searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000679
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
St000679: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000679: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [[]]
=> 1
[.,[.,.]]
=> [[[]]]
=> 1
[[.,.],.]
=> [[],[]]
=> 1
[.,[.,[.,.]]]
=> [[[[]]]]
=> 1
[.,[[.,.],.]]
=> [[[],[]]]
=> 2
[[.,.],[.,.]]
=> [[],[[]]]
=> 1
[[.,[.,.]],.]
=> [[[]],[]]
=> 1
[[[.,.],.],.]
=> [[],[],[]]
=> 1
[.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> 1
[.,[.,[[.,.],.]]]
=> [[[[],[]]]]
=> 2
[.,[[.,.],[.,.]]]
=> [[[],[[]]]]
=> 2
[.,[[.,[.,.]],.]]
=> [[[[]],[]]]
=> 2
[.,[[[.,.],.],.]]
=> [[[],[],[]]]
=> 2
[[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1
[[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> 2
[[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 1
[[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1
[[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> 1
[[.,[[.,.],.]],.]
=> [[[],[]],[]]
=> 2
[[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 1
[[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> 1
[[[[.,.],.],.],.]
=> [[],[],[],[]]
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[[]]]]]]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[[],[]]]]]
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [[[[[]],[]]]]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [[[[],[],[]]]]
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> 2
[.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [[[[[]]],[]]]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [[[[],[]],[]]]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [[[],[[]],[]]]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [[[[]],[],[]]]
=> 2
[.,[[[[.,.],.],.],.]]
=> [[[],[],[],[]]]
=> 2
[[.,.],[.,[.,[.,.]]]]
=> [[],[[[[]]]]]
=> 1
[[.,.],[.,[[.,.],.]]]
=> [[],[[[],[]]]]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [[],[[],[[]]]]
=> 2
[[.,.],[[.,[.,.]],.]]
=> [[],[[[]],[]]]
=> 2
[[.,.],[[[.,.],.],.]]
=> [[],[[],[],[]]]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [[[]],[[[]]]]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [[[]],[[],[]]]
=> 2
[[[.,.],.],[.,[.,.]]]
=> [[],[],[[[]]]]
=> 1
[[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[]],[[]]]
=> 2
[[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1
[[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1
Description
The pruning number of an ordered tree.
A hanging branch of an ordered tree is a proper factor of the form [r]r for some r≥1. A hanging branch is a maximal hanging branch if it is not a proper factor of another hanging branch.
A pruning of an ordered tree is the act of deleting all its maximal hanging branches. The pruning order of an ordered tree is the number of prunings required to reduce it to [].
Matching statistic: St000396
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
St000396: Binary trees ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
St000396: Binary trees ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [[]]
=> [.,.]
=> 1
[.,[.,.]]
=> [[[]]]
=> [[.,.],.]
=> 1
[[.,.],.]
=> [[],[]]
=> [.,[.,.]]
=> 1
[.,[.,[.,.]]]
=> [[[[]]]]
=> [[[.,.],.],.]
=> 1
[.,[[.,.],.]]
=> [[[],[]]]
=> [[.,.],[.,.]]
=> 2
[[.,.],[.,.]]
=> [[],[[]]]
=> [.,[[.,.],.]]
=> 1
[[.,[.,.]],.]
=> [[[]],[]]
=> [[.,[.,.]],.]
=> 1
[[[.,.],.],.]
=> [[],[],[]]
=> [.,[.,[.,.]]]
=> 1
[.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> [[[[.,.],.],.],.]
=> 1
[.,[.,[[.,.],.]]]
=> [[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> 2
[.,[[.,.],[.,.]]]
=> [[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> 2
[.,[[.,[.,.]],.]]
=> [[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> 2
[.,[[[.,.],.],.]]
=> [[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> 2
[[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> 1
[[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> 2
[[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> 1
[[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> 1
[[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> 1
[[.,[[.,.],.]],.]
=> [[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> 2
[[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> 1
[[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> 1
[[[[.,.],.],.],.]
=> [[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[[]]]]]]
=> [[[[[.,.],.],.],.],.]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[[],[]]]]]
=> [[[[.,.],[.,.]],.],.]
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> [[[.,.],[[.,.],.]],.]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [[[[[]],[]]]]
=> [[[[.,.],.],[.,.]],.]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [[[[],[],[]]]]
=> [[[.,.],[.,[.,.]]],.]
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> [[.,.],[[[.,.],.],.]]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> [[.,[[.,.],[.,.]]],.]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> [[[.,.],.],[[.,.],.]]
=> 2
[.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [[[[[]]],[]]]
=> [[[[.,.],.],.],[.,.]]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [[[[],[]],[]]]
=> [[[.,.],[.,.]],[.,.]]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [[[],[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [[[[]],[],[]]]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[.,[[[[.,.],.],.],.]]
=> [[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[[.,.],[.,[.,[.,.]]]]
=> [[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> 1
[[.,.],[.,[[.,.],.]]]
=> [[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> 2
[[.,.],[[.,[.,.]],.]]
=> [[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> 2
[[.,.],[[[.,.],.],.]]
=> [[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> 2
[[[.,.],.],[.,[.,.]]]
=> [[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> 1
[[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> 1
[[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 1
[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [[[]],[[[[[[]]]]]]]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> ? = 1
[[[.,[.,.]],.],[.,[.,[.,[.,.]]]]]
=> [[[]],[],[[[[[]]]]]]
=> [[.,[.,[[[[[.,.],.],.],.],.]]],.]
=> ? = 1
[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> [[[]],[[]],[[[[]]]]]
=> [[.,[[.,[[[[.,.],.],.],.]],.]],.]
=> ? = 1
[[[[.,[.,.]],.],.],[.,[.,[.,.]]]]
=> [[[]],[],[],[[[[]]]]]
=> [[.,[.,[.,[[[[.,.],.],.],.]]]],.]
=> ? = 1
[[[.,[.,.]],[.,[.,.]]],[.,[.,.]]]
=> [[[]],[[[]]],[[[]]]]
=> [[.,[[[.,[[[.,.],.],.]],.],.]],.]
=> ? = 1
[[[[.,[.,.]],.],[.,.]],[.,[.,.]]]
=> [[[]],[],[[]],[[[]]]]
=> [[.,[.,[[.,[[[.,.],.],.]],.]]],.]
=> ? = 1
[[[[.,[.,.]],[.,.]],.],[.,[.,.]]]
=> [[[]],[[]],[],[[[]]]]
=> [[.,[[.,[.,[[[.,.],.],.]]],.]],.]
=> ? = 1
[[[[.,[.,[.,.]]],.],.],[.,[.,.]]]
=> [[[[]]],[],[],[[[]]]]
=> [[[.,[.,[.,[[[.,.],.],.]]]],.],.]
=> ? = 1
[[[[.,[.,[.,.]]],.],.],[[.,.],.]]
=> [[[[]]],[],[],[[],[]]]
=> [[[.,.],.],[.,[.,[[.,.],[.,.]]]]]
=> ? = 2
[[[[[.,[.,.]],.],.],.],[.,[.,.]]]
=> [[[]],[],[],[],[[[]]]]
=> [[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> ? = 1
[[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> [[[]],[[[[]]]],[[]]]
=> [[.,[[[[.,[[.,.],.]],.],.],.]],.]
=> ? = 1
[[[[.,[.,.]],.],[.,[.,.]]],[.,.]]
=> [[[]],[],[[[]]],[[]]]
=> [[.,[.,[[[.,[[.,.],.]],.],.]]],.]
=> ? = 1
[[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [[[]],[[]],[[]],[[]]]
=> [[.,[[.,[[.,[[.,.],.]],.]],.]],.]
=> ? = 1
[[[[.,[.,[.,.]]],.],[.,.]],[.,.]]
=> [[[[]]],[],[[]],[[]]]
=> [[[.,[.,[[.,[[.,.],.]],.]]],.],.]
=> ? = 1
[[[[[.,[.,.]],.],.],[.,.]],[.,.]]
=> [[[]],[],[],[[]],[[]]]
=> [[.,[.,[.,[[.,[[.,.],.]],.]]]],.]
=> ? = 1
[[[[.,[.,.]],[.,[.,.]]],.],[.,.]]
=> [[[]],[[[]]],[],[[]]]
=> [[.,[[[.,[.,[[.,.],.]]],.],.]],.]
=> ? = 1
[[[[[.,[.,.]],.],[.,.]],.],[.,.]]
=> [[[]],[],[[]],[],[[]]]
=> [[.,[.,[[.,[.,[[.,.],.]]],.]]],.]
=> ? = 1
[[[[[.,[.,.]],[.,.]],.],.],[.,.]]
=> [[[]],[[]],[],[],[[]]]
=> [[.,[[.,[.,[.,[[.,.],.]]]],.]],.]
=> ? = 1
[[[[[.,[.,[.,.]]],.],.],.],[.,.]]
=> [[[[]]],[],[],[],[[]]]
=> [[[.,[.,[.,[.,[[.,.],.]]]]],.],.]
=> ? = 1
[[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> [[[]],[],[],[],[],[[]]]
=> [[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> ? = 1
[[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> [[[]],[[[[[]]]]],[]]
=> [[.,[[[[[.,[.,.]],.],.],.],.]],.]
=> ? = 1
[[[[.,[.,.]],.],[.,[.,[.,.]]]],.]
=> [[[]],[],[[[[]]]],[]]
=> [[.,[.,[[[[.,[.,.]],.],.],.]]],.]
=> ? = 1
[[[[.,[.,.]],[.,.]],[.,[.,.]]],.]
=> [[[]],[[]],[[[]]],[]]
=> [[.,[[.,[[[.,[.,.]],.],.]],.]],.]
=> ? = 1
[[[[[.,[.,.]],.],.],[.,[.,.]]],.]
=> [[[]],[],[],[[[]]],[]]
=> [[.,[.,[.,[[[.,[.,.]],.],.]]]],.]
=> ? = 1
[[[[.,[.,.]],[.,[.,.]]],[.,.]],.]
=> [[[]],[[[]]],[[]],[]]
=> [[.,[[[.,[[.,[.,.]],.]],.],.]],.]
=> ? = 1
[[[[[.,[.,.]],.],[.,.]],[.,.]],.]
=> [[[]],[],[[]],[[]],[]]
=> [[.,[.,[[.,[[.,[.,.]],.]],.]]],.]
=> ? = 1
[[[[[.,[.,.]],[.,.]],.],[.,.]],.]
=> [[[]],[[]],[],[[]],[]]
=> [[.,[[.,[.,[[.,[.,.]],.]]],.]],.]
=> ? = 1
[[[[[.,[.,[.,.]]],.],.],[.,.]],.]
=> [[[[]]],[],[],[[]],[]]
=> [[[.,[.,[.,[[.,[.,.]],.]]]],.],.]
=> ? = 1
[[[[[[.,[.,.]],.],.],.],[.,.]],.]
=> [[[]],[],[],[],[[]],[]]
=> [[.,[.,[.,[.,[[.,[.,.]],.]]]]],.]
=> ? = 1
[[[[.,[.,.]],[.,[.,[.,.]]]],.],.]
=> [[[]],[[[[]]]],[],[]]
=> [[.,[[[[.,[.,[.,.]]],.],.],.]],.]
=> ? = 1
[[[[[.,[.,.]],.],[.,[.,.]]],.],.]
=> [[[]],[],[[[]]],[],[]]
=> [[.,[.,[[[.,[.,[.,.]]],.],.]]],.]
=> ? = 1
[[[[[.,[.,.]],[.,.]],[.,.]],.],.]
=> [[[]],[[]],[[]],[],[]]
=> [[.,[[.,[[.,[.,[.,.]]],.]],.]],.]
=> ? = 1
[[[[[.,[.,[.,.]]],.],[.,.]],.],.]
=> [[[[]]],[],[[]],[],[]]
=> [[[.,[.,[[.,[.,[.,.]]],.]]],.],.]
=> ? = 1
[[[[[[.,[.,.]],.],.],[.,.]],.],.]
=> [[[]],[],[],[[]],[],[]]
=> [[.,[.,[.,[[.,[.,[.,.]]],.]]]],.]
=> ? = 1
[[[[[.,[.,.]],[.,[.,.]]],.],.],.]
=> [[[]],[[[]]],[],[],[]]
=> [[.,[[[.,[.,[.,[.,.]]]],.],.]],.]
=> ? = 1
[[[[[[.,[.,.]],.],[.,.]],.],.],.]
=> [[[]],[],[[]],[],[],[]]
=> [[.,[.,[[.,[.,[.,[.,.]]]],.]]],.]
=> ? = 1
[[[[[[.,[.,.]],[.,.]],.],.],.],.]
=> [[[]],[[]],[],[],[],[]]
=> [[.,[[.,[.,[.,[.,[.,.]]]]],.]],.]
=> ? = 1
[[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [[[[]]],[],[],[],[],[]]
=> [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> ? = 1
[[[[[[[.,[.,.]],.],.],.],.],.],.]
=> [[[]],[],[],[],[],[],[]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> ? = 1
Description
The register function (or Horton-Strahler number) of a binary tree.
This is different from the dimension of the associated poset for the tree [[[.,.],[.,.]],[[.,.],[.,.]]]: its register function is 3, whereas the dimension of the associated poset is 2.
Matching statistic: St000920
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00141: Binary trees —pruning number to logarithmic height⟶ Dyck paths
St000920: Dyck paths ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00141: Binary trees —pruning number to logarithmic height⟶ Dyck paths
St000920: Dyck paths ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [[]]
=> [.,.]
=> [1,0]
=> 1
[.,[.,.]]
=> [[[]]]
=> [[.,.],.]
=> [1,1,0,0]
=> 1
[[.,.],.]
=> [[],[]]
=> [.,[.,.]]
=> [1,0,1,0]
=> 1
[.,[.,[.,.]]]
=> [[[[]]]]
=> [[[.,.],.],.]
=> [1,1,0,1,0,0]
=> 1
[.,[[.,.],.]]
=> [[[],[]]]
=> [[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> 2
[[.,.],[.,.]]
=> [[],[[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1
[[[.,.],.],.]
=> [[],[],[]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 1
[.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> 1
[.,[.,[[.,.],.]]]
=> [[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> 2
[.,[[.,.],[.,.]]]
=> [[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> 2
[.,[[.,[.,.]],.]]
=> [[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> 2
[.,[[[.,.],.],.]]
=> [[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> 2
[[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 2
[[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> 1
[[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> 1
[[.,[[.,.],.]],.]
=> [[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> 2
[[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[[.,.],.],.],.]
=> [[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[[]]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[[],[]]]]]
=> [[[[.,.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> [[[.,.],[[.,.],.]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [[[[[]],[]]]]
=> [[[[.,.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [[[[],[],[]]]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [[[[[]]],[]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [[[[],[]],[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [[[],[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [[[[]],[],[]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[.,[[[[.,.],.],.],.]]
=> [[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[[.,.],[.,[.,[.,.]]]]
=> [[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[[.,.],[.,[[.,.],.]]]
=> [[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[[.,.],[[.,[.,.]],.]]
=> [[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[[.,.],[[[.,.],.],.]]
=> [[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[[[.,.],.],[.,[.,.]]]
=> [[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[.,[.,.]],[.,[.,[[[.,.],.],.]]]]
=> [[[]],[[[[],[],[]]]]]
=> [[.,.],[[[[.,.],[.,[.,.]]],.],.]]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2
[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
=> [[[]],[[[],[[],[]]]]]
=> [[.,.],[[[.,[[.,.],[.,.]]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[[.,[.,.]],[.,[[[.,.],.],[.,.]]]]
=> [[[]],[[[],[],[[]]]]]
=> [[.,.],[[[.,.],[.,[[.,.],.]]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[[.,[.,.]],[.,[[.,[.,[.,.]]],.]]]
=> [[[]],[[[[[]]],[]]]]
=> [[.,.],[[[[[.,.],.],.],[.,.]],.]]
=> [1,1,1,0,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2
[[.,[.,.]],[.,[[[.,.],[.,.]],.]]]
=> [[[]],[[[],[[]],[]]]]
=> [[.,.],[[[.,.],[[.,[.,.]],.]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 2
[[.,[.,.]],[.,[[[.,[.,.]],.],.]]]
=> [[[]],[[[[]],[],[]]]]
=> [[.,.],[[[[.,.],.],[.,[.,.]]],.]]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 2
[[.,[.,.]],[.,[[[[.,.],.],.],.]]]
=> [[[]],[[[],[],[],[]]]]
=> [[.,.],[[[.,.],[.,[.,[.,.]]]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2
[[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> [[[]],[[],[[[],[]]]]]
=> [[.,.],[[.,[[[.,.],[.,.]],.]],.]]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> [[[]],[[],[[],[[]]]]]
=> [[.,.],[[.,[[.,.],[[.,.],.]]],.]]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2
[[.,[.,.]],[[.,.],[[[.,.],.],.]]]
=> [[[]],[[],[[],[],[]]]]
=> [[.,.],[[.,[[.,.],[.,[.,.]]]],.]]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[[.,[.,.]],[[[.,.],.],[.,[.,.]]]]
=> [[[]],[[],[],[[[]]]]]
=> [[.,.],[[.,.],[.,[[[.,.],.],.]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2
[[.,[.,.]],[[[.,.],.],[[.,.],.]]]
=> [[[]],[[],[],[[],[]]]]
=> [[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> [1,1,1,0,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[[.,[.,.]],[[.,[.,[.,.]]],[.,.]]]
=> [[[]],[[[[]]],[[]]]]
=> [[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 2
[[.,[.,.]],[[[.,.],[.,.]],[.,.]]]
=> [[[]],[[],[[]],[[]]]]
=> [[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[[.,[.,.]],[[[.,[.,.]],.],[.,.]]]
=> [[[]],[[[]],[],[[]]]]
=> [[.,.],[[[.,.],.],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[[.,[.,.]],[[[[.,.],.],.],[.,.]]]
=> [[[]],[[],[],[],[[]]]]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 2
[[.,[.,.]],[[.,[.,[.,[.,.]]]],.]]
=> [[[]],[[[[[]]]],[]]]
=> [[.,.],[[[[[.,.],.],.],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[[.,[.,.]],[[.,[.,[[.,.],.]]],.]]
=> [[[]],[[[[],[]]],[]]]
=> [[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 2
[[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [[[]],[[[[]],[]],[]]]
=> [[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[[.,[.,.]],[[.,[[[.,.],.],.]],.]]
=> [[[]],[[[],[],[]],[]]]
=> [[.,.],[[[.,.],[.,[.,.]]],[.,.]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[[.,[.,.]],[[[.,.],[.,[.,.]]],.]]
=> [[[]],[[],[[[]]],[]]]
=> [[.,.],[[.,.],[[[.,[.,.]],.],.]]]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 2
[[.,[.,.]],[[[.,.],[[.,.],.]],.]]
=> [[[]],[[],[[],[]],[]]]
=> [[.,.],[[.,[[.,.],[.,.]]],[.,.]]]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 2
[[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [[[]],[[[]],[[]],[]]]
=> [[.,.],[[[.,.],.],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 2
[[.,[.,.]],[[[[.,.],.],[.,.]],.]]
=> [[[]],[[],[],[[]],[]]]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
[[.,[.,.]],[[[.,[.,[.,.]]],.],.]]
=> [[[]],[[[[]]],[],[]]]
=> [[.,.],[[[[.,.],.],.],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 2
[[.,[.,.]],[[[[.,.],[.,.]],.],.]]
=> [[[]],[[],[[]],[],[]]]
=> [[.,.],[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 2
[[.,[.,.]],[[[[.,[.,.]],.],.],.]]
=> [[[]],[[[]],[],[],[]]]
=> [[.,.],[[[.,.],.],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[[.,[.,.]],[[[[[.,.],.],.],.],.]]
=> [[[]],[[],[],[],[],[]]]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2
[[[.,[.,.]],.],[.,[.,[[.,.],.]]]]
=> [[[]],[],[[[[],[]]]]]
=> [[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,1,1,0,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 2
[[[.,[.,.]],.],[.,[[.,.],[.,.]]]]
=> [[[]],[],[[[],[[]]]]]
=> [[.,.],[.,[[[.,.],[[.,.],.]],.]]]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 2
[[[.,[.,.]],.],[.,[[.,[.,.]],.]]]
=> [[[]],[],[[[[]],[]]]]
=> [[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 2
[[[.,[.,.]],.],[.,[[[.,.],.],.]]]
=> [[[]],[],[[[],[],[]]]]
=> [[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2
[[[.,[.,.]],.],[[.,.],[.,[.,.]]]]
=> [[[]],[],[[],[[[]]]]]
=> [[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2
[[[.,[.,.]],.],[[.,.],[[.,.],.]]]
=> [[[]],[],[[],[[],[]]]]
=> [[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2
[[[.,[.,.]],.],[[.,[.,.]],[.,.]]]
=> [[[]],[],[[[]],[[]]]]
=> [[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 2
[[[.,[.,.]],.],[[[.,.],.],[.,.]]]
=> [[[]],[],[[],[],[[]]]]
=> [[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2
[[[.,[.,.]],.],[[[.,.],[.,.]],.]]
=> [[[]],[],[[],[[]],[]]]
=> [[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 2
[[[.,[.,.]],.],[[[[.,.],.],.],.]]
=> [[[]],[],[[],[],[],[]]]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[[[.,[.,.]],[.,.]],[[[.,.],.],.]]
=> [[[]],[[]],[[],[],[]]]
=> [[.,.],[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2
[[[[.,[.,.]],.],.],[.,[[.,.],.]]]
=> [[[]],[],[],[[[],[]]]]
=> [[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,1,1,0,0,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2
[[[[.,[.,.]],.],.],[[.,.],[.,.]]]
=> [[[]],[],[],[[],[[]]]]
=> [[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 2
[[[[.,[.,.]],.],.],[[.,[.,.]],.]]
=> [[[]],[],[],[[[]],[]]]
=> [[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 2
[[[[.,[.,.]],.],.],[[[.,.],.],.]]
=> [[[]],[],[],[[],[],[]]]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[[[.,[.,.]],[[.,.],.]],[.,[.,.]]]
=> [[[]],[[],[]],[[[]]]]
=> [[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 2
[[[.,[.,.]],[[.,.],.]],[[.,.],.]]
=> [[[]],[[],[]],[[],[]]]
=> [[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 2
[[[[.,[.,.]],.],[.,.]],[[.,.],.]]
=> [[[]],[],[[]],[[],[]]]
=> [[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 2
[[[[.,[.,.]],[.,.]],.],[[.,.],.]]
=> [[[]],[[]],[],[[],[]]]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[[[[.,[.,[.,.]]],.],.],[[.,.],.]]
=> [[[[]]],[],[],[[],[]]]
=> [[[.,.],.],[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[[[[.,[[.,.],.]],.],.],[[.,.],.]]
=> [[[],[]],[],[],[[],[]]]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[[[[[.,[.,.]],.],.],.],[[.,.],.]]
=> [[[]],[],[],[],[[],[]]]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
Description
The logarithmic height of a Dyck path.
This is the floor of the binary logarithm of the usual height increased by one:
⌊log2(1+height(D))⌋
Matching statistic: St000862
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St000862: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St000862: Permutations ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> [1] => [1] => 1
[.,[.,.]]
=> [[.,.],.]
=> [1,2] => [1,2] => 1
[[.,.],.]
=> [.,[.,.]]
=> [2,1] => [1,2] => 1
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 1
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => 2
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 1
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 1
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => 2
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => 2
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => 2
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => 2
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => 1
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => 2
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => 1
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => 1
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => 2
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [1,3,4,5,2] => 2
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [1,2,4,5,3] => 2
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [1,4,5,2,3] => 2
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [1,4,5,2,3] => 2
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [1,2,3,5,4] => 2
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [1,3,5,2,4] => 2
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [1,2,5,3,4] => 2
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [1,2,5,3,4] => 2
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [1,5,2,3,4] => 2
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [1,5,2,4,3] => 2
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [1,5,2,3,4] => 2
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [1,5,2,3,4] => 2
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => 2
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 1
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 2
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => 2
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 2
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 1
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => 1
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 2
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 1
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => 1
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> [3,2,4,1,5,6,7] => [1,5,6,7,2,4,3] => ? = 2
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> [3,2,4,5,1,6,7] => [1,6,7,2,4,5,3] => ? = 2
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [[[.,[[[.,.],[.,.]],.]],.],.]
=> [4,2,3,5,1,6,7] => [1,6,7,2,3,5,4] => ? = 2
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> [3,4,2,5,1,6,7] => [1,6,7,2,5,3,4] => ? = 2
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> [4,3,2,5,1,6,7] => [1,6,7,2,5,3,4] => ? = 2
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [[[.,[[.,[.,.]],[.,.]]],.],.]
=> [5,3,2,4,1,6,7] => [1,6,7,2,4,3,5] => ? = 2
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> [4,3,5,2,1,6,7] => [1,6,7,2,3,5,4] => ? = 2
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [[[.,[[.,[.,.]],.]],[.,.]],.]
=> [6,3,2,4,1,5,7] => [1,5,7,2,4,3,6] => ? = 2
[.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> [3,2,4,5,6,1,7] => [1,7,2,4,5,6,3] => ? = 2
[.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[.,[[[[.,.],[.,.]],.],.]],.]
=> [4,2,3,5,6,1,7] => [1,7,2,3,5,6,4] => ? = 2
[.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> [3,4,2,5,6,1,7] => [1,7,2,5,6,3,4] => ? = 2
[.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> [4,3,2,5,6,1,7] => [1,7,2,5,6,3,4] => ? = 2
[.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],[.,.]],.]],.]
=> [5,2,3,4,6,1,7] => [1,7,2,3,4,6,5] => ? = 2
[.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[.,[[[.,[.,.]],[.,.]],.]],.]
=> [5,3,2,4,6,1,7] => [1,7,2,4,6,3,5] => ? = 2
[.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[.,[[[.,.],[[.,.],.]],.]],.]
=> [4,5,2,3,6,1,7] => [1,7,2,3,6,4,5] => ? = 2
[.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[.,[[[.,.],[.,[.,.]]],.]],.]
=> [5,4,2,3,6,1,7] => [1,7,2,3,6,4,5] => ? = 2
[.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> [3,4,5,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> [4,3,5,2,6,1,7] => [1,7,2,6,3,5,4] => ? = 2
[.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> [5,3,4,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> [4,5,3,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[.,[[[.,[.,.]],.],[.,.]]],.]
=> [6,3,2,4,5,1,7] => [1,7,2,4,5,3,6] => ? = 2
[.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[.,[[[.,.],[.,.]],[.,.]]],.]
=> [6,4,2,3,5,1,7] => [1,7,2,3,5,4,6] => ? = 2
[.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> [6,3,4,2,5,1,7] => [1,7,2,5,3,4,6] => ? = 2
[.,[[[.,.],[[[.,.],.],.]],.]]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [6,4,3,2,5,1,7] => [1,7,2,5,3,4,6] => ? = 2
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[[.,.],.]]],.]
=> [5,6,3,2,4,1,7] => [1,7,2,4,3,5,6] => ? = 2
[.,[[[[.,.],.],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [6,5,3,2,4,1,7] => [1,7,2,4,3,5,6] => ? = 2
[.,[[[.,[[.,.],.]],[.,.]],.]]
=> [[.,[[.,.],[[.,[.,.]],.]]],.]
=> [5,4,6,2,3,1,7] => [1,7,2,3,4,6,5] => ? = 2
[.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> [4,3,5,6,2,1,7] => [1,7,2,3,5,6,4] => ? = 2
[.,[[[.,[[.,.],[.,.]]],.],.]]
=> [[.,[.,[[[.,.],[.,.]],.]]],.]
=> [5,3,4,6,2,1,7] => [1,7,2,3,4,6,5] => ? = 2
[.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => [1,7,2,3,6,4,5] => ? = 2
[.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => [1,7,2,3,6,4,5] => ? = 2
[.,[[[[.,.],[[.,.],.]],.],.]]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [6,4,3,5,2,1,7] => [1,7,2,3,5,4,6] => ? = 2
[.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => [1,7,2,3,4,6,5] => ? = 2
[[.,.],[.,[[.,[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],.]],.],[.,.]]
=> [7,2,3,4,1,5,6] => [1,5,6,2,3,4,7] => ? = 2
[[.,.],[.,[[.,[[.,.],.]],.]]]
=> [[[.,[[.,[.,.]],.]],.],[.,.]]
=> [7,3,2,4,1,5,6] => [1,5,6,2,4,3,7] => ? = 2
[[.,.],[.,[[[.,.],[.,.]],.]]]
=> [[[.,[[.,.],[.,.]]],.],[.,.]]
=> [7,4,2,3,1,5,6] => [1,5,6,2,3,4,7] => ? = 2
[[.,.],[.,[[[.,[.,.]],.],.]]]
=> [[[.,[.,[[.,.],.]]],.],[.,.]]
=> [7,3,4,2,1,5,6] => [1,5,6,2,3,4,7] => ? = 2
[[.,.],[.,[[[[.,.],.],.],.]]]
=> [[[.,[.,[.,[.,.]]]],.],[.,.]]
=> [7,4,3,2,1,5,6] => [1,5,6,2,3,4,7] => ? = 2
[[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [7,2,3,4,5,1,6] => [1,6,2,3,4,5,7] => ? = 2
[[.,.],[[.,[.,[[.,.],.]]],.]]
=> [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [7,3,2,4,5,1,6] => [1,6,2,4,5,3,7] => ? = 2
[[.,.],[[.,[[.,.],[.,.]]],.]]
=> [[.,[[[.,.],[.,.]],.]],[.,.]]
=> [7,4,2,3,5,1,6] => [1,6,2,3,5,4,7] => ? = 2
[[.,.],[[.,[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [7,3,4,2,5,1,6] => [1,6,2,5,3,4,7] => ? = 2
[[.,.],[[.,[[[.,.],.],.]],.]]
=> [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [7,4,3,2,5,1,6] => [1,6,2,5,3,4,7] => ? = 2
[[.,.],[[[.,.],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[.,.]]],[.,.]]
=> [7,5,2,3,4,1,6] => [1,6,2,3,4,5,7] => ? = 2
[[.,.],[[[.,.],[[.,.],.]],.]]
=> [[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [7,5,3,2,4,1,6] => [1,6,2,4,3,5,7] => ? = 2
[[.,.],[[[.,[.,.]],[.,.]],.]]
=> [[.,[[.,.],[[.,.],.]]],[.,.]]
=> [7,4,5,2,3,1,6] => [1,6,2,3,4,5,7] => ? = 2
[[.,.],[[[[.,.],.],[.,.]],.]]
=> [[.,[[.,.],[.,[.,.]]]],[.,.]]
=> [7,5,4,2,3,1,6] => [1,6,2,3,4,5,7] => ? = 2
[[.,.],[[[.,[.,[.,.]]],.],.]]
=> [[.,[.,[[[.,.],.],.]]],[.,.]]
=> [7,3,4,5,2,1,6] => [1,6,2,3,4,5,7] => ? = 2
[[.,.],[[[.,[[.,.],.]],.],.]]
=> [[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [7,4,3,5,2,1,6] => [1,6,2,3,5,4,7] => ? = 2
Description
The number of parts of the shifted shape of a permutation.
The diagram of a strict partition λ1<λ2<⋯<λℓ of n is a tableau with ℓ rows, the i-th row being indented by i cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing.
The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair (P,Q) of standard shifted Young tableaux of the same shape, where off-diagonal entries in Q may be circled.
This statistic records the number of parts of the shifted shape.
Matching statistic: St001741
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St001741: Permutations ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
St001741: Permutations ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> [1] => [1] => 1
[.,[.,.]]
=> [[.,.],.]
=> [1,2] => [1,2] => 1
[[.,.],.]
=> [.,[.,.]]
=> [2,1] => [1,2] => 1
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 1
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => 2
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 1
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 1
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => 2
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => 2
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => 2
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => 2
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => 1
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => 2
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => 1
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => 1
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => 2
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [1,3,4,5,2] => 2
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [1,2,4,5,3] => 2
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [1,4,5,2,3] => 2
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [1,4,5,2,3] => 2
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [1,2,3,5,4] => 2
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [1,3,5,2,4] => 2
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [1,2,5,3,4] => 2
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [1,2,5,3,4] => 2
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [1,5,2,3,4] => 2
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [1,5,2,4,3] => 2
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [1,5,2,3,4] => 2
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [1,5,2,3,4] => 2
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => 2
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 1
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 2
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 2
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => 2
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 2
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => 2
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 1
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 2
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => 1
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 2
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 1
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => 1
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[[[.,[[[.,.],.],.]],.],.],.]
=> [2,3,4,1,5,6,7] => [1,5,6,7,2,3,4] => ? = 2
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> [3,2,4,1,5,6,7] => [1,5,6,7,2,4,3] => ? = 2
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [[[[.,[[.,.],[.,.]]],.],.],.]
=> [4,2,3,1,5,6,7] => [1,5,6,7,2,3,4] => ? = 2
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [[[[.,[.,[[.,.],.]]],.],.],.]
=> [3,4,2,1,5,6,7] => [1,5,6,7,2,3,4] => ? = 2
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> [4,3,2,1,5,6,7] => [1,5,6,7,2,3,4] => ? = 2
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [[[[.,[[.,.],.]],[.,.]],.],.]
=> [5,2,3,1,4,6,7] => [1,4,6,7,2,3,5] => ? = 2
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],[.,.]],.],.]
=> [5,3,2,1,4,6,7] => [1,4,6,7,2,3,5] => ? = 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [[[.,[[[[.,.],.],.],.]],.],.]
=> [2,3,4,5,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> [3,2,4,5,1,6,7] => [1,6,7,2,4,5,3] => ? = 2
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [[[.,[[[.,.],[.,.]],.]],.],.]
=> [4,2,3,5,1,6,7] => [1,6,7,2,3,5,4] => ? = 2
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> [3,4,2,5,1,6,7] => [1,6,7,2,5,3,4] => ? = 2
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> [4,3,2,5,1,6,7] => [1,6,7,2,5,3,4] => ? = 2
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],[.,.]]],.],.]
=> [5,2,3,4,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [[[.,[[.,[.,.]],[.,.]]],.],.]
=> [5,3,2,4,1,6,7] => [1,6,7,2,4,3,5] => ? = 2
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [[[.,[[.,.],[[.,.],.]]],.],.]
=> [4,5,2,3,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [[[.,[[.,.],[.,[.,.]]]],.],.]
=> [5,4,2,3,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> [3,4,5,2,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> [4,3,5,2,1,6,7] => [1,6,7,2,3,5,4] => ? = 2
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [[[.,[.,[[.,.],[.,.]]]],.],.]
=> [5,3,4,2,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> [4,5,3,2,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> [5,4,3,2,1,6,7] => [1,6,7,2,3,4,5] => ? = 2
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],.]],[.,.]],.]
=> [6,2,3,4,1,5,7] => [1,5,7,2,3,4,6] => ? = 2
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [[[.,[[.,[.,.]],.]],[.,.]],.]
=> [6,3,2,4,1,5,7] => [1,5,7,2,4,3,6] => ? = 2
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [[[.,[[.,.],[.,.]]],[.,.]],.]
=> [6,4,2,3,1,5,7] => [1,5,7,2,3,4,6] => ? = 2
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [[[.,[.,[[.,.],.]]],[.,.]],.]
=> [6,3,4,2,1,5,7] => [1,5,7,2,3,4,6] => ? = 2
[.,[[.,.],[[[[.,.],.],.],.]]]
=> [[[.,[.,[.,[.,.]]]],[.,.]],.]
=> [6,4,3,2,1,5,7] => [1,5,7,2,3,4,6] => ? = 2
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],[[.,.],.]],.]
=> [5,6,2,3,1,4,7] => [1,4,7,2,3,5,6] => ? = 2
[.,[[.,[.,.]],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[[.,.],.]],.]
=> [5,6,3,2,1,4,7] => [1,4,7,2,3,5,6] => ? = 2
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],[.,[.,.]]],.]
=> [6,5,2,3,1,4,7] => [1,4,7,2,3,5,6] => ? = 2
[.,[[[.,.],.],[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],[.,[.,.]]],.]
=> [6,5,3,2,1,4,7] => [1,4,7,2,3,5,6] => ? = 2
[.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => [1,7,2,3,4,5,6] => ? = 2
[.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> [3,2,4,5,6,1,7] => [1,7,2,4,5,6,3] => ? = 2
[.,[[.,[.,[[.,.],[.,.]]]],.]]
=> [[.,[[[[.,.],[.,.]],.],.]],.]
=> [4,2,3,5,6,1,7] => [1,7,2,3,5,6,4] => ? = 2
[.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> [3,4,2,5,6,1,7] => [1,7,2,5,6,3,4] => ? = 2
[.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> [4,3,2,5,6,1,7] => [1,7,2,5,6,3,4] => ? = 2
[.,[[.,[[.,.],[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],[.,.]],.]],.]
=> [5,2,3,4,6,1,7] => [1,7,2,3,4,6,5] => ? = 2
[.,[[.,[[.,.],[[.,.],.]]],.]]
=> [[.,[[[.,[.,.]],[.,.]],.]],.]
=> [5,3,2,4,6,1,7] => [1,7,2,4,6,3,5] => ? = 2
[.,[[.,[[.,[.,.]],[.,.]]],.]]
=> [[.,[[[.,.],[[.,.],.]],.]],.]
=> [4,5,2,3,6,1,7] => [1,7,2,3,6,4,5] => ? = 2
[.,[[.,[[[.,.],.],[.,.]]],.]]
=> [[.,[[[.,.],[.,[.,.]]],.]],.]
=> [5,4,2,3,6,1,7] => [1,7,2,3,6,4,5] => ? = 2
[.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> [3,4,5,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> [4,3,5,2,6,1,7] => [1,7,2,6,3,5,4] => ? = 2
[.,[[.,[[[.,.],[.,.]],.]],.]]
=> [[.,[[.,[[.,.],[.,.]]],.]],.]
=> [5,3,4,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> [4,5,3,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => [1,7,2,6,3,4,5] => ? = 2
[.,[[[.,.],[.,[.,[.,.]]]],.]]
=> [[.,[[[[.,.],.],.],[.,.]]],.]
=> [6,2,3,4,5,1,7] => [1,7,2,3,4,5,6] => ? = 2
[.,[[[.,.],[.,[[.,.],.]]],.]]
=> [[.,[[[.,[.,.]],.],[.,.]]],.]
=> [6,3,2,4,5,1,7] => [1,7,2,4,5,3,6] => ? = 2
[.,[[[.,.],[[.,.],[.,.]]],.]]
=> [[.,[[[.,.],[.,.]],[.,.]]],.]
=> [6,4,2,3,5,1,7] => [1,7,2,3,5,4,6] => ? = 2
[.,[[[.,.],[[.,[.,.]],.]],.]]
=> [[.,[[.,[[.,.],.]],[.,.]]],.]
=> [6,3,4,2,5,1,7] => [1,7,2,5,3,4,6] => ? = 2
[.,[[[.,.],[[[.,.],.],.]],.]]
=> [[.,[[.,[.,[.,.]]],[.,.]]],.]
=> [6,4,3,2,5,1,7] => [1,7,2,5,3,4,6] => ? = 2
[.,[[[.,[.,.]],[.,[.,.]]],.]]
=> [[.,[[[.,.],.],[[.,.],.]]],.]
=> [5,6,2,3,4,1,7] => [1,7,2,3,4,5,6] => ? = 2
Description
The largest integer such that all patterns of this size are contained in the permutation.
Matching statistic: St001085
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00326: Permutations —weak order rowmotion⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 67%
Mp00326: Permutations —weak order rowmotion⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St001085: Permutations ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 67%
Values
[.,.]
=> [1] => [1] => [1] => 0 = 1 - 1
[.,[.,.]]
=> [2,1] => [1,2] => [1,2] => 0 = 1 - 1
[[.,.],.]
=> [1,2] => [2,1] => [2,1] => 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[.,[[.,.],.]]
=> [2,3,1] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[[.,.],[.,.]]
=> [3,1,2] => [1,3,2] => [1,3,2] => 0 = 1 - 1
[[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => [2,3,1] => 0 = 1 - 1
[[[.,.],.],.]
=> [1,2,3] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,1,2,4] => [2,3,1,4] => 1 = 2 - 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [2,4,1,3] => [3,1,4,2] => 1 = 2 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [2,3,1,4] => [3,1,2,4] => 1 = 2 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,3,4,2] => [1,4,2,3] => 0 = 1 - 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,1,4,2] => [2,4,1,3] => 1 = 2 - 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,2,4,3] => [1,2,4,3] => 0 = 1 - 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,4,3,2] => [1,4,3,2] => 0 = 1 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => [2,3,4,1] => 0 = 1 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,2,1,3] => [3,2,4,1] => 1 = 2 - 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [4,1,3,2] => [2,4,3,1] => 0 = 1 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => [3,4,2,1] => 0 = 1 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,1,2,3,5] => [2,3,4,1,5] => 1 = 2 - 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [3,5,1,2,4] => [3,4,1,5,2] => 1 = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [3,4,1,2,5] => [3,4,1,2,5] => 1 = 2 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [4,3,1,2,5] => [3,4,2,1,5] => 1 = 2 - 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [2,4,5,1,3] => [4,1,5,2,3] => 1 = 2 - 1
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [4,2,5,1,3] => [4,2,5,1,3] => 1 = 2 - 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [2,3,5,1,4] => [4,1,2,5,3] => 1 = 2 - 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [2,5,3,1,4] => [4,1,3,5,2] => 1 = 2 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [2,3,4,1,5] => [4,1,2,3,5] => 1 = 2 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,2,4,1,5] => [4,2,1,3,5] => 1 = 2 - 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [2,4,3,1,5] => [4,1,3,2,5] => 1 = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,2,3,1,5] => [4,2,3,1,5] => 1 = 2 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [4,3,2,1,5] => [4,3,2,1,5] => 1 = 2 - 1
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,3,4,5,2] => [1,5,2,3,4] => 0 = 1 - 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [4,1,3,5,2] => [2,5,3,1,4] => 1 = 2 - 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [3,5,1,4,2] => [3,5,1,4,2] => 1 = 2 - 1
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [3,4,1,5,2] => [3,5,1,2,4] => 1 = 2 - 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [4,3,1,5,2] => [3,5,2,1,4] => 1 = 2 - 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,2,4,5,3] => [1,2,5,3,4] => 0 = 1 - 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [4,1,2,5,3] => [2,3,5,1,4] => 1 = 2 - 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,4,5,3,2] => [1,5,4,2,3] => 0 = 1 - 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [4,1,5,3,2] => [2,5,4,1,3] => 1 = 2 - 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0 = 1 - 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [2,5,4,1,3] => [4,1,5,3,2] => 1 = 2 - 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,3,5,4,2] => [1,5,2,4,3] => 0 = 1 - 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => 0 = 1 - 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,5,4,3,2] => 0 = 1 - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => [5,7,1,2,3,4,6] => [3,4,5,6,1,7,2] => ? = 2 - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [5,6,1,2,3,4,7] => [3,4,5,6,1,2,7] => ? = 2 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [6,5,1,2,3,4,7] => [3,4,5,6,2,1,7] => ? = 2 - 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => [4,6,7,1,2,3,5] => [4,5,6,1,7,2,3] => ? = 2 - 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => [6,4,7,1,2,3,5] => [4,5,6,2,7,1,3] => ? = 2 - 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [7,5,4,6,3,2,1] => [4,5,7,1,2,3,6] => [4,5,6,1,2,7,3] => ? = 2 - 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [7,4,5,6,3,2,1] => [4,7,5,1,2,3,6] => [4,5,6,1,3,7,2] => ? = 2 - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => [5,4,6,1,2,3,7] => [4,5,6,2,1,3,7] => ? = 2 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [6,4,5,7,3,2,1] => [4,6,5,1,2,3,7] => [4,5,6,1,3,2,7] => ? = 2 - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => [6,4,5,1,2,3,7] => [4,5,6,2,3,1,7] => ? = 2 - 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [7,6,5,3,4,2,1] => [3,5,6,7,1,2,4] => [5,6,1,7,2,3,4] => ? = 2 - 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [6,7,5,3,4,2,1] => [6,3,5,7,1,2,4] => [5,6,2,7,3,1,4] => ? = 2 - 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [7,5,6,3,4,2,1] => [5,7,3,6,1,2,4] => [5,6,3,7,1,4,2] => ? = 2 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [6,5,7,3,4,2,1] => [5,6,3,7,1,2,4] => [5,6,3,7,1,2,4] => ? = 2 - 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [5,6,7,3,4,2,1] => [6,5,3,7,1,2,4] => [5,6,3,7,2,1,4] => ? = 2 - 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [7,6,4,3,5,2,1] => [3,4,6,7,1,2,5] => [5,6,1,2,7,3,4] => ? = 2 - 1
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [6,7,4,3,5,2,1] => [6,3,4,7,1,2,5] => [5,6,2,3,7,1,4] => ? = 2 - 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [7,6,3,4,5,2,1] => [3,6,7,4,1,2,5] => [5,6,1,4,7,2,3] => ? = 2 - 1
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [6,7,3,4,5,2,1] => [6,3,7,4,1,2,5] => [5,6,2,4,7,1,3] => ? = 2 - 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [7,4,5,3,6,2,1] => [4,7,3,5,1,2,6] => [5,6,3,1,4,7,2] => ? = 2 - 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [7,5,3,4,6,2,1] => [3,5,7,4,1,2,6] => [5,6,1,4,2,7,3] => ? = 2 - 1
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [7,4,3,5,6,2,1] => [3,4,7,5,1,2,6] => [5,6,1,2,4,7,3] => ? = 2 - 1
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [7,3,4,5,6,2,1] => [3,7,5,4,1,2,6] => [5,6,1,4,3,7,2] => ? = 2 - 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => [5,3,4,6,1,2,7] => [5,6,2,3,1,4,7] => ? = 2 - 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [6,4,5,3,7,2,1] => [4,6,3,5,1,2,7] => [5,6,3,1,4,2,7] => ? = 2 - 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => [4,5,3,6,1,2,7] => [5,6,3,1,2,4,7] => ? = 2 - 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => [5,4,3,6,1,2,7] => [5,6,3,2,1,4,7] => ? = 2 - 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [6,5,3,4,7,2,1] => [3,5,6,4,1,2,7] => [5,6,1,4,2,3,7] => ? = 2 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [5,6,3,4,7,2,1] => [5,3,6,4,1,2,7] => [5,6,2,4,1,3,7] => ? = 2 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [6,4,3,5,7,2,1] => [3,4,6,5,1,2,7] => [5,6,1,2,4,3,7] => ? = 2 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [6,3,4,5,7,2,1] => [3,6,5,4,1,2,7] => [5,6,1,4,3,2,7] => ? = 2 - 1
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => [6,3,4,5,1,2,7] => [5,6,2,3,4,1,7] => ? = 2 - 1
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [4,5,3,6,7,2,1] => [6,4,3,5,1,2,7] => [5,6,3,2,4,1,7] => ? = 2 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [5,3,4,6,7,2,1] => [6,3,5,4,1,2,7] => [5,6,2,4,3,1,7] => ? = 2 - 1
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => [6,5,3,4,1,2,7] => [5,6,3,4,2,1,7] => ? = 2 - 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,2,3,1] => [2,4,5,6,7,1,3] => [6,1,7,2,3,4,5] => ? = 2 - 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [6,7,5,4,2,3,1] => [6,2,4,5,7,1,3] => [6,2,7,3,4,1,5] => ? = 2 - 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [7,5,6,4,2,3,1] => [5,7,2,4,6,1,3] => [6,3,7,4,1,5,2] => ? = 2 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [6,5,7,4,2,3,1] => [5,6,2,4,7,1,3] => [6,3,7,4,1,2,5] => ? = 2 - 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [5,6,7,4,2,3,1] => [6,5,2,4,7,1,3] => [6,3,7,4,2,1,5] => ? = 2 - 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [7,6,4,5,2,3,1] => [4,6,7,2,5,1,3] => [6,4,7,1,5,2,3] => ? = 2 - 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [7,5,4,6,2,3,1] => [4,5,7,2,6,1,3] => [6,4,7,1,2,5,3] => ? = 2 - 1
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [7,4,5,6,2,3,1] => [4,7,5,2,6,1,3] => [6,4,7,1,3,5,2] => ? = 2 - 1
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [6,5,4,7,2,3,1] => [4,5,6,2,7,1,3] => [6,4,7,1,2,3,5] => ? = 2 - 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [5,6,4,7,2,3,1] => [5,4,6,2,7,1,3] => [6,4,7,2,1,3,5] => ? = 2 - 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [6,4,5,7,2,3,1] => [4,6,5,2,7,1,3] => [6,4,7,1,3,2,5] => ? = 2 - 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [5,4,6,7,2,3,1] => [6,4,5,2,7,1,3] => [6,4,7,2,3,1,5] => ? = 2 - 1
[.,[[.,.],[[[[.,.],.],.],.]]]
=> [4,5,6,7,2,3,1] => [6,5,4,2,7,1,3] => [6,4,7,3,2,1,5] => ? = 2 - 1
[.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [6,7,5,3,2,4,1] => [6,2,3,5,7,1,4] => [6,2,3,7,4,1,5] => ? = 2 - 1
[.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [7,5,6,3,2,4,1] => [5,7,2,3,6,1,4] => [6,3,4,7,1,5,2] => ? = 2 - 1
Description
The number of occurrences of the vincular pattern |21-3 in a permutation.
This is the number of occurrences of the pattern 213, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Matching statistic: St001335
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001335: Graphs ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 67%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001335: Graphs ⟶ ℤResult quality: 18% ●values known / values provided: 18%●distinct values known / distinct values provided: 67%
Values
[.,.]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 0 = 1 - 1
[.,[.,.]]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[.,.],.]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0 = 1 - 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 0 = 1 - 1
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0 = 1 - 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [8,3,4,5,6,7,1,2] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [7,3,4,5,6,1,8,2] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,8,4,5,6,7,1,3] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [6,3,4,5,1,7,8,2] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [8,6,4,5,1,7,2,3] => ([(0,4),(0,5),(0,7),(1,2),(1,3),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,7,4,5,6,1,8,3] => ([(0,7),(1,6),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [7,6,4,5,1,2,8,3] => ([(0,5),(1,3),(1,4),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [2,3,8,5,6,7,1,4] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [8,3,7,5,6,1,2,4] => ([(0,4),(0,5),(0,7),(1,2),(1,3),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [8,3,6,5,1,7,2,4] => ([(0,3),(0,6),(0,7),(1,2),(1,6),(1,7),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [2,8,7,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [5,3,4,1,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [8,5,4,1,6,7,2,3] => ([(0,3),(0,4),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [7,5,4,1,6,2,8,3] => ([(0,6),(1,4),(1,5),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [8,3,5,1,6,7,2,4] => ([(0,1),(0,6),(0,7),(1,5),(1,7),(2,4),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [7,8,5,1,6,2,3,4] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [2,6,4,5,1,7,8,3] => ([(0,7),(1,7),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [2,8,6,5,1,7,3,4] => ([(0,4),(1,2),(1,3),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [6,5,4,1,2,7,8,3] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [6,8,5,1,2,7,3,4] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [2,3,7,5,6,1,8,4] => ([(0,7),(1,7),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [7,3,6,5,1,2,8,4] => ([(0,4),(1,2),(1,3),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [7,3,5,1,6,2,8,4] => ([(0,6),(1,2),(1,4),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [2,7,6,5,1,3,8,4] => ([(0,4),(1,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [6,7,5,1,2,3,8,4] => ([(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [2,3,4,8,6,7,1,5] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [8,3,4,7,6,1,2,5] => ([(0,3),(0,4),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [8,3,4,6,1,7,2,5] => ([(0,1),(0,6),(0,7),(1,5),(1,7),(2,4),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [2,8,4,7,6,1,3,5] => ([(0,6),(1,4),(1,5),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [7,8,4,6,1,2,3,5] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [8,3,4,1,6,7,2,5] => ([(0,4),(0,5),(0,7),(1,2),(1,3),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,8,4,1,6,2,3,5] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [2,8,4,6,1,7,3,5] => ([(0,6),(1,2),(1,4),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [6,8,4,1,2,7,3,5] => ([(0,3),(0,5),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [2,3,8,7,6,1,4,5] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [7,3,8,6,1,2,4,5] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [7,3,8,1,6,2,4,5] => ([(0,3),(0,5),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [2,7,8,6,1,3,4,5] => ([(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [6,7,8,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2 - 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [4,3,1,5,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [8,4,1,5,6,7,2,3] => ([(0,4),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [7,4,1,5,6,2,8,3] => ([(0,6),(1,5),(1,7),(2,4),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [8,3,1,5,6,7,2,4] => ([(0,4),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [7,8,1,5,6,2,3,4] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [6,4,1,5,2,7,8,3] => ([(0,6),(1,6),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [6,8,1,5,2,7,3,4] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [7,3,1,5,6,2,8,4] => ([(0,6),(1,4),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[[[.,.],.],[.,.]]]]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [6,7,1,5,2,3,8,4] => ([(0,4),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [4,3,1,8,6,7,2,5] => ([(0,4),(0,5),(1,2),(1,3),(1,6),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [8,4,1,7,6,2,3,5] => ([(0,4),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 - 1
Description
The cardinality of a minimal cycle-isolating set of a graph.
Let F be a set of graphs. A set of vertices S is F-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of S does not contain any graph in F.
This statistic returns the cardinality of the smallest isolating set when F contains all cycles.
Matching statistic: St001235
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00294: Standard tableaux —peak composition⟶ Integer compositions
St001235: Integer compositions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 67%
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00294: Standard tableaux —peak composition⟶ Integer compositions
St001235: Integer compositions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 67%
Values
[.,.]
=> [1] => [[1]]
=> [1] => 1
[.,[.,.]]
=> [2,1] => [[1],[2]]
=> [2] => 1
[[.,.],.]
=> [1,2] => [[1,2]]
=> [2] => 1
[.,[.,[.,.]]]
=> [3,2,1] => [[1],[2],[3]]
=> [3] => 1
[.,[[.,.],.]]
=> [2,3,1] => [[1,2],[3]]
=> [2,1] => 2
[[.,.],[.,.]]
=> [3,1,2] => [[1,3],[2]]
=> [3] => 1
[[.,[.,.]],.]
=> [2,1,3] => [[1,3],[2]]
=> [3] => 1
[[[.,.],.],.]
=> [1,2,3] => [[1,2,3]]
=> [3] => 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> [4] => 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> [2,2] => 2
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [[1,3],[2],[4]]
=> [3,1] => 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> [3,1] => 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[1,2,3],[4]]
=> [3,1] => 2
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [[1,4],[2],[3]]
=> [4] => 1
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [[1,2],[3,4]]
=> [2,2] => 2
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [[1,4],[2],[3]]
=> [4] => 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [[1,3,4],[2]]
=> [4] => 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> [4] => 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[1,2,4],[3]]
=> [2,2] => 2
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [[1,3,4],[2]]
=> [4] => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[1,3,4],[2]]
=> [4] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [[1,2,3,4]]
=> [4] => 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> [5] => 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> [2,3] => 2
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [[1,3],[2],[4],[5]]
=> [3,2] => 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> [3,2] => 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> [3,2] => 2
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [[1,4],[2],[3],[5]]
=> [4,1] => 2
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [[1,2],[3,4],[5]]
=> [2,2,1] => 2
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [[1,4],[2],[3],[5]]
=> [4,1] => 2
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [[1,3,4],[2],[5]]
=> [4,1] => 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> [4,1] => 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> [2,2,1] => 2
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [[1,3,4],[2],[5]]
=> [4,1] => 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> [4,1] => 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> [4,1] => 2
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [5] => 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [2,3] => 2
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [3,2] => 2
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [3,2] => 2
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [[1,2,3],[4,5]]
=> [3,2] => 2
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [5] => 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [2,3] => 2
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [[1,4,5],[2],[3]]
=> [5] => 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [[1,2,5],[3,4]]
=> [2,3] => 2
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [5] => 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [3,2] => 2
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [[1,4,5],[2],[3]]
=> [5] => 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [[1,4,5],[2],[3]]
=> [5] => 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [[1,3,4,5],[2]]
=> [5] => 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [[1],[2],[3],[4],[5],[6],[7]]
=> [7] => ? = 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [[1,2],[3],[4],[5],[6],[7]]
=> [2,5] => ? = 2
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => [[1,3],[2],[4],[5],[6],[7]]
=> [3,4] => ? = 2
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [[1,3],[2],[4],[5],[6],[7]]
=> [3,4] => ? = 2
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [[1,2,3],[4],[5],[6],[7]]
=> [3,4] => ? = 2
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => [[1,4],[2],[3],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => [[1,2],[3,4],[5],[6],[7]]
=> [2,2,3] => ? = 2
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [7,5,4,6,3,2,1] => [[1,4],[2],[3],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [7,4,5,6,3,2,1] => [[1,3,4],[2],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [[1,4],[2],[3],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => [[1,2,4],[3],[5],[6],[7]]
=> [2,2,3] => ? = 2
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [6,4,5,7,3,2,1] => [[1,3,4],[2],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => [[1,3,4],[2],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [[1,2,3,4],[5],[6],[7]]
=> [4,3] => ? = 2
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [7,6,5,3,4,2,1] => [[1,5],[2],[3],[4],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [6,7,5,3,4,2,1] => [[1,2],[3,5],[4],[6],[7]]
=> [2,3,2] => ? = 2
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [7,5,6,3,4,2,1] => [[1,3],[2,5],[4],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [6,5,7,3,4,2,1] => [[1,3],[2,5],[4],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [5,6,7,3,4,2,1] => [[1,2,3],[4,5],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [7,6,4,3,5,2,1] => [[1,5],[2],[3],[4],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [6,7,4,3,5,2,1] => [[1,2],[3,5],[4],[6],[7]]
=> [2,3,2] => ? = 2
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [7,6,3,4,5,2,1] => [[1,4,5],[2],[3],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [6,7,3,4,5,2,1] => [[1,2,5],[3,4],[6],[7]]
=> [2,3,2] => ? = 2
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [7,5,4,3,6,2,1] => [[1,5],[2],[3],[4],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [7,4,5,3,6,2,1] => [[1,3,5],[2],[4],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [7,5,3,4,6,2,1] => [[1,4,5],[2],[3],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [7,4,3,5,6,2,1] => [[1,4,5],[2],[3],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [7,3,4,5,6,2,1] => [[1,3,4,5],[2],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => [[1,5],[2],[3],[4],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => [[1,2,5],[3],[4],[6],[7]]
=> [2,3,2] => ? = 2
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [6,4,5,3,7,2,1] => [[1,3,5],[2],[4],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => [[1,3,5],[2],[4],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => [[1,2,3,5],[4],[6],[7]]
=> [3,2,2] => ? = 2
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [6,5,3,4,7,2,1] => [[1,4,5],[2],[3],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [5,6,3,4,7,2,1] => [[1,2,5],[3,4],[6],[7]]
=> [2,3,2] => ? = 2
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [6,4,3,5,7,2,1] => [[1,4,5],[2],[3],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [6,3,4,5,7,2,1] => [[1,3,4,5],[2],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => [[1,4,5],[2],[3],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [4,5,3,6,7,2,1] => [[1,2,4,5],[3],[6],[7]]
=> [2,3,2] => ? = 2
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [5,3,4,6,7,2,1] => [[1,3,4,5],[2],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => [[1,3,4,5],[2],[6],[7]]
=> [5,2] => ? = 2
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [[1,2,3,4,5],[6],[7]]
=> [5,2] => ? = 2
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,2,3,1] => [[1,6],[2],[3],[4],[5],[7]]
=> [6,1] => ? = 2
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [6,7,5,4,2,3,1] => [[1,2],[3,6],[4],[5],[7]]
=> [2,4,1] => ? = 2
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [7,5,6,4,2,3,1] => [[1,3],[2,6],[4],[5],[7]]
=> [3,3,1] => ? = 2
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [6,5,7,4,2,3,1] => [[1,3],[2,6],[4],[5],[7]]
=> [3,3,1] => ? = 2
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [5,6,7,4,2,3,1] => [[1,2,3],[4,6],[5],[7]]
=> [3,3,1] => ? = 2
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [7,6,4,5,2,3,1] => [[1,4],[2,6],[3],[5],[7]]
=> [4,2,1] => ? = 2
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [6,7,4,5,2,3,1] => [[1,2],[3,4],[5,6],[7]]
=> [2,2,2,1] => ? = 2
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [7,5,4,6,2,3,1] => [[1,4],[2,6],[3],[5],[7]]
=> [4,2,1] => ? = 2
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Matching statistic: St000397
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00016: Binary trees —left-right symmetry⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000397: Ordered trees ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 67%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000397: Ordered trees ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 67%
Values
[.,.]
=> [.,.]
=> [.,.]
=> [[],[]]
=> 2 = 1 + 1
[.,[.,.]]
=> [[.,.],.]
=> [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[.,.],.]
=> [.,[.,.]]
=> [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 2 = 1 + 1
[.,[[.,.],.]]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 2 + 1
[[.,.],[.,.]]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> 2 = 1 + 1
[[.,[.,.]],.]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> 2 = 1 + 1
[[[.,.],.],.]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 2 = 1 + 1
[.,[.,[.,[.,.]]]]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> 2 = 1 + 1
[.,[.,[[.,.],.]]]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> 3 = 2 + 1
[.,[[.,.],[.,.]]]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> 3 = 2 + 1
[.,[[.,[.,.]],.]]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> 3 = 2 + 1
[.,[[[.,.],.],.]]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> 3 = 2 + 1
[[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> 2 = 1 + 1
[[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> 3 = 2 + 1
[[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> 2 = 1 + 1
[[.,[.,[.,.]]],.]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> 2 = 1 + 1
[[.,[[.,.],.]],.]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> 3 = 2 + 1
[[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> 2 = 1 + 1
[[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[.,.],.],.],.],.]
=> [[[[[.,.],.],.],.],.]
=> [[[[[[],[]],[]],[]],[]],[]]
=> 2 = 1 + 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> 3 = 2 + 1
[.,[.,[[.,.],[.,.]]]]
=> [[[[.,.],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> 3 = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> 3 = 2 + 1
[.,[.,[[[.,.],.],.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> 3 = 2 + 1
[.,[[.,.],[.,[.,.]]]]
=> [[[[.,.],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],.]
=> [[[[[],[]],[[],[]]],[]],[]]
=> 3 = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> 3 = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],.]
=> [[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> 3 = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],.]
=> [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> 3 = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> 3 = 2 + 1
[.,[[.,[[.,.],.]],.]]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> 3 = 2 + 1
[.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> 3 = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> 3 = 2 + 1
[.,[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> 3 = 2 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[[],[]]],[]],[]],[]]
=> 2 = 1 + 1
[[.,.],[.,[[.,.],.]]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> 3 = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[[],[]]],[[],[]]],[]]
=> 3 = 2 + 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> 3 = 2 + 1
[[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> 3 = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[[],[]],[]]],[]],[]]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> 3 = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> 3 = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> 3 = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[[],[[],[]]],[]]],[]]
=> 2 = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> 2 = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> [[[[[[[[],[]],[]],[]],[]],[]],[]],[]]
=> ? = 1 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [[[[[[.,[.,.]],.],.],.],.],.]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [[[[[[[],[]],[]],[]],[]],[]],[[],[]]]
=> ? = 2 + 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> [[[[[[[],[]],[]],[]],[]],[[],[]]],[]]
=> ? = 2 + 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [[[[[.,[[.,.],.]],.],.],.],.]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> [[[[[[],[]],[]],[]],[]],[[[],[]],[]]]
=> ? = 2 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [[[[[.,[.,[.,.]]],.],.],.],.]
=> [[[[[.,.],.],.],.],[.,[.,.]]]
=> [[[[[[],[]],[]],[]],[]],[[],[[],[]]]]
=> ? = 2 + 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [[[[[[.,.],.],[.,.]],.],.],.]
=> [[[[[[.,.],.],.],[.,.]],.],.]
=> [[[[[[[],[]],[]],[]],[[],[]]],[]],[]]
=> ? = 2 + 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [[[[[.,[.,.]],[.,.]],.],.],.]
=> [[[[[.,.],.],.],[.,.]],[.,.]]
=> [[[[[[],[]],[]],[]],[[],[]]],[[],[]]]
=> ? = 2 + 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [[[[[.,.],[[.,.],.]],.],.],.]
=> [[[[[.,.],.],.],[[.,.],.]],.]
=> [[[[[[],[]],[]],[]],[[[],[]],[]]],[]]
=> ? = 2 + 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [[[[[.,.],[.,[.,.]]],.],.],.]
=> [[[[[.,.],.],.],[.,[.,.]]],.]
=> [[[[[[],[]],[]],[]],[[],[[],[]]]],[]]
=> ? = 2 + 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[[[.,[[[.,.],.],.]],.],.],.]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> [[[[[],[]],[]],[]],[[[[],[]],[]],[]]]
=> ? = 2 + 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> [[[[[],[]],[]],[]],[[[],[]],[[],[]]]]
=> ? = 2 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [[[[.,[[.,.],[.,.]]],.],.],.]
=> [[[[.,.],.],.],[[.,[.,.]],.]]
=> [[[[[],[]],[]],[]],[[[],[[],[]]],[]]]
=> ? = 2 + 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [[[[.,[.,[[.,.],.]]],.],.],.]
=> [[[[.,.],.],.],[.,[[.,.],.]]]
=> [[[[[],[]],[]],[]],[[],[[[],[]],[]]]]
=> ? = 2 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> [[[[.,.],.],.],[.,[.,[.,.]]]]
=> [[[[[],[]],[]],[]],[[],[[],[[],[]]]]]
=> ? = 2 + 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [[[[[[.,.],.],.],[.,.]],.],.]
=> [[[[[[.,.],.],[.,.]],.],.],.]
=> [[[[[[[],[]],[]],[[],[]]],[]],[]],[]]
=> ? = 2 + 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [[[[[.,[.,.]],.],[.,.]],.],.]
=> [[[[[.,.],.],[.,.]],.],[.,.]]
=> [[[[[[],[]],[]],[[],[]]],[]],[[],[]]]
=> ? = 2 + 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [[[[[.,.],[.,.]],[.,.]],.],.]
=> [[[[[.,.],.],[.,.]],[.,.]],.]
=> [[[[[[],[]],[]],[[],[]]],[[],[]]],[]]
=> ? = 2 + 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [[[[.,[[.,.],.]],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],[[.,.],.]]
=> [[[[[],[]],[]],[[],[]]],[[[],[]],[]]]
=> ? = 2 + 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],[.,.]],.],.]
=> [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [[[[[],[]],[]],[[],[]]],[[],[[],[]]]]
=> ? = 2 + 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [[[[[.,.],.],[[.,.],.]],.],.]
=> [[[[[.,.],.],[[.,.],.]],.],.]
=> [[[[[[],[]],[]],[[[],[]],[]]],[]],[]]
=> ? = 2 + 1
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> [[[[[],[]],[]],[[[],[]],[]]],[[],[]]]
=> ? = 2 + 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [[[[[.,.],.],[.,[.,.]]],.],.]
=> [[[[[.,.],.],[.,[.,.]]],.],.]
=> [[[[[[],[]],[]],[[],[[],[]]]],[]],[]]
=> ? = 2 + 1
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> [[[[[],[]],[]],[[],[[],[]]]],[[],[]]]
=> ? = 2 + 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [[[[.,.],[[[.,.],.],.]],.],.]
=> [[[[.,.],.],[[[.,.],.],.]],.]
=> [[[[[],[]],[]],[[[[],[]],[]],[]]],[]]
=> ? = 2 + 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [[[[.,.],[[.,[.,.]],.]],.],.]
=> [[[[.,.],.],[[.,.],[.,.]]],.]
=> [[[[[],[]],[]],[[[],[]],[[],[]]]],[]]
=> ? = 2 + 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [[[[.,.],[[.,.],[.,.]]],.],.]
=> [[[[.,.],.],[[.,[.,.]],.]],.]
=> [[[[[],[]],[]],[[[],[[],[]]],[]]],[]]
=> ? = 2 + 1
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [[[[.,.],[.,[[.,.],.]]],.],.]
=> [[[[.,.],.],[.,[[.,.],.]]],.]
=> [[[[[],[]],[]],[[],[[[],[]],[]]]],[]]
=> ? = 2 + 1
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [[[[.,.],[.,[.,[.,.]]]],.],.]
=> [[[[.,.],.],[.,[.,[.,.]]]],.]
=> [[[[[],[]],[]],[[],[[],[[],[]]]]],[]]
=> ? = 2 + 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [[[.,[[[[.,.],.],.],.]],.],.]
=> [[[.,.],.],[[[[.,.],.],.],.]]
=> [[[[],[]],[]],[[[[[],[]],[]],[]],[]]]
=> ? = 2 + 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[],[]],[]],[[[[],[]],[]],[[],[]]]]
=> ? = 2 + 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [[[.,[[[.,.],[.,.]],.]],.],.]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> [[[[],[]],[]],[[[[],[]],[[],[]]],[]]]
=> ? = 2 + 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> [[[.,.],.],[[.,.],[[.,.],.]]]
=> [[[[],[]],[]],[[[],[]],[[[],[]],[]]]]
=> ? = 2 + 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> [[[.,.],.],[[.,.],[.,[.,.]]]]
=> [[[[],[]],[]],[[[],[]],[[],[[],[]]]]]
=> ? = 2 + 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [[[.,[[[.,.],.],[.,.]]],.],.]
=> [[[.,.],.],[[[.,[.,.]],.],.]]
=> [[[[],[]],[]],[[[[],[[],[]]],[]],[]]]
=> ? = 2 + 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [[[.,[[.,[.,.]],[.,.]]],.],.]
=> [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[],[]],[]],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [[[.,[[.,.],[[.,.],.]]],.],.]
=> [[[.,.],.],[[.,[[.,.],.]],.]]
=> [[[[],[]],[]],[[[],[[[],[]],[]]],[]]]
=> ? = 2 + 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [[[.,[[.,.],[.,[.,.]]]],.],.]
=> [[[.,.],.],[[.,[.,[.,.]]],.]]
=> [[[[],[]],[]],[[[],[[],[[],[]]]],[]]]
=> ? = 2 + 1
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> [[[.,.],.],[.,[[[.,.],.],.]]]
=> [[[[],[]],[]],[[],[[[[],[]],[]],[]]]]
=> ? = 2 + 1
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> [[[.,.],.],[.,[[.,.],[.,.]]]]
=> [[[[],[]],[]],[[],[[[],[]],[[],[]]]]]
=> ? = 2 + 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [[[.,[.,[[.,.],[.,.]]]],.],.]
=> [[[.,.],.],[.,[[.,[.,.]],.]]]
=> [[[[],[]],[]],[[],[[[],[[],[]]],[]]]]
=> ? = 2 + 1
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> [[[.,.],.],[.,[.,[[.,.],.]]]]
=> [[[[],[]],[]],[[],[[],[[[],[]],[]]]]]
=> ? = 2 + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> [[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [[[[],[]],[]],[[],[[],[[],[[],[]]]]]]
=> ? = 2 + 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> [[[[[[[],[]],[[],[]]],[]],[]],[]],[]]
=> ? = 2 + 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [[[[[.,[.,.]],.],.],[.,.]],.]
=> [[[[[.,.],[.,.]],.],.],[.,.]]
=> [[[[[[],[]],[[],[]]],[]],[]],[[],[]]]
=> ? = 2 + 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [[[[[.,.],[.,.]],.],[.,.]],.]
=> [[[[[.,.],[.,.]],.],[.,.]],.]
=> [[[[[[],[]],[[],[]]],[]],[[],[]]],[]]
=> ? = 2 + 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [[[[.,[[.,.],.]],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],[[.,.],.]]
=> [[[[[],[]],[[],[]]],[]],[[[],[]],[]]]
=> ? = 2 + 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [[[[.,[.,[.,.]]],.],[.,.]],.]
=> [[[[.,.],[.,.]],.],[.,[.,.]]]
=> [[[[[],[]],[[],[]]],[]],[[],[[],[]]]]
=> ? = 2 + 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [[[[[.,.],.],[.,.]],[.,.]],.]
=> [[[[[.,.],[.,.]],[.,.]],.],.]
=> [[[[[[],[]],[[],[]]],[[],[]]],[]],[]]
=> ? = 2 + 1
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],.]
=> [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [[[[[],[]],[[],[]]],[[],[]]],[[],[]]]
=> ? = 2 + 1
[.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [[[[.,.],[[.,.],.]],[.,.]],.]
=> [[[[.,.],[.,.]],[[.,.],.]],.]
=> [[[[[],[]],[[],[]]],[[[],[]],[]]],[]]
=> ? = 2 + 1
Description
The Strahler number of a rooted tree.
Matching statistic: St001174
(load all 36 compositions to match this statistic)
(load all 36 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
St001174: Permutations ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 67%
St001174: Permutations ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 67%
Values
[.,.]
=> [1] => ? = 1 - 1
[.,[.,.]]
=> [2,1] => 0 = 1 - 1
[[.,.],.]
=> [1,2] => 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => 0 = 1 - 1
[.,[[.,.],.]]
=> [2,3,1] => 1 = 2 - 1
[[.,.],[.,.]]
=> [1,3,2] => 0 = 1 - 1
[[.,[.,.]],.]
=> [2,1,3] => 0 = 1 - 1
[[[.,.],.],.]
=> [1,2,3] => 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1 = 2 - 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => 1 = 2 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => 1 = 2 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => 1 = 2 - 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => 0 = 1 - 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => 1 = 2 - 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => 0 = 1 - 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => 0 = 1 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => 0 = 1 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => 1 = 2 - 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => 0 = 1 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => 0 = 1 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1 = 2 - 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => 1 = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 1 = 2 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 1 = 2 - 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => 1 = 2 - 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => 1 = 2 - 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => 1 = 2 - 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => 1 = 2 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 1 = 2 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 1 = 2 - 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => 1 = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 1 = 2 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 1 = 2 - 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 0 = 1 - 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 1 = 2 - 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 1 = 2 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 1 = 2 - 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 1 = 2 - 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 0 = 1 - 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 1 = 2 - 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => 0 = 1 - 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => 1 = 2 - 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 0 = 1 - 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 1 = 2 - 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => 0 = 1 - 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => 0 = 1 - 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => 0 = 1 - 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 0 = 1 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ? = 1 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ? = 2 - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ? = 2 - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ? = 2 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ? = 2 - 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ? = 2 - 1
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ? = 2 - 1
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ? = 2 - 1
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ? = 2 - 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ? = 2 - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ? = 2 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ? = 2 - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ? = 2 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ? = 2 - 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ? = 2 - 1
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => ? = 2 - 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => ? = 2 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => ? = 2 - 1
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => ? = 2 - 1
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => ? = 2 - 1
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => ? = 2 - 1
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => ? = 2 - 1
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => ? = 2 - 1
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => ? = 2 - 1
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ? = 2 - 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => ? = 2 - 1
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => ? = 2 - 1
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => ? = 2 - 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ? = 2 - 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => ? = 2 - 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => ? = 2 - 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => ? = 2 - 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => ? = 2 - 1
[.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [3,6,5,4,7,2,1] => ? = 2 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [3,5,6,4,7,2,1] => ? = 2 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => ? = 2 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => ? = 2 - 1
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => ? = 2 - 1
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> [4,5,3,6,7,2,1] => ? = 2 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [3,5,4,6,7,2,1] => ? = 2 - 1
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => ? = 2 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ? = 2 - 1
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ? = 2 - 1
[.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [2,6,7,5,4,3,1] => ? = 2 - 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [2,5,7,6,4,3,1] => ? = 2 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [2,6,5,7,4,3,1] => ? = 2 - 1
[.,[[.,.],[.,[[[.,.],.],.]]]]
=> [2,5,6,7,4,3,1] => ? = 2 - 1
[.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [2,4,7,6,5,3,1] => ? = 2 - 1
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [2,4,6,7,5,3,1] => ? = 2 - 1
Description
The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn).
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St001330The hat guessing number of a graph. St000640The rank of the largest boolean interval in a poset. St000454The largest eigenvalue of a graph if it is integral. St000805The number of peaks of the associated bargraph. St001729The number of visible descents of a permutation. St000807The sum of the heights of the valleys of the associated bargraph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!