
=> [4,2,6,1,3,5,7,8] => [8,7,5,3,1,6,2,4] => ?
=> ? = 11
[[1,2,5,7,8],[3,6],[4]]
=> [4,3,6,1,2,5,7,8] => [8,7,5,2,1,6,3,4] => ?
=> ? = 11
[[1,2,5,7,8],[3,4],[6]]
=> [6,3,4,1,2,5,7,8] => [8,7,5,2,1,4,3,6] => ?
=> ? = 11
[[1,3,5,6,8],[2,7],[4]]
=> [4,2,7,1,3,5,6,8] => [8,6,5,3,1,7,2,4] => ?
=> ? = 11
[[1,2,5,6,8],[3,7],[4]]
=> [4,3,7,1,2,5,6,8] => [8,6,5,2,1,7,3,4] => ?
=> ? = 11
[[1,2,4,6,8],[3,7],[5]]
=> [5,3,7,1,2,4,6,8] => [8,6,4,2,1,7,3,5] => ?
=> ? = 11
[[1,2,3,5,8],[4,7],[6]]
=> [6,4,7,1,2,3,5,8] => [8,5,3,2,1,7,4,6] => ?
=> ? = 11
[[1,3,5,6,8],[2,4],[7]]
=> [7,2,4,1,3,5,6,8] => [8,6,5,3,1,4,2,7] => ?
=> ? = 11
[[1,3,4,6,8],[2,5],[7]]
=> [7,2,5,1,3,4,6,8] => [8,6,4,3,1,5,2,7] => ?
=> ? = 11
[[1,3,4,5,8],[2,6],[7]]
=> [7,2,6,1,3,4,5,8] => [8,5,4,3,1,6,2,7] => ?
=> ? = 11
[[1,2,5,6,7],[3,8],[4]]
=> [4,3,8,1,2,5,6,7] => [7,6,5,2,1,8,3,4] => ?
=> ? = 11
[[1,2,4,5,6],[3,8],[7]]
=> [7,3,8,1,2,4,5,6] => [6,5,4,2,1,8,3,7] => ?
=> ? = 11
[[1,2,3,5,6],[4,8],[7]]
=> [7,4,8,1,2,3,5,6] => [6,5,3,2,1,8,4,7] => ?
=> ? = 11
[[1,3,4,5,7],[2,6],[8]]
=> [8,2,6,1,3,4,5,7] => [7,5,4,3,1,6,2,8] => ?
=> ? = 11
[[1,3,4,5,6],[2,7],[8]]
=> [8,2,7,1,3,4,5,6] => [6,5,4,3,1,7,2,8] => ?
=> ? = 11
[[1,2,3,5,6],[4,7],[8]]
=> [8,4,7,1,2,3,5,6] => [6,5,3,2,1,7,4,8] => ?
=> ? = 11
[[1,3,4,7,8],[2],[5],[6]]
=> [6,5,2,1,3,4,7,8] => [8,7,4,3,1,2,5,6] => ?
=> ? = 10
[[1,3,5,6,8],[2],[4],[7]]
=> [7,4,2,1,3,5,6,8] => [8,6,5,3,1,2,4,7] => ?
=> ? = 10
[[1,3,4,5,8],[2],[6],[7]]
=> [7,6,2,1,3,4,5,8] => [8,5,4,3,1,2,6,7] => ?
=> ? = 10
[[1,3,5,6,7],[2],[4],[8]]
=> [8,4,2,1,3,5,6,7] => [7,6,5,3,1,2,4,8] => ?
=> ? = 10
[[1,2,4,5,7],[3],[6],[8]]
=> [8,6,3,1,2,4,5,7] => [7,5,4,2,1,3,6,8] => ?
=> ? = 10
[[1,4,6,8],[2,5,7],[3]]
=> [3,2,5,7,1,4,6,8] => [8,6,4,1,7,5,2,3] => ?
=> ? = 9
[[1,2,6,8],[3,5,7],[4]]
=> [4,3,5,7,1,2,6,8] => [8,6,2,1,7,5,3,4] => ?
=> ? = 9
[[1,2,6,8],[3,4,7],[5]]
=> [5,3,4,7,1,2,6,8] => [8,6,2,1,7,4,3,5] => ?
=> ? = 9
[[1,3,5,8],[2,6,7],[4]]
=> [4,2,6,7,1,3,5,8] => [8,5,3,1,7,6,2,4] => ?
=> ? = 9
[[1,2,3,8],[4,6,7],[5]]
=> [5,4,6,7,1,2,3,8] => [8,3,2,1,7,6,4,5] => ?
=> ? = 9
[[1,2,3,8],[4,5,7],[6]]
=> [6,4,5,7,1,2,3,8] => [8,3,2,1,7,5,4,6] => ?
=> ? = 9
[[1,3,4,8],[2,5,6],[7]]
=> [7,2,5,6,1,3,4,8] => [8,4,3,1,6,5,2,7] => ?
=> ? = 9
[[1,4,5,7],[2,6,8],[3]]
=> [3,2,6,8,1,4,5,7] => [7,5,4,1,8,6,2,3] => ?
=> ? = 9
[[1,2,3,7],[4,6,8],[5]]
=> [5,4,6,8,1,2,3,7] => [7,3,2,1,8,6,4,5] => ?
=> ? = 9
[[1,3,5,6],[2,7,8],[4]]
=> [4,2,7,8,1,3,5,6] => [6,5,3,1,8,7,2,4] => ?
=> ? = 9
[[1,3,4,6],[2,7,8],[5]]
=> [5,2,7,8,1,3,4,6] => [6,4,3,1,8,7,2,5] => ?
=> ? = 9
[[1,2,4,6],[3,7,8],[5]]
=> [5,3,7,8,1,2,4,6] => [6,4,2,1,8,7,3,5] => ?
=> ? = 9
[[1,2,3,5],[4,7,8],[6]]
=> [6,4,7,8,1,2,3,5] => [5,3,2,1,8,7,4,6] => ?
=> ? = 9
[[1,3,4,5],[2,6,8],[7]]
=> [7,2,6,8,1,3,4,5] => [5,4,3,1,8,6,2,7] => ?
=> ? = 9
[[1,2,4,5],[3,6,8],[7]]
=> [7,3,6,8,1,2,4,5] => [5,4,2,1,8,6,3,7] => ?
=> ? = 9
[[1,2,5,7],[3,4,6],[8]]
=> [8,3,4,6,1,2,5,7] => [7,5,2,1,6,4,3,8] => ?
=> ? = 9
[[1,2,3,7],[4,5,6],[8]]
=> [8,4,5,6,1,2,3,7] => [7,3,2,1,6,5,4,8] => ?
=> ? = 9
[[1,3,5,6],[2,4,7],[8]]
=> [8,2,4,7,1,3,5,6] => [6,5,3,1,7,4,2,8] => ?
=> ? = 9
[[1,2,5,6],[3,4,7],[8]]
=> [8,3,4,7,1,2,5,6] => [6,5,2,1,7,4,3,8] => ?
=> ? = 9
[[1,3,4,6],[2,5,7],[8]]
=> [8,2,5,7,1,3,4,6] => [6,4,3,1,7,5,2,8] => ?
=> ? = 9
[[1,2,3,6],[4,5,7],[8]]
=> [8,4,5,7,1,2,3,6] => [6,3,2,1,7,5,4,8] => ?
=> ? = 9
[[1,3,7,8],[2,5],[4,6]]
=> [4,6,2,5,1,3,7,8] => [8,7,3,1,5,2,6,4] => ?
=> ? = 8
Description
The inversion number of a standard tableau as defined by Haglund and Stevens. Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Matching statistic: St000008
Mp00084: Standard tableaux conjugateStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 68%
Values
[[1,2]]
=> [[1],[2]]
=> [2,1] => [1,1] => 1
[[1],[2]]
=> [[1,2]]
=> [1,2] => [2] => 0
[[1,2,3]]
=> [[1],[2],[3]]
=> [3,2,1] => [1,1,1] => 3
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => [1,2] => 1
[[1,2],[3]]
=> [[1,3],[2]]
=> [2,1,3] => [1,2] => 1
[[1],[2],[3]]
=> [[1,2,3]]
=> [1,2,3] => [3] => 0
[[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1] => 6
[[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,2] => 3
[[1,2,4],[3]]
=> [[1,3],[2],[4]]
=> [4,2,1,3] => [1,1,2] => 3
[[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,2] => 3
[[1,3],[2,4]]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [2,2] => 2
[[1,2],[3,4]]
=> [[1,3],[2,4]]
=> [2,4,1,3] => [2,2] => 2
[[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,3] => 1
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => [1,3] => 1
[[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> [2,1,3,4] => [1,3] => 1
[[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => [4] => 0
[[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1] => 10
[[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,2] => 6
[[1,2,4,5],[3]]
=> [[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,2] => 6
[[1,2,3,5],[4]]
=> [[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,1,1,2] => 6
[[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,2] => 6
[[1,3,5],[2,4]]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,2] => 4
[[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,2,2] => 4
[[1,3,4],[2,5]]
=> [[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,2] => 4
[[1,2,4],[3,5]]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,2,2] => 4
[[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,2,2] => 4
[[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,3] => 3
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,1,3] => 3
[[1,2,5],[3],[4]]
=> [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,1,3] => 3
[[1,3,4],[2],[5]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,3] => 3
[[1,2,4],[3],[5]]
=> [[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,1,3] => 3
[[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,3] => 3
[[1,4],[2,5],[3]]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,3] => 2
[[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => [2,3] => 2
[[1,2],[3,5],[4]]
=> [[1,3,4],[2,5]]
=> [2,5,1,3,4] => [2,3] => 2
[[1,3],[2,4],[5]]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,3] => 2
[[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> [2,4,1,3,5] => [2,3] => 2
[[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,4] => 1
[[1,4],[2],[3],[5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,4] => 1
[[1,3],[2],[4],[5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,4] => 1
[[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,4] => 1
[[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [5] => 0
[[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1] => 15
[[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,1,1,1,2] => 10
[[1,2,4,5,6],[3]]
=> [[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [1,1,1,1,2] => 10
[[1,2,3,5,6],[4]]
=> [[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [1,1,1,1,2] => 10
[[1,2,3,4,6],[5]]
=> [[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [1,1,1,1,2] => 10
[[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [1,1,1,1,2] => 10
[[1,3,5,6],[2,4]]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [1,1,2,2] => 7
[[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [1,1,2,2] => 7
[[1,2,3,7,8],[4,5],[6]]
=> [[1,4,6],[2,5],[3],[7],[8]]
=> [8,7,3,2,5,1,4,6] => ? => ? = 11
[[1,3,4,5,8],[2,7],[6]]
=> [[1,2,6],[3,7],[4],[5],[8]]
=> [8,5,4,3,7,1,2,6] => ? => ? = 11
[[1,2,4,5,8],[3,7],[6]]
=> [[1,3,6],[2,7],[4],[5],[8]]
=> [8,5,4,2,7,1,3,6] => ? => ? = 11
[[1,2,3,4,8],[5,7],[6]]
=> [[1,5,6],[2,7],[3],[4],[8]]
=> [8,4,3,2,7,1,5,6] => ? => ? = 11
[[1,2,3,6,8],[4,5],[7]]
=> [[1,4,7],[2,5],[3],[6],[8]]
=> [8,6,3,2,5,1,4,7] => ? => ? = 11
[[1,2,3,4,8],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4],[8]]
=> [8,4,3,2,6,1,5,7] => ? => ? = 11
[[1,2,4,6,7],[3,8],[5]]
=> [[1,3,5],[2,8],[4],[6],[7]]
=> [7,6,4,2,8,1,3,5] => ? => ? = 11
[[1,2,3,4,6],[5,8],[7]]
=> [[1,5,7],[2,8],[3],[4],[6]]
=> [6,4,3,2,8,1,5,7] => ? => ? = 11
[[1,2,3,4,7],[5,6],[8]]
=> [[1,5,8],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5,8] => ? => ? = 11
[[1,3,4,5,7],[2],[6],[8]]
=> [[1,2,6,8],[3],[4],[5],[7]]
=> [7,5,4,3,1,2,6,8] => ? => ? = 10
[[1,2,4,5,7],[3],[6],[8]]
=> [[1,3,6,8],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6,8] => ? => ? = 10
[[1,4,5,8],[2,6,7],[3]]
=> [[1,2,3],[4,6],[5,7],[8]]
=> [8,5,7,4,6,1,2,3] => ? => ? = 9
[[1,3,5,8],[2,6,7],[4]]
=> [[1,2,4],[3,6],[5,7],[8]]
=> [8,5,7,3,6,1,2,4] => ? => ? = 9
[[1,3,5,8],[2,4,7],[6]]
=> [[1,2,6],[3,4],[5,7],[8]]
=> [8,5,7,3,4,1,2,6] => ? => ? = 9
[[1,2,4,8],[3,5,7],[6]]
=> [[1,3,6],[2,5],[4,7],[8]]
=> [8,4,7,2,5,1,3,6] => ? => ? = 9
[[1,4,6,7],[2,5,8],[3]]
=> [[1,2,3],[4,5],[6,8],[7]]
=> [7,6,8,4,5,1,2,3] => ? => ? = 9
[[1,3,5,6],[2,4,7],[8]]
=> [[1,2,8],[3,4],[5,7],[6]]
=> [6,5,7,3,4,1,2,8] => ? => ? = 9
[[1,2,5,8],[3,6],[4],[7]]
=> [[1,3,4,7],[2,6],[5],[8]]
=> [8,5,2,6,1,3,4,7] => ? => ? = 7
[[1,3,4,8],[2,6],[5],[7]]
=> [[1,2,5,7],[3,6],[4],[8]]
=> [8,4,3,6,1,2,5,7] => ? => ? = 7
[[1,3,6,7],[2,8],[4],[5]]
=> [[1,2,4,5],[3,8],[6],[7]]
=> [7,6,3,8,1,2,4,5] => ? => ? = 7
[[1,2,5,7],[3,8],[4],[6]]
=> [[1,3,4,6],[2,8],[5],[7]]
=> [7,5,2,8,1,3,4,6] => ? => ? = 7
[[1,2,6,7],[3,5],[4],[8]]
=> [[1,3,4,8],[2,5],[6],[7]]
=> [7,6,2,5,1,3,4,8] => ? => ? = 7
[[1,2,6,7],[3,4],[5],[8]]
=> [[1,3,5,8],[2,4],[6],[7]]
=> [7,6,2,4,1,3,5,8] => ? => ? = 7
[[1,3,7,8],[2],[4],[5],[6]]
=> [[1,2,4,5,6],[3],[7],[8]]
=> [8,7,3,1,2,4,5,6] => ? => ? = 6
[[1,3,6,8],[2],[4],[5],[7]]
=> [[1,2,4,5,7],[3],[6],[8]]
=> [8,6,3,1,2,4,5,7] => ? => ? = 6
[[1,2,6,8],[3],[4],[5],[7]]
=> [[1,3,4,5,7],[2],[6],[8]]
=> [8,6,2,1,3,4,5,7] => ? => ? = 6
[[1,2,6,7],[3],[4],[5],[8]]
=> [[1,3,4,5,8],[2],[6],[7]]
=> [7,6,2,1,3,4,5,8] => ? => ? = 6
[[1,2,4,7],[3],[5],[6],[8]]
=> [[1,3,5,6,8],[2],[4],[7]]
=> [7,4,2,1,3,5,6,8] => ? => ? = 6
[[1,3,5,6],[2],[4],[7],[8]]
=> [[1,2,4,7,8],[3],[5],[6]]
=> [6,5,3,1,2,4,7,8] => ? => ? = 6
[[1,3,6],[2,4,8],[5,7]]
=> [[1,2,5],[3,4,7],[6,8]]
=> [6,8,3,4,7,1,2,5] => ? => ? = 7
[[1,4,5],[2,6,8],[3,7]]
=> [[1,2,3],[4,6,7],[5,8]]
=> [5,8,4,6,7,1,2,3] => ? => ? = 7
[[1,3,5],[2,4,8],[6,7]]
=> [[1,2,6],[3,4,7],[5,8]]
=> [5,8,3,4,7,1,2,6] => ? => ? = 7
[[1,2,6],[3,5,7],[4,8]]
=> [[1,3,4],[2,5,8],[6,7]]
=> [6,7,2,5,8,1,3,4] => ? => ? = 7
[[1,3,7],[2,6,8],[4],[5]]
=> [[1,2,4,5],[3,6],[7,8]]
=> [7,8,3,6,1,2,4,5] => ? => ? = 6
[[1,2,6],[3,5,8],[4],[7]]
=> [[1,3,4,7],[2,5],[6,8]]
=> [6,8,2,5,1,3,4,7] => ? => ? = 6
[[1,3,4],[2,6,8],[5],[7]]
=> [[1,2,5,7],[3,6],[4,8]]
=> [4,8,3,6,1,2,5,7] => ? => ? = 6
[[1,3,8],[2,6],[4,7],[5]]
=> [[1,2,4,5],[3,6,7],[8]]
=> [8,3,6,7,1,2,4,5] => ? => ? = 5
[[1,3,8],[2,4],[5,7],[6]]
=> [[1,2,5,6],[3,4,7],[8]]
=> [8,3,4,7,1,2,5,6] => ? => ? = 5
[[1,2,8],[3,5],[4],[6],[7]]
=> [[1,3,4,6,7],[2,5],[8]]
=> [8,2,5,1,3,4,6,7] => ? => ? = 4
[[1,2,7],[3,6],[4],[5],[8]]
=> [[1,3,4,5,8],[2,6],[7]]
=> [7,2,6,1,3,4,5,8] => ? => ? = 4
[[1,2,7],[3,4],[5],[6],[8]]
=> [[1,3,5,6,8],[2,4],[7]]
=> [7,2,4,1,3,5,6,8] => ? => ? = 4
[[1,3,4],[2,7],[5],[6],[8]]
=> [[1,2,5,6,8],[3,7],[4]]
=> [4,3,7,1,2,5,6,8] => ? => ? = 4
[[1,2,6],[3,5],[4],[7],[8]]
=> [[1,3,4,7,8],[2,5],[6]]
=> [6,2,5,1,3,4,7,8] => ? => ? = 4
[[1,3,6],[2,4],[5],[7],[8]]
=> [[1,2,5,7,8],[3,4],[6]]
=> [6,3,4,1,2,5,7,8] => ? => ? = 4
[[1,4,5],[2,6],[3],[7],[8]]
=> [[1,2,3,7,8],[4,6],[5]]
=> [5,4,6,1,2,3,7,8] => ? => ? = 4
[[1,3,4],[2,6],[5],[7],[8]]
=> [[1,2,5,7,8],[3,6],[4]]
=> [4,3,6,1,2,5,7,8] => ? => ? = 4
[[1,3,4],[2,5],[6],[7],[8]]
=> [[1,2,6,7,8],[3,5],[4]]
=> [4,3,5,1,2,6,7,8] => ? => ? = 4
[[1,2],[3,5],[4,7],[6],[8]]
=> [[1,3,4,6,8],[2,5,7]]
=> [2,5,7,1,3,4,6,8] => ? => ? = 3
[[1,3,5,7,9],[2,4,6,8,10]]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [9,10,7,8,5,6,3,4,1,2] => [2,2,2,2,2] => ? = 20
[[1,3,5,7,8],[2,4,6,9,10]]
=> [[1,2],[3,4],[5,6],[7,9],[8,10]]
=> [8,10,7,9,5,6,3,4,1,2] => [2,2,2,2,2] => ? = 20
Description
The major index of the composition. The descents of a composition [c_1,c_2,\dots,c_k] are the partial sums c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000391
Mp00084: Standard tableaux conjugateStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00109: Permutations descent wordBinary words
St000391: Binary words ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 79%
Values
[[1,2]]
=> [[1],[2]]
=> [2,1] => 1 => 1
[[1],[2]]
=> [[1,2]]
=> [1,2] => 0 => 0
[[1,2,3]]
=> [[1],[2],[3]]
=> [3,2,1] => 11 => 3
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => 10 => 1
[[1,2],[3]]
=> [[1,3],[2]]
=> [2,1,3] => 10 => 1
[[1],[2],[3]]
=> [[1,2,3]]
=> [1,2,3] => 00 => 0
[[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 111 => 6
[[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 110 => 3
[[1,2,4],[3]]
=> [[1,3],[2],[4]]
=> [4,2,1,3] => 110 => 3
[[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => 110 => 3
[[1,3],[2,4]]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 010 => 2
[[1,2],[3,4]]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 010 => 2
[[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 100 => 1
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => 100 => 1
[[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> [2,1,3,4] => 100 => 1
[[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => 000 => 0
[[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1111 => 10
[[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1110 => 6
[[1,2,4,5],[3]]
=> [[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => 1110 => 6
[[1,2,3,5],[4]]
=> [[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => 1110 => 6
[[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1110 => 6
[[1,3,5],[2,4]]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1010 => 4
[[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => 1010 => 4
[[1,3,4],[2,5]]
=> [[1,2],[3,5],[4]]
=> [4,3,5,1,2] => 1010 => 4
[[1,2,4],[3,5]]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => 1010 => 4
[[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> [3,2,5,1,4] => 1010 => 4
[[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1100 => 3
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => 1100 => 3
[[1,2,5],[3],[4]]
=> [[1,3,4],[2],[5]]
=> [5,2,1,3,4] => 1100 => 3
[[1,3,4],[2],[5]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => 1100 => 3
[[1,2,4],[3],[5]]
=> [[1,3,5],[2],[4]]
=> [4,2,1,3,5] => 1100 => 3
[[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => 1100 => 3
[[1,4],[2,5],[3]]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 0100 => 2
[[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => 0100 => 2
[[1,2],[3,5],[4]]
=> [[1,3,4],[2,5]]
=> [2,5,1,3,4] => 0100 => 2
[[1,3],[2,4],[5]]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => 0100 => 2
[[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> [2,4,1,3,5] => 0100 => 2
[[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 1000 => 1
[[1,4],[2],[3],[5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => 1000 => 1
[[1,3],[2],[4],[5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => 1000 => 1
[[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => 1000 => 1
[[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 0000 => 0
[[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 11111 => 15
[[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 11110 => 10
[[1,2,4,5,6],[3]]
=> [[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => 11110 => 10
[[1,2,3,5,6],[4]]
=> [[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => 11110 => 10
[[1,2,3,4,6],[5]]
=> [[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => 11110 => 10
[[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 11110 => 10
[[1,3,5,6],[2,4]]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 11010 => 7
[[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => 11010 => 7
[[1,3,4,6,7,8],[2,5]]
=> [[1,2],[3,5],[4],[6],[7],[8]]
=> [8,7,6,4,3,5,1,2] => ? => ? = 16
[[1,3,4,5,7,8],[2,6]]
=> [[1,2],[3,6],[4],[5],[7],[8]]
=> [8,7,5,4,3,6,1,2] => ? => ? = 16
[[1,2,3,5,6,7],[4,8]]
=> [[1,4],[2,8],[3],[5],[6],[7]]
=> [7,6,5,3,2,8,1,4] => ? => ? = 16
[[1,2,4,5,7,8],[3],[6]]
=> [[1,3,6],[2],[4],[5],[7],[8]]
=> [8,7,5,4,2,1,3,6] => ? => ? = 15
[[1,3,4,6,8],[2,5,7]]
=> [[1,2],[3,5],[4,7],[6],[8]]
=> [8,6,4,7,3,5,1,2] => ? => ? = 13
[[1,3,4,6,7],[2,5,8]]
=> [[1,2],[3,5],[4,8],[6],[7]]
=> [7,6,4,8,3,5,1,2] => ? => ? = 13
[[1,3,4,5,7],[2,6,8]]
=> [[1,2],[3,6],[4,8],[5],[7]]
=> [7,5,4,8,3,6,1,2] => ? => ? = 13
[[1,3,5,7,8],[2,6],[4]]
=> [[1,2,4],[3,6],[5],[7],[8]]
=> [8,7,5,3,6,1,2,4] => ? => ? = 11
[[1,2,5,7,8],[3,4],[6]]
=> [[1,3,6],[2,4],[5],[7],[8]]
=> [8,7,5,2,4,1,3,6] => ? => ? = 11
[[1,3,4,7,8],[2,5],[6]]
=> [[1,2,6],[3,5],[4],[7],[8]]
=> [8,7,4,3,5,1,2,6] => ? => ? = 11
[[1,2,4,7,8],[3,5],[6]]
=> [[1,3,6],[2,5],[4],[7],[8]]
=> [8,7,4,2,5,1,3,6] => ? => ? = 11
[[1,2,3,7,8],[4,5],[6]]
=> [[1,4,6],[2,5],[3],[7],[8]]
=> [8,7,3,2,5,1,4,6] => ? => ? = 11
[[1,4,5,6,8],[2,7],[3]]
=> [[1,2,3],[4,7],[5],[6],[8]]
=> [8,6,5,4,7,1,2,3] => ? => ? = 11
[[1,3,5,6,8],[2,7],[4]]
=> [[1,2,4],[3,7],[5],[6],[8]]
=> [8,6,5,3,7,1,2,4] => ? => ? = 11
[[1,2,5,6,8],[3,7],[4]]
=> [[1,3,4],[2,7],[5],[6],[8]]
=> [8,6,5,2,7,1,3,4] => ? => ? = 11
[[1,3,4,5,8],[2,7],[6]]
=> [[1,2,6],[3,7],[4],[5],[8]]
=> [8,5,4,3,7,1,2,6] => ? => ? = 11
[[1,2,4,5,8],[3,7],[6]]
=> [[1,3,6],[2,7],[4],[5],[8]]
=> [8,5,4,2,7,1,3,6] => ? => ? = 11
[[1,2,3,4,8],[5,7],[6]]
=> [[1,5,6],[2,7],[3],[4],[8]]
=> [8,4,3,2,7,1,5,6] => ? => ? = 11
[[1,3,4,6,8],[2,5],[7]]
=> [[1,2,7],[3,5],[4],[6],[8]]
=> [8,6,4,3,5,1,2,7] => ? => ? = 11
[[1,2,3,6,8],[4,5],[7]]
=> [[1,4,7],[2,5],[3],[6],[8]]
=> [8,6,3,2,5,1,4,7] => ? => ? = 11
[[1,2,3,4,8],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4],[8]]
=> [8,4,3,2,6,1,5,7] => ? => ? = 11
[[1,3,5,6,7],[2,8],[4]]
=> [[1,2,4],[3,8],[5],[6],[7]]
=> [7,6,5,3,8,1,2,4] => ? => ? = 11
[[1,2,4,6,7],[3,8],[5]]
=> [[1,3,5],[2,8],[4],[6],[7]]
=> [7,6,4,2,8,1,3,5] => ? => ? = 11
[[1,3,4,5,7],[2,8],[6]]
=> [[1,2,6],[3,8],[4],[5],[7]]
=> [7,5,4,3,8,1,2,6] => ? => ? = 11
[[1,2,3,4,7],[5,8],[6]]
=> [[1,5,6],[2,8],[3],[4],[7]]
=> [7,4,3,2,8,1,5,6] => ? => ? = 11
[[1,2,3,4,6],[5,8],[7]]
=> [[1,5,7],[2,8],[3],[4],[6]]
=> [6,4,3,2,8,1,5,7] => ? => ? = 11
[[1,2,5,6,7],[3,4],[8]]
=> [[1,3,8],[2,4],[5],[6],[7]]
=> [7,6,5,2,4,1,3,8] => ? => ? = 11
[[1,3,4,6,7],[2,5],[8]]
=> [[1,2,8],[3,5],[4],[6],[7]]
=> [7,6,4,3,5,1,2,8] => ? => ? = 11
[[1,2,4,6,7],[3,5],[8]]
=> [[1,3,8],[2,5],[4],[6],[7]]
=> [7,6,4,2,5,1,3,8] => ? => ? = 11
[[1,3,4,5,7],[2,6],[8]]
=> [[1,2,8],[3,6],[4],[5],[7]]
=> [7,5,4,3,6,1,2,8] => ? => ? = 11
[[1,2,3,4,7],[5,6],[8]]
=> [[1,5,8],[2,6],[3],[4],[7]]
=> [7,4,3,2,6,1,5,8] => ? => ? = 11
[[1,3,4,7,8],[2],[5],[6]]
=> [[1,2,5,6],[3],[4],[7],[8]]
=> [8,7,4,3,1,2,5,6] => ? => ? = 10
[[1,3,5,6,8],[2],[4],[7]]
=> [[1,2,4,7],[3],[5],[6],[8]]
=> [8,6,5,3,1,2,4,7] => ? => ? = 10
[[1,2,3,6,8],[4],[5],[7]]
=> [[1,4,5,7],[2],[3],[6],[8]]
=> [8,6,3,2,1,4,5,7] => ? => ? = 10
[[1,3,4,5,8],[2],[6],[7]]
=> [[1,2,6,7],[3],[4],[5],[8]]
=> [8,5,4,3,1,2,6,7] => ? => ? = 10
[[1,3,5,6,7],[2],[4],[8]]
=> [[1,2,4,8],[3],[5],[6],[7]]
=> [7,6,5,3,1,2,4,8] => ? => ? = 10
[[1,2,4,5,7],[3],[6],[8]]
=> [[1,3,6,8],[2],[4],[5],[7]]
=> [7,5,4,2,1,3,6,8] => ? => ? = 10
[[1,4,5,8],[2,6,7],[3]]
=> [[1,2,3],[4,6],[5,7],[8]]
=> [8,5,7,4,6,1,2,3] => ? => ? = 9
[[1,3,5,8],[2,6,7],[4]]
=> [[1,2,4],[3,6],[5,7],[8]]
=> [8,5,7,3,6,1,2,4] => ? => ? = 9
[[1,3,5,8],[2,4,7],[6]]
=> [[1,2,6],[3,4],[5,7],[8]]
=> [8,5,7,3,4,1,2,6] => ? => ? = 9
[[1,3,4,8],[2,5,7],[6]]
=> [[1,2,6],[3,5],[4,7],[8]]
=> [8,4,7,3,5,1,2,6] => ? => ? = 9
[[1,2,4,8],[3,5,7],[6]]
=> [[1,3,6],[2,5],[4,7],[8]]
=> [8,4,7,2,5,1,3,6] => ? => ? = 9
[[1,3,4,8],[2,5,6],[7]]
=> [[1,2,7],[3,5],[4,6],[8]]
=> [8,4,6,3,5,1,2,7] => ? => ? = 9
[[1,2,4,8],[3,5,6],[7]]
=> [[1,3,7],[2,5],[4,6],[8]]
=> [8,4,6,2,5,1,3,7] => ? => ? = 9
[[1,4,6,7],[2,5,8],[3]]
=> [[1,2,3],[4,5],[6,8],[7]]
=> [7,6,8,4,5,1,2,3] => ? => ? = 9
[[1,3,6,7],[2,4,8],[5]]
=> [[1,2,5],[3,4],[6,8],[7]]
=> [7,6,8,3,4,1,2,5] => ? => ? = 9
[[1,2,6,7],[3,4,8],[5]]
=> [[1,3,5],[2,4],[6,8],[7]]
=> [7,6,8,2,4,1,3,5] => ? => ? = 9
[[1,3,4,7],[2,6,8],[5]]
=> [[1,2,5],[3,6],[4,8],[7]]
=> [7,4,8,3,6,1,2,5] => ? => ? = 9
[[1,2,4,7],[3,5,8],[6]]
=> [[1,3,6],[2,5],[4,8],[7]]
=> [7,4,8,2,5,1,3,6] => ? => ? = 9
[[1,4,5,6],[2,7,8],[3]]
=> [[1,2,3],[4,7],[5,8],[6]]
=> [6,5,8,4,7,1,2,3] => ? => ? = 9
Description
The sum of the positions of the ones in a binary word.
Mp00083: Standard tableaux shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000428: Permutations ⟶ ℤResult quality: 47% values known / values provided: 62%distinct values known / distinct values provided: 47%
Values
[[1,2]]
=> [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[[1],[2]]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[[1,2,3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
[[1,3],[2]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[[1,2],[3]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[[1],[2],[3]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[[1,2,3,4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 6
[[1,3,4],[2]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[[1,2,4],[3]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[[1,2,3],[4]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 3
[[1,3],[2,4]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[[1,2],[3,4]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[[1,2,3,4,5]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 10
[[1,3,4,5],[2]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 6
[[1,2,4,5],[3]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 6
[[1,2,3,5],[4]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 6
[[1,2,3,4],[5]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 6
[[1,3,5],[2,4]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[[1,2,5],[3,4]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[[1,3,4],[2,5]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[[1,2,4],[3,5]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[[1,2,3],[4,5]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 0
[[1,2,3,4,5,6]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 15
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => 10
[[1,3,5,6],[2,4]]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 7
[[1,2,5,6],[3,4]]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 7
[[1,3,4,6],[2,5]]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 7
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 0
[[1,2,3,4,5,6,7]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => ? = 21
[[1,3,4,5,6,7],[2]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[[1,2,4,5,6,7],[3]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[[1,2,3,5,6,7],[4]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[[1,2,3,4,6,7],[5]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[[1,2,3,4,5,7],[6]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[[1,2,3,4,5,6],[7]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => ? = 15
[[1,7],[2],[3],[4],[5],[6]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[[1,6],[2],[3],[4],[5],[7]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[[1,5],[2],[3],[4],[6],[7]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[[1,4],[2],[3],[5],[6],[7]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[[1,3],[2],[4],[5],[6],[7]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? = 0
[[1,2,3,4,5,6,7,8]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => ? = 28
[[1,3,4,5,6,7,8],[2]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,2,4,5,6,7,8],[3]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,2,3,5,6,7,8],[4]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,2,3,4,6,7,8],[5]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,2,3,4,5,7,8],[6]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,2,3,4,5,6,8],[7]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,2,3,4,5,6,7],[8]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,7,5,4,3,2,1,8] => ? = 21
[[1,3,5,6,7,8],[2,4]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,5,6,7,8],[3,4]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,3,4,6,7,8],[2,5]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,4,6,7,8],[3,5]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,6,7,8],[4,5]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,3,4,5,7,8],[2,6]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,4,5,7,8],[3,6]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,5,7,8],[4,6]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,4,7,8],[5,6]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,3,4,5,6,8],[2,7]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,4,5,6,8],[3,7]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,5,6,8],[4,7]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,4,6,8],[5,7]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,4,5,8],[6,7]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,3,4,5,6,7],[2,8]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,4,5,6,7],[3,8]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,5,6,7],[4,8]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,4,6,7],[5,8]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,4,5,7],[6,8]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,2,3,4,5,6],[7,8]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 16
[[1,4,5,6,7,8],[2],[3]]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[[1,3,5,6,7,8],[2],[4]]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[[1,2,5,6,7,8],[3],[4]]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[[1,3,4,6,7,8],[2],[5]]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[[1,2,4,6,7,8],[3],[5]]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
[[1,2,3,6,7,8],[4],[5]]
=> [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 15
Description
The number of occurrences of the pattern 123 or of the pattern 213 in a permutation.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St001697The shifted natural comajor index of a standard Young tableau. St000012The area of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000984The number of boxes below precisely one peak. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000161The sum of the sizes of the right subtrees of a binary tree. St000490The intertwining number of a set partition. St000493The los statistic of a set partition. St001558The number of transpositions that are smaller or equal to a permutation in Bruhat order. St000018The number of inversions of a permutation. St000833The comajor index of a permutation. St000004The major index of a permutation. St001874Lusztig's a-function for the symmetric group. St000305The inverse major index of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.