Your data matches 504 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001012: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 3
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> 5
[1,1,1,0,1,0,0,0]
=> 5
[1,1,1,1,0,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> 6
Description
Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path.
St001179: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 3
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> 5
[1,1,1,0,1,0,0,0]
=> 5
[1,1,1,1,0,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> 6
Description
Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra.
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001958: Permutations ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0 = 2 - 2
[1,0,1,0]
=> [1,2] => 1 = 3 - 2
[1,1,0,0]
=> [2,1] => 1 = 3 - 2
[1,0,1,0,1,0]
=> [1,2,3] => 1 = 3 - 2
[1,0,1,1,0,0]
=> [1,3,2] => 2 = 4 - 2
[1,1,0,0,1,0]
=> [2,1,3] => 2 = 4 - 2
[1,1,0,1,0,0]
=> [2,3,1] => 2 = 4 - 2
[1,1,1,0,0,0]
=> [3,1,2] => 2 = 4 - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3 = 5 - 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 3 = 5 - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 3 = 5 - 2
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 3 = 5 - 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 3 = 5 - 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3 = 5 - 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3 = 5 - 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 3 = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 4 = 6 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 4 = 6 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4 = 6 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 4 = 6 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 4 = 6 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 4 = 6 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 4 = 6 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => 4 = 6 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => 4 = 6 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 4 = 6 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => 4 = 6 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => 4 = 6 - 2
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => 4 = 6 - 2
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 4 = 6 - 2
Description
The degree of the polynomial interpolating the values of a permutation. Given a permutation $\pi\in\mathfrak S_n$ there is a polynomial $p$ of minimal degree such that $p(n)=\pi(n)$ for $n\in\{1,\dots,n\}$. This statistic records the degree of $p$.
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000998: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 3
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6
Description
Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00122: Dyck paths —Elizalde-Deutsch bijection⟶ Dyck paths
St001170: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
Description
Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra.
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001240: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 3
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6
Description
The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001291: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 6
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 6
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 6
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
Description
The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. Let $A$ be the Nakayama algebra associated to a Dyck path as given in [[DyckPaths/NakayamaAlgebras]]. This statistics is the number of indecomposable summands of $D(A) \otimes D(A)$, where $D(A)$ is the natural dual of $A$.
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00140: Dyck paths —logarithmic height to pruning number⟶ Binary trees
St000050: Binary trees ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [.,.]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> 5 = 6 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> 5 = 6 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 5 = 6 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[[.,[.,.]],.],.]]
=> 5 = 6 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> 5 = 6 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 5 = 6 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 5 = 6 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> 5 = 6 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> 5 = 6 - 1
Description
The depth or height of a binary tree. The depth (or height) of a binary tree is the maximal depth (or height) of one of its vertices. The '''height''' of a vertex is the number of edges on the longest path between that node and a leaf. The '''depth''' of a vertex is the number of edges from the vertex to the root. See [1] and [2] for this terminology. The depth (or height) of a tree $T$ can be recursively defined: $\operatorname{depth}(T) = 0$ if $T$ is empty and $$\operatorname{depth}(T) = 1 + max(\operatorname{depth}(L),\operatorname{depth}(R))$$ if $T$ is nonempty with left and right subtrees $L$ and $R$, respectively. The upper and lower bounds on the depth of a binary tree $T$ of size $n$ are $log_2(n) \leq \operatorname{depth}(T) \leq n$.
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000144: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 5 = 6 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 5 = 6 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5 = 6 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 6 - 1
Description
The pyramid weight of the Dyck path. The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path. Maximal pyramids are called lower interactions by Le Borgne [2], see [[St000331]] and [[St000335]] for related statistics.
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000831: Permutations ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2 = 3 - 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 5 = 6 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 5 = 6 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 5 = 6 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 5 = 6 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 5 = 6 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,6,5,4,2,1] => 5 = 6 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 5 = 6 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,3,6,5,2,1] => 5 = 6 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,5,3,2,1] => 5 = 6 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 5 = 6 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 5 = 6 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [5,6,4,3,2,1] => 5 = 6 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 5 = 6 - 1
Description
The number of indices that are either descents or recoils. This is, for a permutation $\pi$ of length $n$, this statistics counts the set $$\{ 1 \leq i < n : \pi(i) > \pi(i+1) \text{ or } \pi^{-1}(i) > \pi^{-1}(i+1)\}.$$
The following 494 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000907The number of maximal antichains of minimal length in a poset. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001332The number of steps on the non-negative side of the walk associated with the permutation. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001554The number of distinct nonempty subtrees of a binary tree. St000011The number of touch points (or returns) of a Dyck path. St000015The number of peaks of a Dyck path. St000026The position of the first return of a Dyck path. St000054The first entry of the permutation. St000211The rank of the set partition. St000240The number of indices that are not small excedances. St000453The number of distinct Laplacian eigenvalues of a graph. St000459The hook length of the base cell of a partition. St000548The number of different non-empty partial sums of an integer partition. St000676The number of odd rises of a Dyck path. St000717The number of ordinal summands of a poset. St000727The largest label of a leaf in the binary search tree associated with the permutation. St000740The last entry of a permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000839The largest opener of a set partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001497The position of the largest weak excedence of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000051The size of the left subtree of a binary tree. St000053The number of valleys of the Dyck path. St000056The decomposition (or block) number of a permutation. St000060The greater neighbor of the maximum. St000062The length of the longest increasing subsequence of the permutation. St000141The maximum drop size of a permutation. St000147The largest part of an integer partition. St000153The number of adjacent cycles of a permutation. St000209Maximum difference of elements in cycles. St000213The number of weak exceedances (also weak excedences) of a permutation. St000236The number of cyclical small weak excedances. St000239The number of small weak excedances. St000306The bounce count of a Dyck path. St000308The height of the tree associated to a permutation. St000309The number of vertices with even degree. St000314The number of left-to-right-maxima of a permutation. St000315The number of isolated vertices of a graph. St000316The number of non-left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000331The number of upper interactions of a Dyck path. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000469The distinguishing number of a graph. St000470The number of runs in a permutation. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000528The height of a poset. St000531The leading coefficient of the rook polynomial of an integer partition. St000636The hull number of a graph. St000653The last descent of a permutation. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St000743The number of entries in a standard Young tableau such that the next integer is a neighbour. St000776The maximal multiplicity of an eigenvalue in a graph. St000806The semiperimeter of the associated bargraph. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000863The length of the first row of the shifted shape of a permutation. St000912The number of maximal antichains in a poset. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St000956The maximal displacement of a permutation. St000971The smallest closer of a set partition. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St000991The number of right-to-left minima of a permutation. St000992The alternating sum of the parts of an integer partition. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001120The length of a longest path in a graph. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001245The cyclic maximal difference between two consecutive entries of a permutation. St001246The maximal difference between two consecutive entries of a permutation. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001315The dissociation number of a graph. St001343The dimension of the reduced incidence algebra of a poset. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001371The length of the longest Yamanouchi prefix of a binary word. St001461The number of topologically connected components of the chord diagram of a permutation. St001480The number of simple summands of the module J^2/J^3. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001566The length of the longest arithmetic progression in a permutation. St001571The Cartan determinant of the integer partition. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001691The number of kings in a graph. St001717The largest size of an interval in a poset. St001746The coalition number of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001955The number of natural descents for set-valued two row standard Young tableaux. St000021The number of descents of a permutation. St000080The rank of the poset. St000145The Dyson rank of a partition. St000234The number of global ascents of a permutation. St000245The number of ascents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St001096The size of the overlap set of a permutation. St001298The number of repeated entries in the Lehmer code of a permutation. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001405The number of bonds in a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001742The difference of the maximal and the minimal degree in a graph. St000837The number of ascents of distance 2 of a permutation. St000643The size of the largest orbit of antichains under Panyushev complementation. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000064The number of one-box pattern of a permutation. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000654The first descent of a permutation. St000680The Grundy value for Hackendot on posets. St000702The number of weak deficiencies of a permutation. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St000906The length of the shortest maximal chain in a poset. St000923The minimal number with no two order isomorphic substrings of this length in a permutation. St000393The number of strictly increasing runs in a binary word. St000543The size of the conjugacy class of a binary word. St000619The number of cyclic descents of a permutation. St000626The minimal period of a binary word. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000832The number of permutations obtained by reversing blocks of three consecutive numbers. St000876The number of factors in the Catalan decomposition of a binary word. St001052The length of the exterior of a permutation. St001267The length of the Lyndon factorization of the binary word. St001437The flex of a binary word. St001668The number of points of the poset minus the width of the poset. St001948The number of augmented double ascents of a permutation. St000836The number of descents of distance 2 of a permutation. St001082The number of boxed occurrences of 123 in a permutation. St001130The number of two successive successions in a permutation. St001651The Frankl number of a lattice. St001875The number of simple modules with projective dimension at most 1. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000784The maximum of the length and the largest part of the integer partition. St000840The number of closers smaller than the largest opener in a perfect matching. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000216The absolute length of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000808The number of up steps of the associated bargraph. St001726The number of visible inversions of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St001255The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St000264The girth of a graph, which is not a tree. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000521The number of distinct subtrees of an ordered tree. St000522The number of 1-protected nodes of a rooted tree. St001645The pebbling number of a connected graph. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000519The largest length of a factor maximising the subword complexity. St000922The minimal number such that all substrings of this length are unique. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St000451The length of the longest pattern of the form k 1 2. St000028The number of stack-sorts needed to sort a permutation. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000662The staircase size of the code of a permutation. St000834The number of right outer peaks of a permutation. St000075The orbit size of a standard tableau under promotion. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St000094The depth of an ordered tree. St000642The size of the smallest orbit of antichains under Panyushev complementation. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St000089The absolute variation of a composition. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000166The depth minus 1 of an ordered tree. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St001114The number of odd descents of a permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001372The length of a longest cyclic run of ones of a binary word. St001517The length of a longest pair of twins in a permutation. St001667The maximal size of a pair of weak twins for a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001928The number of non-overlapping descents in a permutation. St000023The number of inner peaks of a permutation. St000259The diameter of a connected graph. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000353The number of inner valleys of a permutation. St000624The normalized sum of the minimal distances to a greater element. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000711The number of big exceedences of a permutation. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001469The holeyness of a permutation. St001839The number of excedances of a set partition. St001060The distinguishing index of a graph. St000527The width of the poset. St000845The maximal number of elements covered by an element in a poset. St000632The jump number of the poset. St001569The maximal modular displacement of a permutation. St000307The number of rowmotion orbits of a poset. St001555The order of a signed permutation. St001644The dimension of a graph. St001638The book thickness of a graph. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000454The largest eigenvalue of a graph if it is integral. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000661The number of rises of length 3 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001141The number of occurrences of hills of size 3 in a Dyck path. St001926Sparre Andersen's position of the maximum of a signed permutation. St000739The first entry in the last row of a semistandard tableau. St001401The number of distinct entries in a semistandard tableau. St001686The order of promotion on a Gelfand-Tsetlin pattern. St000101The cocharge of a semistandard tableau. St001556The number of inversions of the third entry of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001856The number of edges in the reduced word graph of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000004The major index of a permutation. St000105The number of blocks in the set partition. St000155The number of exceedances (also excedences) of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000210Minimum over maximum difference of elements in cycles. St000251The number of nonsingleton blocks of a set partition. St000334The maz index, the major index of a permutation after replacing fixed points by zeros. St000339The maf index of a permutation. St000354The number of recoils of a permutation. St000422The energy of a graph, if it is integral. St000443The number of long tunnels of a Dyck path. St000461The rix statistic of a permutation. St000493The los statistic of a set partition. St000499The rcb statistic of a set partition. St000504The cardinality of the first block of a set partition. St000553The number of blocks of a graph. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000605The number of occurrences of the pattern {{1},{2,3}} such that 3 is maximal, (2,3) are consecutive in a block. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000703The number of deficiencies of a permutation. St000710The number of big deficiencies of a permutation. St000794The mak of a permutation. St000798The makl of a permutation. St000809The reduced reflection length of the permutation. St000822The Hadwiger number of the graph. St000823The number of unsplittable factors of the set partition. St000829The Ulam distance of a permutation to the identity permutation. St000833The comajor index of a permutation. St000873The aix statistic of a permutation. St000925The number of topologically connected components of a set partition. St000961The shifted major index of a permutation. St000963The 2-shifted major index of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001062The maximal size of a block of a set partition. St001075The minimal size of a block of a set partition. St001117The game chromatic index of a graph. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001220The width of a permutation. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001330The hat guessing number of a graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001642The Prague dimension of a graph. St001649The length of a longest trail in a graph. St001665The number of pure excedances of a permutation. St001729The number of visible descents of a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001769The reflection length of a signed permutation. St001778The largest greatest common divisor of an element and its image in a permutation. St001801Half the number of preimage-image pairs of different parity in a permutation. St001861The number of Bruhat lower covers of a permutation. St001874Lusztig's a-function for the symmetric group. St000116The major index of a semistandard tableau obtained by standardizing. St000133The "bounce" of a permutation. St000135The number of lucky cars of the parking function. St000168The number of internal nodes of an ordered tree. St000173The segment statistic of a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000338The number of pixed points of a permutation. St000358The number of occurrences of the pattern 31-2. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000612The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, (2,3) are consecutive in a block. St000736The last entry in the first row of a semistandard tableau. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St000942The number of critical left to right maxima of the parking functions. St000958The number of Bruhat factorizations of a permutation. St000973The length of the boundary of an ordered tree. St000975The length of the boundary minus the length of the trunk of an ordered tree. St000988The orbit size of a permutation under Foata's bijection. St000989The number of final rises of a permutation. St001002Number of indecomposable modules with projective and injective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001417The length of a longest palindromic subword of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001487The number of inner corners of a skew partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001596The number of two-by-two squares inside a skew partition. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001684The reduced word complexity of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001768The number of reduced words of a signed permutation. St001812The biclique partition number of a graph. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001896The number of right descents of a signed permutations. St001904The length of the initial strictly increasing segment of a parking function. St001905The number of preferred parking spots in a parking function less than the index of the car. St001927Sparre Andersen's number of positives of a signed permutation. St001946The number of descents in a parking function. St000002The number of occurrences of the pattern 123 in a permutation. St000044The number of vertices of the unicellular map given by a perfect matching. St000095The number of triangles of a graph. St000102The charge of a semistandard tableau. St000260The radius of a connected graph. St000357The number of occurrences of the pattern 12-3. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000603The number of occurrences of the pattern {{1},{2},{3}} such that 2,3 are minimal. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000879The number of long braid edges in the graph of braid moves of a permutation. St000881The number of short braid edges in the graph of braid moves of a permutation. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001520The number of strict 3-descents. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001857The number of edges in the reduced word graph of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001935The number of ascents in a parking function. St001964The interval resolution global dimension of a poset. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000137The Grundy value of an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001527The cyclic permutation representation number of an integer partition. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001943The sum of the squares of the hook lengths of an integer partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000474Dyson's crank of a partition.