Your data matches 79 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000687: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
Description
The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. In this expression, $I$ is the direct sum of all injective non-projective indecomposable modules and $P$ is the direct sum of all projective non-injective indecomposable modules. This statistic was discussed in [Theorem 5.7, 1].
Matching statistic: St001545
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St001545: Graphs ⟶ ℤResult quality: 17% values known / values provided: 21%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,1,5,6,2,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,5,1,6,2,3] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
Description
The second Elser number of a connected graph. For a connected graph $G$ the $k$-th Elser number is $$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$ where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$. It is clear that this number is even. It was shown in [1] that it is non-negative.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00160: Permutations graph of inversionsGraphs
St001330: Graphs ⟶ ℤResult quality: 17% values known / values provided: 20%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => ([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,5,4,1,2,7,3] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001435
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001435: Skew partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[4],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0
Description
The number of missing boxes in the first row.
Matching statistic: St001438
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001438: Skew partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[4],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 0
Description
The number of missing boxes of a skew partition.
Matching statistic: St001487
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001487: Skew partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[4],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 1 = 0 + 1
Description
The number of inner corners of a skew partition.
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001490: Skew partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[4],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 2 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> 1 = 0 + 1
Description
The number of connected components of a skew partition.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St000951: Dyck paths ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 1
Description
The dimension of $Ext^{1}(D(A),A)$ of the corresponding LNakayama algebra.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00209: Permutations pattern posetPosets
St000068: Posets ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,2] => [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,3,1,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,2,1,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [5,6,4,3,2,1] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [4,6,5,3,2,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [5,4,6,3,2,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,5,6,3,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [3,6,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [5,3,6,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [4,3,6,5,2,1] => ([(0,2),(0,3),(0,4),(1,8),(1,9),(2,1),(2,10),(2,11),(3,6),(3,7),(3,11),(4,6),(4,7),(4,10),(6,14),(7,12),(7,14),(8,13),(8,15),(9,13),(9,15),(10,8),(10,12),(10,14),(11,9),(11,12),(11,14),(12,13),(12,15),(13,5),(14,15),(15,5)],16)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [5,4,3,6,2,1] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [4,5,3,6,2,1] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [3,4,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [3,5,4,6,2,1] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [4,3,5,6,2,1] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [2,6,5,4,3,1] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [5,2,6,4,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(1,20),(1,21),(2,13),(2,14),(3,8),(3,13),(3,15),(4,9),(4,10),(4,13),(4,15),(5,7),(5,8),(5,9),(5,14),(6,1),(6,7),(6,10),(6,14),(6,15),(7,12),(7,16),(7,18),(7,20),(8,18),(8,21),(9,16),(9,18),(9,21),(10,16),(10,20),(10,21),(12,17),(12,19),(13,21),(14,20),(14,21),(15,18),(15,20),(15,21),(16,17),(16,19),(17,11),(18,17),(18,19),(19,11),(20,17),(20,19),(21,19)],22)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [4,2,6,5,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,18),(1,21),(2,11),(2,12),(2,19),(3,9),(3,13),(3,19),(4,10),(4,13),(4,19),(5,10),(5,12),(5,14),(5,19),(6,1),(6,9),(6,11),(6,14),(6,19),(8,17),(8,20),(9,18),(9,21),(10,16),(10,21),(11,15),(11,18),(11,21),(12,15),(12,16),(13,21),(14,8),(14,15),(14,16),(14,18),(15,17),(15,20),(16,17),(16,20),(17,7),(18,17),(18,20),(19,16),(19,18),(19,21),(20,7),(21,20)],22)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [5,4,2,6,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,19),(1,21),(2,12),(2,16),(2,17),(3,11),(3,16),(3,17),(4,9),(4,10),(4,16),(5,9),(5,12),(5,13),(5,17),(6,1),(6,10),(6,11),(6,13),(6,17),(8,18),(8,20),(9,14),(9,21),(10,14),(10,19),(10,21),(11,19),(11,21),(12,15),(12,21),(13,8),(13,14),(13,15),(13,19),(14,18),(14,20),(15,18),(15,20),(16,21),(17,15),(17,19),(17,21),(18,7),(19,18),(19,20),(20,7),(21,20)],22)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [4,5,2,6,3,1] => ([(0,1),(0,3),(0,4),(0,5),(0,6),(1,17),(1,19),(2,8),(2,18),(2,22),(3,10),(3,11),(3,19),(4,12),(4,14),(4,17),(4,19),(5,10),(5,13),(5,14),(5,17),(6,2),(6,11),(6,12),(6,13),(6,19),(7,20),(8,20),(8,21),(10,15),(10,22),(11,15),(11,18),(11,22),(12,16),(12,18),(12,22),(13,8),(13,15),(13,16),(13,22),(14,7),(14,16),(14,22),(15,20),(15,21),(16,20),(16,21),(17,7),(17,22),(18,21),(19,18),(19,22),(20,9),(21,9),(22,20),(22,21)],23)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [3,2,6,5,4,1] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,8),(2,14),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,13),(6,15),(8,13),(8,15),(9,12),(9,14),(10,8),(10,12),(11,6),(11,12),(11,14),(12,13),(12,15),(13,7),(14,15),(15,7)],16)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [5,3,2,6,4,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,20),(1,22),(2,13),(2,14),(2,17),(3,11),(3,12),(3,17),(4,8),(4,9),(4,11),(4,17),(5,1),(5,8),(5,10),(5,14),(5,17),(6,9),(6,10),(6,12),(6,13),(8,15),(8,20),(8,22),(9,15),(9,19),(9,22),(10,15),(10,16),(10,19),(10,20),(11,22),(12,19),(12,22),(13,16),(13,19),(14,16),(14,20),(14,22),(15,18),(15,21),(16,18),(16,21),(17,19),(17,20),(17,22),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,21)],23)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [4,3,2,6,5,1] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,8),(2,14),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,13),(6,15),(8,13),(8,15),(9,12),(9,14),(10,8),(10,12),(11,6),(11,12),(11,14),(12,13),(12,15),(13,7),(14,15),(15,7)],16)
=> ? = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
Description
The number of minimal elements in a poset.
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000181: Posets ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1,0]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
Description
The number of connected components of the Hasse diagram for the poset.
The following 69 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001890The maximum magnitude of the Möbius function of a poset. St001866The nesting alignments of a signed permutation. St000455The second largest eigenvalue of a graph if it is integral. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St000850The number of 1/2-balanced pairs in a poset. St000633The size of the automorphism group of a poset. St001399The distinguishing number of a poset. St000741The Colin de Verdière graph invariant. St001964The interval resolution global dimension of a poset. St001301The first Betti number of the order complex associated with the poset. St000908The length of the shortest maximal antichain in a poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001550The number of inversions between exceedances where the greater exceedance is linked. St000914The sum of the values of the Möbius function of a poset. St001867The number of alignments of type EN of a signed permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000022The number of fixed points of a permutation. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000407The number of occurrences of the pattern 2143 in a permutation. St000461The rix statistic of a permutation. St000488The number of cycles of a permutation of length at most 2. St000516The number of stretching pairs of a permutation. St000629The defect of a binary word. St000648The number of 2-excedences of a permutation. St000666The number of right tethers of a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000877The depth of the binary word interpreted as a path. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St001549The number of restricted non-inversions between exceedances. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001811The Castelnuovo-Mumford regularity of a permutation. St001847The number of occurrences of the pattern 1432 in a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000335The difference of lower and upper interactions. St000570The Edelman-Greene number of a permutation. St000779The tier of a permutation. St000805The number of peaks of the associated bargraph. St000876The number of factors in the Catalan decomposition of a binary word. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001162The minimum jump of a permutation. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001344The neighbouring number of a permutation. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000842The breadth of a permutation. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St000768The number of peaks in an integer composition. St001722The number of minimal chains with small intervals between a binary word and the top element. St001845The number of join irreducibles minus the rank of a lattice. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001720The minimal length of a chain of small intervals in a lattice.