Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000724: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 2
[2,1] => 2
[1,2,3] => 3
[1,3,2] => 3
[2,1,3] => 2
[2,3,1] => 3
[3,1,2] => 2
[3,2,1] => 3
[1,2,3,4] => 4
[1,2,4,3] => 4
[1,3,2,4] => 3
[1,3,4,2] => 4
[1,4,2,3] => 3
[1,4,3,2] => 4
[2,1,3,4] => 2
[2,1,4,3] => 2
[2,3,1,4] => 3
[2,3,4,1] => 4
[2,4,1,3] => 4
[2,4,3,1] => 4
[3,1,2,4] => 4
[3,1,4,2] => 4
[3,2,1,4] => 3
[3,2,4,1] => 3
[3,4,1,2] => 2
[3,4,2,1] => 4
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 4
[4,2,3,1] => 3
[4,3,1,2] => 2
[4,3,2,1] => 4
[1,2,3,4,5] => 5
[1,2,3,5,4] => 5
[1,2,4,3,5] => 4
[1,2,4,5,3] => 5
[1,2,5,3,4] => 4
[1,2,5,4,3] => 5
[1,3,2,4,5] => 3
[1,3,2,5,4] => 3
[1,3,4,2,5] => 4
[1,3,4,5,2] => 5
[1,3,5,2,4] => 5
[1,3,5,4,2] => 5
[1,4,2,3,5] => 5
[1,4,2,5,3] => 5
[1,4,3,2,5] => 4
[1,4,3,5,2] => 4
[1,4,5,2,3] => 3
[1,4,5,3,2] => 5
Description
The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. Associate an increasing binary tree to the permutation using [[Mp00061]]. Then follow the path starting at the root which always selects the child with the smaller label. This statistic is the label of the leaf in the path, see [1]. Han [2] showed that this statistic is (up to a shift) equidistributed on zigzag permutations (permutations $\pi$ such that $\pi(1) < \pi(2) > \pi(3) \cdots$) with the greater neighbor of the maximum ([[St000060]]), see also [3].
Mp00061: Permutations to increasing treeBinary trees
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 83%
Values
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4
[3,1,4,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[4,1,3,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[4,2,1,3] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[4,3,1,2] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[1,5,2,4,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,5,6,3] => [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,4,6,5,3] => [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,5,6,4,3] => [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,5,6,2] => [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,4,6,5,2] => [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,5,6,4,2] => [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,3,6,5,4,2] => [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,4,5,6,3,2] => [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,4,6,5,3,2] => [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,5,6,4,3,2] => [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,5,6,1] => [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,4,6,5,1] => [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,5,6,4,1] => [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,3,6,5,4,1] => [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,4,5,6,3,1] => [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[2,4,6,5,3,1] => [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Mp00061: Permutations to increasing treeBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 83%
Values
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? = 2 - 1
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 2 - 1
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
[2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[4,2,1,3] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 3 - 1
[4,3,1,2] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,5,2,4,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 - 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 1
[2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 - 1
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
[2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 4 - 1
[2,4,5,3,1] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[3,5,4,2,1] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,5,6,4] => [.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,4,5,6,3] => [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,4,6,5,3] => [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,5,6,4,3] => [.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,6,5,4,3] => [.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,4,5,6,2] => [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,4,6,5,2] => [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,5,6,4,2] => [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,3,6,5,4,2] => [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,4,5,6,3,2] => [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,4,6,5,3,2] => [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,5,6,4,3,2] => [.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,4,5,6,1] => [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,4,6,5,1] => [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,5,6,4,1] => [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,3,6,5,4,1] => [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,4,5,6,3,1] => [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[2,4,6,5,3,1] => [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.