searching the database
Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000771
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
1 => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
01 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
000101 => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
001001 => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
001011 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
001101 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
010001 => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
010011 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
010101 => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
011001 => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
011011 => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
011101 => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
100101 => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000774
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000774: Graphs ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000774: Graphs ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
1 => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
01 => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
01111 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
000011 => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
000101 => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
000111 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
001001 => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
001011 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
001101 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
001111 => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
010001 => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
010011 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
010101 => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
010111 => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
011001 => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
011011 => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
011101 => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
011111 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
100101 => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.
Matching statistic: St001645
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00136: Binary words —rotate back-to-front⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 100%
Values
1 => 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
01 => 10 => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
11 => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
001 => 100 => [1,3] => ([(2,3)],4)
=> ? = 2 + 1
011 => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
101 => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
111 => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
0001 => 1000 => [1,4] => ([(3,4)],5)
=> ? = 3 + 1
0011 => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
0101 => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
0111 => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
1001 => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1011 => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
1101 => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1111 => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
00001 => 10000 => [1,5] => ([(4,5)],6)
=> ? = 4 + 1
00011 => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
00101 => 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
00111 => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 + 1
01001 => 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
01011 => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 + 1
01101 => 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
01111 => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
10001 => 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
10011 => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
10101 => 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
10111 => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 + 1
11001 => 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
11011 => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 + 1
11101 => 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
11111 => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
000001 => 100000 => [1,6] => ([(5,6)],7)
=> ? = 5 + 1
000011 => 100001 => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
000101 => 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
000111 => 100011 => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
001001 => 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
001011 => 100101 => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
001101 => 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
001111 => 100111 => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
010001 => 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
010011 => 101001 => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
010101 => 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
010111 => 101011 => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
011001 => 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
011011 => 101101 => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
011101 => 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
011111 => 101111 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
100001 => 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
100011 => 110001 => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
100101 => 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
100111 => 110011 => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
101001 => 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
101011 => 110101 => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
101101 => 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
101111 => 110111 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
110001 => 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
110011 => 111001 => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
110101 => 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
110111 => 111011 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
111111 => 111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
Description
The pebbling number of a connected graph.
Matching statistic: St001876
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 50%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 50%
Values
1 => 1 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 - 1
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 1
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 2 = 3 - 1
0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 3 - 1
0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 2 - 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 4 - 1
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2 - 1
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 4 - 1
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2 - 1
1111 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,8),(2,11),(3,11),(4,9),(5,9),(6,10),(7,10),(8,2),(8,3),(9,1),(10,4),(10,5),(11,6),(11,7)],12)
=> ? = 4 - 1
00001 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 4 - 1
00011 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 3 - 1
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 2 - 1
00111 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 5 - 1
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2 - 1
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 5 - 1
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3 - 1
01111 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 5 - 1
10001 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 3 - 1
10011 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
10111 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 5 - 1
11001 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 5 - 1
11101 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3 - 1
11111 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,10),(2,14),(3,14),(4,11),(5,11),(6,13),(7,13),(8,12),(9,12),(10,2),(10,3),(11,1),(12,6),(12,7),(13,4),(13,5),(14,8),(14,9)],15)
=> ? = 5 - 1
000001 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ?
=> ? = 5 - 1
000011 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ?
=> ? = 4 - 1
000101 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 3 - 1
000111 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ?
=> ? = 3 - 1
001001 => 011100 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ?
=> ? = 2 - 1
001011 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ?
=> ? = 3 - 1
001101 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 2 - 1
001111 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ?
=> ? = 6 - 1
010001 => 000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 3 - 1
010011 => 000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 2 - 1
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 0 = 1 - 1
010111 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 6 - 1
011001 => 001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> ?
=> ? = 2 - 1
011011 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ?
=> ? = 6 - 1
011101 => 001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 4 - 1
011111 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ?
=> ? = 6 - 1
100001 => 110100 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ?
=> ? = 4 - 1
100011 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ?
=> ? = 3 - 1
100101 => 110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 2 - 1
100111 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ?
=> ? = 6 - 1
101001 => 111100 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 2 - 1
101011 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 6 - 1
101101 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ?
=> ? = 4 - 1
101111 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ?
=> ? = 6 - 1
110001 => 100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ?
=> ? = 3 - 1
110011 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ?
=> ? = 2 - 1
110101 => 100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 2 - 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001644
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
1 => 1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 3
0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? = 2
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 4
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
1111 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4
00001 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 4
00011 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? = 3
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? = 2
00111 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? = 5
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? = 2
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? = 5
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? = 3
01111 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 5
10001 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? = 3
10011 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? = 2
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
10111 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? = 5
11001 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? = 2
11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ? = 5
11101 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? = 3
11111 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 5
000001 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ([(0,6),(0,7),(1,8),(1,12),(2,5),(2,12),(3,5),(3,7),(3,14),(4,6),(4,11),(4,14),(5,13),(6,9),(7,9),(8,10),(8,13),(9,11),(9,14),(10,11),(10,12),(10,14),(11,13),(12,13),(13,14)],15)
=> ? = 5
000011 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ([(0,7),(0,13),(1,8),(1,9),(2,4),(2,5),(2,14),(3,6),(3,14),(3,15),(4,10),(4,13),(5,8),(5,10),(6,9),(6,11),(7,14),(7,15),(8,12),(9,12),(10,12),(10,15),(11,12),(11,14),(11,15),(13,14),(13,15)],16)
=> ? = 4
000101 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ? = 3
000111 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,5),(0,14),(1,6),(1,7),(2,12),(2,13),(2,14),(3,7),(3,11),(3,13),(4,6),(4,11),(4,12),(5,8),(5,9),(6,10),(7,10),(8,11),(8,12),(8,14),(9,11),(9,13),(9,14),(10,12),(10,13)],15)
=> ? = 3
001001 => 011100 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ([(0,15),(0,16),(1,10),(1,16),(2,8),(2,9),(3,5),(3,15),(3,16),(4,5),(4,7),(4,9),(5,11),(6,8),(6,10),(6,14),(7,11),(7,13),(8,13),(9,13),(10,12),(11,14),(11,15),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 2
001011 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ([(0,11),(0,14),(1,9),(1,10),(2,5),(2,11),(2,14),(3,4),(3,11),(3,14),(4,6),(4,13),(5,7),(5,13),(6,9),(6,12),(7,10),(7,12),(8,9),(8,10),(8,12),(12,13),(13,14)],15)
=> ? = 3
001101 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 2
001111 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ([(0,7),(0,13),(1,8),(1,9),(2,4),(2,5),(2,14),(3,6),(3,14),(3,15),(4,10),(4,13),(5,8),(5,10),(6,9),(6,11),(7,14),(7,15),(8,12),(9,12),(10,12),(10,15),(11,12),(11,14),(11,15),(13,14),(13,15)],16)
=> ? = 6
010001 => 000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ? = 3
010011 => 000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 2
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
010111 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ? = 6
011001 => 001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> ([(0,15),(0,16),(1,8),(1,9),(2,3),(2,4),(2,16),(3,6),(3,11),(4,5),(4,10),(5,8),(5,12),(6,9),(6,13),(7,12),(7,13),(7,15),(8,14),(9,14),(10,12),(10,15),(10,16),(11,13),(11,15),(11,16),(12,14),(13,14)],17)
=> ? = 2
011011 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ([(0,15),(0,16),(1,10),(1,16),(2,8),(2,9),(3,5),(3,15),(3,16),(4,5),(4,7),(4,9),(5,11),(6,8),(6,10),(6,14),(7,11),(7,13),(8,13),(9,13),(10,12),(11,14),(11,15),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 6
011101 => 001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ? = 4
011111 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ([(0,6),(0,7),(1,8),(1,12),(2,5),(2,12),(3,5),(3,7),(3,14),(4,6),(4,11),(4,14),(5,13),(6,9),(7,9),(8,10),(8,13),(9,11),(9,14),(10,11),(10,12),(10,14),(11,13),(12,13),(13,14)],15)
=> ? = 6
100001 => 110100 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ([(0,8),(0,9),(1,7),(1,15),(2,6),(2,14),(3,14),(3,15),(4,6),(4,8),(4,12),(5,7),(5,9),(5,13),(6,16),(7,16),(8,10),(9,10),(10,12),(10,13),(11,12),(11,13),(11,14),(11,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 4
100011 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ([(0,5),(0,14),(1,6),(1,7),(2,12),(2,13),(2,14),(3,6),(3,12),(3,13),(4,7),(4,11),(4,13),(5,8),(5,9),(6,10),(7,10),(8,11),(8,13),(8,14),(9,11),(9,12),(9,14),(10,11),(10,12)],15)
=> ? = 3
100101 => 110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ? = 2
100111 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ([(0,7),(0,15),(1,14),(1,15),(2,8),(2,9),(3,5),(3,8),(3,12),(4,7),(4,9),(4,11),(5,10),(5,16),(6,11),(6,12),(6,14),(7,16),(8,13),(9,13),(10,12),(10,14),(10,15),(11,13),(11,16),(12,13),(14,16),(15,16)],17)
=> ? = 6
101001 => 111100 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ? = 2
101011 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ? = 6
101101 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ([(0,10),(0,11),(1,6),(1,7),(2,5),(2,9),(3,4),(3,8),(4,6),(4,13),(5,7),(5,14),(6,12),(7,12),(8,10),(8,13),(9,11),(9,14),(10,15),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 4
101111 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(0,5),(0,7),(1,6),(1,8),(2,9),(2,14),(3,4),(3,8),(3,13),(4,10),(4,15),(5,6),(5,11),(6,12),(7,11),(7,14),(8,12),(9,10),(9,15),(10,13),(10,14),(11,12),(11,15),(12,13),(13,15),(14,15)],16)
=> ? = 6
110001 => 100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ([(0,5),(0,14),(1,6),(1,7),(2,12),(2,13),(2,14),(3,6),(3,12),(3,13),(4,7),(4,11),(4,13),(5,8),(5,9),(6,10),(7,10),(8,11),(8,13),(8,14),(9,11),(9,12),(9,14),(10,11),(10,12)],15)
=> ? = 3
110011 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ([(0,15),(0,16),(1,8),(1,9),(2,5),(2,7),(2,10),(3,4),(3,6),(3,10),(4,11),(4,15),(5,12),(5,16),(6,8),(6,11),(7,9),(7,12),(8,14),(9,14),(10,15),(10,16),(11,13),(11,14),(12,13),(12,14),(13,15),(13,16)],17)
=> ? = 2
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001330
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
1 => 1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 + 1
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 + 1
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 + 1
0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 3 + 1
0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ? = 2 + 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 4 + 1
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2 + 1
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 4 + 1
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2 + 1
1111 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 4 + 1
00001 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 4 + 1
00011 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? = 3 + 1
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? = 2 + 1
00111 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,10),(2,11),(3,5),(3,8),(4,6),(4,8),(4,9),(5,10),(6,10),(7,8),(7,9),(8,11),(9,10),(9,11)],12)
=> ? = 5 + 1
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? = 2 + 1
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? = 5 + 1
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? = 3 + 1
01111 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(0,5),(0,6),(1,7),(1,10),(2,4),(2,10),(3,6),(3,8),(3,11),(4,5),(4,11),(5,9),(6,9),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 5 + 1
10001 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(0,7),(0,11),(1,5),(1,6),(2,3),(2,4),(2,11),(3,6),(3,9),(4,5),(4,8),(5,10),(6,10),(7,8),(7,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? = 3 + 1
10011 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? = 2 + 1
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
10111 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? = 5 + 1
11001 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,11),(0,12),(1,8),(1,12),(2,6),(2,7),(3,4),(3,11),(3,12),(4,5),(4,6),(5,9),(5,11),(6,9),(7,8),(7,9),(8,10),(9,10),(10,11),(10,12)],13)
=> ? = 2 + 1
11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(0,9),(0,11),(1,7),(1,8),(2,5),(2,9),(2,11),(3,4),(3,9),(3,11),(4,7),(4,10),(5,8),(5,10),(6,7),(6,8),(6,10),(10,11)],12)
=> ? = 5 + 1
11101 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(0,7),(0,11),(1,5),(1,8),(2,6),(2,8),(3,4),(3,7),(3,11),(4,5),(4,9),(5,10),(6,10),(6,11),(7,9),(8,10),(9,10),(9,11)],12)
=> ? = 3 + 1
11111 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 5 + 1
000001 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ([(0,6),(0,7),(1,8),(1,12),(2,5),(2,12),(3,5),(3,7),(3,14),(4,6),(4,11),(4,14),(5,13),(6,9),(7,9),(8,10),(8,13),(9,11),(9,14),(10,11),(10,12),(10,14),(11,13),(12,13),(13,14)],15)
=> ? = 5 + 1
000011 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ([(0,7),(0,13),(1,8),(1,9),(2,4),(2,5),(2,14),(3,6),(3,14),(3,15),(4,10),(4,13),(5,8),(5,10),(6,9),(6,11),(7,14),(7,15),(8,12),(9,12),(10,12),(10,15),(11,12),(11,14),(11,15),(13,14),(13,15)],16)
=> ? = 4 + 1
000101 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ? = 3 + 1
000111 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,5),(0,14),(1,6),(1,7),(2,12),(2,13),(2,14),(3,7),(3,11),(3,13),(4,6),(4,11),(4,12),(5,8),(5,9),(6,10),(7,10),(8,11),(8,12),(8,14),(9,11),(9,13),(9,14),(10,12),(10,13)],15)
=> ? = 3 + 1
001001 => 011100 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ([(0,15),(0,16),(1,10),(1,16),(2,8),(2,9),(3,5),(3,15),(3,16),(4,5),(4,7),(4,9),(5,11),(6,8),(6,10),(6,14),(7,11),(7,13),(8,13),(9,13),(10,12),(11,14),(11,15),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 2 + 1
001011 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ([(0,11),(0,14),(1,9),(1,10),(2,5),(2,11),(2,14),(3,4),(3,11),(3,14),(4,6),(4,13),(5,7),(5,13),(6,9),(6,12),(7,10),(7,12),(8,9),(8,10),(8,12),(12,13),(13,14)],15)
=> ? = 3 + 1
001101 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 2 + 1
001111 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ([(0,7),(0,13),(1,8),(1,9),(2,4),(2,5),(2,14),(3,6),(3,14),(3,15),(4,10),(4,13),(5,8),(5,10),(6,9),(6,11),(7,14),(7,15),(8,12),(9,12),(10,12),(10,15),(11,12),(11,14),(11,15),(13,14),(13,15)],16)
=> ? = 6 + 1
010001 => 000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ? = 3 + 1
010011 => 000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(0,15),(0,16),(1,7),(1,10),(2,8),(2,9),(3,4),(3,5),(3,6),(4,15),(4,16),(5,11),(5,15),(6,8),(6,11),(7,14),(7,16),(8,13),(9,10),(9,13),(10,14),(11,12),(11,13),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 2 + 1
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 1 + 1
010111 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(0,9),(0,14),(1,7),(1,10),(2,8),(2,10),(3,4),(3,9),(3,14),(4,5),(4,11),(5,7),(5,13),(6,8),(6,13),(6,14),(7,12),(8,12),(9,11),(10,12),(11,13),(11,14),(12,13)],15)
=> ? = 6 + 1
011001 => 001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> ([(0,15),(0,16),(1,8),(1,9),(2,3),(2,4),(2,16),(3,6),(3,11),(4,5),(4,10),(5,8),(5,12),(6,9),(6,13),(7,12),(7,13),(7,15),(8,14),(9,14),(10,12),(10,15),(10,16),(11,13),(11,15),(11,16),(12,14),(13,14)],17)
=> ? = 2 + 1
011011 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ([(0,15),(0,16),(1,10),(1,16),(2,8),(2,9),(3,5),(3,15),(3,16),(4,5),(4,7),(4,9),(5,11),(6,8),(6,10),(6,14),(7,11),(7,13),(8,13),(9,13),(10,12),(11,14),(11,15),(12,14),(12,15),(12,16),(13,14)],17)
=> ? = 6 + 1
011101 => 001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ([(0,7),(0,15),(1,5),(1,14),(2,6),(2,8),(3,4),(3,13),(3,15),(4,6),(4,10),(5,12),(5,13),(6,11),(7,8),(7,9),(8,11),(9,11),(9,12),(9,15),(10,11),(10,12),(10,13),(12,14),(13,14),(14,15)],16)
=> ? = 4 + 1
011111 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ([(0,6),(0,7),(1,8),(1,12),(2,5),(2,12),(3,5),(3,7),(3,14),(4,6),(4,11),(4,14),(5,13),(6,9),(7,9),(8,10),(8,13),(9,11),(9,14),(10,11),(10,12),(10,14),(11,13),(12,13),(13,14)],15)
=> ? = 6 + 1
100001 => 110100 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ([(0,8),(0,9),(1,7),(1,15),(2,6),(2,14),(3,14),(3,15),(4,6),(4,8),(4,12),(5,7),(5,9),(5,13),(6,16),(7,16),(8,10),(9,10),(10,12),(10,13),(11,12),(11,13),(11,14),(11,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 4 + 1
100011 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ([(0,5),(0,14),(1,6),(1,7),(2,12),(2,13),(2,14),(3,6),(3,12),(3,13),(4,7),(4,11),(4,13),(5,8),(5,9),(6,10),(7,10),(8,11),(8,13),(8,14),(9,11),(9,12),(9,14),(10,11),(10,12)],15)
=> ? = 3 + 1
100101 => 110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ? = 2 + 1
100111 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ([(0,7),(0,15),(1,14),(1,15),(2,8),(2,9),(3,5),(3,8),(3,12),(4,7),(4,9),(4,11),(5,10),(5,16),(6,11),(6,12),(6,14),(7,16),(8,13),(9,13),(10,12),(10,14),(10,15),(11,13),(11,16),(12,13),(14,16),(15,16)],17)
=> ? = 6 + 1
101001 => 111100 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(0,7),(0,11),(1,6),(1,10),(2,8),(2,10),(3,9),(3,11),(4,8),(4,9),(4,14),(5,6),(5,7),(5,14),(6,12),(7,13),(8,12),(9,13),(10,12),(11,13),(12,14),(13,14)],15)
=> ? = 2 + 1
101011 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ? = 6 + 1
101101 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ([(0,10),(0,11),(1,6),(1,7),(2,5),(2,9),(3,4),(3,8),(4,6),(4,13),(5,7),(5,14),(6,12),(7,12),(8,10),(8,13),(9,11),(9,14),(10,15),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 4 + 1
101111 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(0,5),(0,7),(1,6),(1,8),(2,9),(2,14),(3,4),(3,8),(3,13),(4,10),(4,15),(5,6),(5,11),(6,12),(7,11),(7,14),(8,12),(9,10),(9,15),(10,13),(10,14),(11,12),(11,15),(12,13),(13,15),(14,15)],16)
=> ? = 6 + 1
110001 => 100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ([(0,5),(0,14),(1,6),(1,7),(2,12),(2,13),(2,14),(3,6),(3,12),(3,13),(4,7),(4,11),(4,13),(5,8),(5,9),(6,10),(7,10),(8,11),(8,13),(8,14),(9,11),(9,12),(9,14),(10,11),(10,12)],15)
=> ? = 3 + 1
110011 => 100110 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ([(0,15),(0,16),(1,8),(1,9),(2,5),(2,7),(2,10),(3,4),(3,6),(3,10),(4,11),(4,15),(5,12),(5,16),(6,8),(6,11),(7,9),(7,12),(8,14),(9,14),(10,15),(10,16),(11,13),(11,14),(12,13),(12,14),(13,15),(13,16)],17)
=> ? = 2 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000454
Values
1 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 4
00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 2
00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(2,11),(3,6),(3,10),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,11),(7,9),(7,10),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 5
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 2
01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ([(2,5),(3,6),(3,11),(4,7),(4,9),(5,11),(6,10),(6,11),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ([(0,2),(0,8),(0,9),(0,10),(0,11),(1,4),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 5
01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ([(2,5),(3,4),(3,11),(4,9),(5,10),(6,8),(6,9),(6,11),(7,8),(7,10),(7,11),(8,10),(9,10),(9,11)],12)
=> ([(0,1),(0,4),(0,6),(0,7),(0,9),(0,10),(0,11),(1,3),(1,6),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,3),(0,5),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(1,9),(2,4),(2,6),(2,7),(2,8),(2,9),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 5
10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ([(2,6),(3,6),(3,9),(3,10),(4,5),(4,8),(4,10),(5,7),(5,9),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,8),(3,9),(3,10),(3,11),(4,5),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2
10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(2,9),(3,8),(4,7),(5,6)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 5
11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(2,3),(2,10),(3,12),(4,5),(4,8),(4,12),(5,9),(5,11),(6,8),(6,9),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,4),(0,8),(0,10),(0,11),(0,12),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,7),(2,8),(2,9),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 2
11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ([(2,5),(3,4),(3,10),(4,9),(5,11),(6,9),(6,10),(6,11),(7,8),(7,9),(7,11),(8,10),(8,11),(9,10)],12)
=> ([(0,1),(0,2),(0,6),(0,7),(0,9),(0,10),(0,11),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 5
11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ([(2,7),(3,6),(3,11),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,8),(6,10),(7,9),(7,11),(8,9),(8,11),(9,10),(10,11)],12)
=> ([(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,6),(1,8),(1,9),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,7),(3,8),(3,9),(3,10),(3,11),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(2,11),(3,10),(4,9),(4,10),(5,8),(5,11),(6,7),(6,9),(6,10),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,5),(0,7),(0,9),(0,10),(0,11),(1,2),(1,4),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 5
000011 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(2,10),(2,14),(3,9),(3,13),(4,6),(4,9),(4,12),(4,13),(5,7),(5,10),(5,11),(5,14),(6,11),(6,13),(6,14),(7,12),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,14),(10,12),(10,13),(11,12),(11,13),(12,14),(13,14)],15)
=> ([(0,3),(0,8),(0,10),(0,12),(0,13),(0,14),(1,2),(1,7),(1,9),(1,11),(1,13),(1,14),(2,5),(2,7),(2,9),(2,11),(2,12),(2,13),(2,14),(3,6),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 4
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(2,6),(3,4),(3,13),(3,15),(4,12),(4,14),(5,8),(5,11),(5,15),(6,11),(6,15),(7,12),(7,13),(7,14),(7,15),(8,10),(8,11),(8,13),(8,15),(9,10),(9,11),(9,13),(9,14),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(12,13),(12,15),(13,14),(14,15)],16)
=> ([(0,3),(0,4),(0,12),(0,13),(0,14),(0,15),(1,2),(1,7),(1,9),(1,10),(1,11),(1,13),(1,14),(1,15),(2,5),(2,7),(2,9),(2,10),(2,11),(2,13),(2,14),(2,15),(3,4),(3,6),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,6),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 3
000111 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ([(2,3),(2,11),(2,15),(3,10),(3,14),(4,5),(4,13),(4,14),(5,12),(5,15),(6,12),(6,13),(6,14),(6,15),(7,10),(7,11),(7,14),(7,15),(8,9),(8,10),(8,13),(8,14),(8,15),(9,11),(9,12),(9,14),(9,15),(10,11),(10,12),(10,15),(11,13),(11,14),(12,13),(12,14),(13,15),(14,15)],16)
=> ([(0,4),(0,5),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,10),(1,11),(1,14),(1,15),(2,3),(2,6),(2,9),(2,10),(2,11),(2,13),(2,14),(2,15),(3,6),(3,8),(3,10),(3,11),(3,12),(3,14),(3,15),(4,5),(4,7),(4,8),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,12),(5,13),(5,14),(5,15),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,14),(10,15),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 3
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ([(2,5),(3,4),(3,13),(4,14),(5,12),(6,10),(6,13),(6,14),(7,8),(7,10),(7,12),(8,11),(8,12),(9,10),(9,11),(9,12),(9,14),(10,11),(11,13),(13,14)],15)
=> ([(0,1),(0,2),(0,3),(0,4),(0,8),(0,9),(0,10),(0,12),(0,13),(0,14),(1,2),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(2,4),(2,6),(2,7),(2,9),(2,11),(2,12),(2,13),(2,14),(3,5),(3,6),(3,7),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 2
001011 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ([(2,3),(2,16),(3,15),(4,7),(4,15),(4,16),(5,6),(5,12),(5,14),(5,15),(6,11),(6,13),(6,16),(7,13),(7,14),(7,15),(7,16),(8,9),(8,11),(8,13),(8,14),(8,15),(8,16),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(12,13),(12,16),(13,14),(13,15),(14,16),(15,16)],17)
=> ([(0,3),(0,8),(0,11),(0,14),(0,15),(0,16),(1,2),(1,7),(1,10),(1,13),(1,15),(1,16),(2,7),(2,10),(2,12),(2,13),(2,14),(2,15),(2,16),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(3,16),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(4,16),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(5,16),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(6,16),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(7,16),(8,9),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,11),(9,13),(9,14),(9,15),(9,16),(10,12),(10,13),(10,14),(10,15),(10,16),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? = 3
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ([(2,3),(2,13),(3,16),(4,6),(4,12),(4,15),(5,10),(5,11),(5,13),(5,16),(6,9),(6,14),(6,16),(7,9),(7,12),(7,14),(7,15),(7,16),(8,10),(8,11),(8,12),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,15),(10,14),(10,15),(10,16),(11,13),(11,14),(11,16),(12,14),(12,16),(13,14),(13,15),(13,16),(14,15),(15,16)],17)
=> ([(0,2),(0,8),(0,12),(0,14),(0,15),(0,16),(1,6),(1,7),(1,10),(1,11),(1,13),(1,14),(1,15),(1,16),(2,8),(2,11),(2,12),(2,13),(2,14),(2,15),(2,16),(3,4),(3,6),(3,7),(3,9),(3,10),(3,12),(3,13),(3,14),(3,15),(3,16),(4,5),(4,6),(4,8),(4,9),(4,10),(4,12),(4,13),(4,15),(4,16),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(5,16),(6,7),(6,10),(6,11),(6,13),(6,14),(6,15),(6,16),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,16),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? = 2
001111 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ([(2,10),(2,14),(3,9),(3,13),(4,6),(4,9),(4,12),(4,13),(5,7),(5,10),(5,11),(5,14),(6,11),(6,13),(6,14),(7,12),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,14),(10,12),(10,13),(11,12),(11,13),(12,14),(13,14)],15)
=> ([(0,3),(0,8),(0,10),(0,12),(0,13),(0,14),(1,2),(1,7),(1,9),(1,11),(1,13),(1,14),(2,5),(2,7),(2,9),(2,11),(2,12),(2,13),(2,14),(3,6),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 6
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ([(2,5),(3,4),(3,11),(3,15),(4,12),(4,14),(5,6),(5,13),(6,9),(6,10),(6,15),(7,9),(7,12),(7,13),(7,14),(7,15),(8,9),(8,11),(8,12),(8,14),(8,15),(9,10),(9,13),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ([(0,5),(0,7),(0,8),(0,10),(0,11),(0,13),(0,14),(0,15),(1,3),(1,6),(1,9),(1,10),(1,12),(1,13),(1,14),(1,15),(2,3),(2,8),(2,9),(2,11),(2,12),(2,13),(2,14),(2,15),(3,8),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,6),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,7),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(7,15),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 3
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ([(2,3),(2,13),(3,16),(4,6),(4,12),(4,15),(5,10),(5,11),(5,13),(5,16),(6,9),(6,14),(6,16),(7,9),(7,12),(7,14),(7,15),(7,16),(8,10),(8,11),(8,12),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,15),(10,14),(10,15),(10,16),(11,13),(11,14),(11,16),(12,14),(12,16),(13,14),(13,15),(13,16),(14,15),(15,16)],17)
=> ([(0,2),(0,8),(0,12),(0,14),(0,15),(0,16),(1,6),(1,7),(1,10),(1,11),(1,13),(1,14),(1,15),(1,16),(2,8),(2,11),(2,12),(2,13),(2,14),(2,15),(2,16),(3,4),(3,6),(3,7),(3,9),(3,10),(3,12),(3,13),(3,14),(3,15),(3,16),(4,5),(4,6),(4,8),(4,9),(4,10),(4,12),(4,13),(4,15),(4,16),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(5,16),(6,7),(6,10),(6,11),(6,13),(6,14),(6,15),(6,16),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,13),(10,14),(10,15),(10,16),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? = 2
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ([(2,11),(3,10),(4,9),(5,8),(6,7)],12)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 1
010111 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ([(2,6),(3,4),(3,13),(3,15),(4,12),(4,14),(5,8),(5,11),(5,15),(6,11),(6,15),(7,12),(7,13),(7,14),(7,15),(8,10),(8,11),(8,13),(8,15),(9,10),(9,11),(9,13),(9,14),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(12,13),(12,15),(13,14),(14,15)],16)
=> ([(0,3),(0,4),(0,12),(0,13),(0,14),(0,15),(1,2),(1,7),(1,9),(1,10),(1,11),(1,13),(1,14),(1,15),(2,5),(2,7),(2,9),(2,10),(2,11),(2,13),(2,14),(2,15),(3,4),(3,6),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,6),(4,8),(4,10),(4,12),(4,13),(4,14),(4,15),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 6
011001 => ([(0,3),(0,4),(1,11),(1,16),(2,10),(2,15),(3,2),(3,13),(3,14),(4,1),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,15),(13,16),(14,10),(14,11),(15,6),(15,12),(16,7),(16,12)],17)
=> ([(2,3),(2,14),(3,13),(4,5),(4,11),(4,15),(5,12),(5,16),(6,10),(6,11),(6,12),(6,15),(6,16),(7,10),(7,13),(7,14),(7,15),(7,16),(8,9),(8,10),(8,12),(8,13),(8,15),(8,16),(9,10),(9,11),(9,14),(9,15),(9,16),(10,13),(10,14),(11,12),(11,13),(11,16),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> ([(0,3),(0,7),(0,8),(0,12),(0,13),(0,14),(0,15),(0,16),(1,2),(1,6),(1,8),(1,11),(1,13),(1,14),(1,15),(1,16),(2,4),(2,6),(2,10),(2,11),(2,12),(2,13),(2,15),(2,16),(3,5),(3,7),(3,10),(3,11),(3,12),(3,14),(3,15),(3,16),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(4,16),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(5,16),(6,8),(6,9),(6,11),(6,13),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,13),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? = 2
011011 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ([(2,5),(3,4),(3,13),(4,14),(5,12),(6,10),(6,13),(6,14),(7,8),(7,10),(7,12),(8,11),(8,12),(9,10),(9,11),(9,12),(9,14),(10,11),(11,13),(13,14)],15)
=> ([(0,1),(0,2),(0,3),(0,4),(0,8),(0,9),(0,10),(0,12),(0,13),(0,14),(1,2),(1,3),(1,7),(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(2,4),(2,6),(2,7),(2,9),(2,11),(2,12),(2,13),(2,14),(3,5),(3,6),(3,7),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 6
011101 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ([(2,5),(3,4),(3,11),(3,15),(4,12),(4,14),(5,6),(5,13),(6,9),(6,10),(6,15),(7,9),(7,12),(7,13),(7,14),(7,15),(8,9),(8,11),(8,12),(8,14),(8,15),(9,10),(9,13),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ([(0,5),(0,7),(0,8),(0,10),(0,11),(0,13),(0,14),(0,15),(1,3),(1,6),(1,9),(1,10),(1,12),(1,13),(1,14),(1,15),(2,3),(2,8),(2,9),(2,11),(2,12),(2,13),(2,14),(2,15),(3,8),(3,9),(3,11),(3,12),(3,13),(3,14),(3,15),(4,5),(4,6),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,7),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(7,15),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,13),(9,14),(9,15),(10,11),(10,13),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 4
011111 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(2,11),(3,10),(4,9),(4,10),(5,8),(5,11),(6,7),(6,9),(6,10),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> ([(0,3),(0,5),(0,7),(0,9),(0,10),(0,11),(1,2),(1,4),(1,6),(1,8),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 6
100001 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ([(2,6),(3,6),(3,13),(3,14),(4,5),(4,9),(4,11),(4,14),(5,8),(5,10),(5,13),(6,7),(6,12),(7,10),(7,11),(7,13),(7,14),(8,9),(8,11),(8,12),(8,14),(9,10),(9,12),(9,13),(10,11),(10,12),(10,14),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> ([(0,5),(0,8),(0,9),(0,11),(0,12),(0,13),(0,14),(1,4),(1,7),(1,9),(1,10),(1,12),(1,13),(1,14),(2,3),(2,6),(2,8),(2,10),(2,12),(2,13),(2,14),(3,6),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,8),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,10),(8,11),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 4
100011 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ([(2,3),(2,16),(3,6),(3,14),(4,5),(4,10),(4,13),(4,16),(5,11),(5,12),(5,15),(6,9),(6,13),(6,15),(6,16),(7,10),(7,11),(7,12),(7,13),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(9,11),(9,12),(9,14),(9,15),(9,16),(10,11),(10,12),(10,14),(10,15),(11,13),(11,16),(12,13),(12,14),(12,16),(13,14),(13,15),(14,15),(14,16),(15,16)],17)
=> ([(0,4),(0,9),(0,12),(0,13),(0,15),(0,16),(1,3),(1,5),(1,11),(1,13),(1,14),(1,15),(1,16),(2,5),(2,8),(2,10),(2,11),(2,12),(2,14),(2,15),(2,16),(3,5),(3,10),(3,11),(3,13),(3,14),(3,15),(3,16),(4,6),(4,9),(4,12),(4,13),(4,14),(4,15),(4,16),(5,10),(5,11),(5,13),(5,14),(5,15),(5,16),(6,7),(6,8),(6,9),(6,11),(6,12),(6,13),(6,14),(6,15),(6,16),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,12),(10,14),(10,15),(10,16),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? = 3
100101 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ([(2,3),(3,13),(4,6),(4,11),(4,15),(5,7),(5,13),(5,15),(6,12),(6,14),(7,10),(7,13),(8,11),(8,12),(8,14),(8,15),(9,10),(9,11),(9,13),(9,14),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(12,13),(12,15),(13,14),(14,15)],16)
=> ([(0,2),(0,8),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,3),(1,6),(1,9),(1,11),(1,12),(1,13),(1,14),(1,15),(2,4),(2,8),(2,10),(2,11),(2,12),(2,13),(2,14),(2,15),(3,5),(3,6),(3,7),(3,9),(3,10),(3,13),(3,14),(3,15),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(5,14),(5,15),(6,8),(6,9),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,12),(8,13),(8,14),(8,15),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 2
100111 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ([(2,4),(2,13),(3,5),(3,12),(3,16),(4,11),(4,16),(5,10),(5,14),(5,15),(6,10),(6,12),(6,14),(6,15),(6,16),(7,11),(7,13),(7,14),(7,15),(7,16),(8,9),(8,10),(8,13),(8,14),(8,15),(8,16),(9,11),(9,12),(9,14),(9,15),(9,16),(10,11),(10,12),(10,16),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,15),(13,16),(14,16),(15,16)],17)
=> ([(0,4),(0,5),(0,11),(0,14),(0,15),(0,16),(1,2),(1,8),(1,12),(1,13),(1,14),(1,15),(1,16),(2,3),(2,8),(2,12),(2,13),(2,14),(2,15),(2,16),(3,7),(3,8),(3,10),(3,11),(3,12),(3,13),(3,15),(3,16),(4,5),(4,6),(4,9),(4,11),(4,13),(4,14),(4,15),(4,16),(5,6),(5,10),(5,11),(5,12),(5,14),(5,15),(5,16),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(6,16),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(7,16),(8,9),(8,12),(8,13),(8,14),(8,15),(8,16),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,16),(10,11),(10,12),(10,13),(10,14),(10,15),(10,16),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? = 6
101001 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ([(2,3),(3,13),(4,6),(4,11),(4,15),(5,7),(5,13),(5,15),(6,12),(6,14),(7,10),(7,13),(8,11),(8,12),(8,14),(8,15),(9,10),(9,11),(9,13),(9,14),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(12,13),(12,15),(13,14),(14,15)],16)
=> ([(0,2),(0,8),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,3),(1,6),(1,9),(1,11),(1,12),(1,13),(1,14),(1,15),(2,4),(2,8),(2,10),(2,11),(2,12),(2,13),(2,14),(2,15),(3,5),(3,6),(3,7),(3,9),(3,10),(3,13),(3,14),(3,15),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(5,14),(5,15),(6,8),(6,9),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(7,15),(8,9),(8,10),(8,12),(8,13),(8,14),(8,15),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 2
101011 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ([(2,5),(3,7),(3,14),(4,11),(4,12),(5,14),(6,10),(6,13),(6,14),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(9,12),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14)],15)
=> ([(0,1),(0,6),(0,11),(0,12),(0,13),(0,14),(1,6),(1,9),(1,10),(1,11),(1,12),(1,13),(1,14),(2,4),(2,5),(2,7),(2,8),(2,9),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,8),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,5),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 6
101101 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(2,5),(3,4),(3,14),(4,13),(5,12),(6,9),(6,13),(6,14),(7,8),(7,10),(7,12),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,13),(11,14),(13,14)],15)
=> ([(0,1),(0,2),(0,4),(0,5),(0,8),(0,9),(0,10),(0,12),(0,13),(0,14),(1,3),(1,5),(1,6),(1,7),(1,10),(1,11),(1,12),(1,13),(1,14),(2,3),(2,4),(2,6),(2,7),(2,9),(2,11),(2,12),(2,13),(2,14),(3,6),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 4
101111 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ([(2,10),(3,9),(3,14),(4,7),(4,9),(4,12),(4,14),(5,6),(5,10),(5,11),(5,13),(6,12),(6,13),(6,14),(7,11),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,3),(0,9),(0,10),(0,12),(0,13),(0,14),(1,2),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,6),(2,7),(2,8),(2,11),(2,12),(2,13),(2,14),(3,5),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,7),(6,8),(6,9),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,11),(8,12),(8,13),(8,14),(9,10),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 6
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001624
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Values
1 => 1 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 3
0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 3
0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 2
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 4
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 4
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2
1111 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,8),(2,11),(3,11),(4,9),(5,9),(6,10),(7,10),(8,2),(8,3),(9,1),(10,4),(10,5),(11,6),(11,7)],12)
=> ? = 4
00001 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 4
00011 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 3
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 2
00111 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 5
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 5
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3
01111 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 5
10001 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 3
10011 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
10111 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 5
11001 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2
11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 5
11101 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3
11111 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,10),(2,14),(3,14),(4,11),(5,11),(6,13),(7,13),(8,12),(9,12),(10,2),(10,3),(11,1),(12,6),(12,7),(13,4),(13,5),(14,8),(14,9)],15)
=> ? = 5
000001 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ?
=> ? = 5
000011 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ?
=> ? = 4
000101 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 3
000111 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ?
=> ? = 3
001001 => 011100 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ?
=> ? = 2
001011 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ?
=> ? = 3
001101 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 2
001111 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ?
=> ? = 6
010001 => 000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 3
010011 => 000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 2
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1
010111 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 6
011001 => 001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> ?
=> ? = 2
011011 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ?
=> ? = 6
011101 => 001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 4
011111 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ?
=> ? = 6
100001 => 110100 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ?
=> ? = 4
100011 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ?
=> ? = 3
100101 => 110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 2
100111 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ?
=> ? = 6
101001 => 111100 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 2
101011 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 6
101101 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ?
=> ? = 4
101111 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ?
=> ? = 6
110001 => 100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ?
=> ? = 3
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St001877
Mp00158: Binary words —alternating inverse⟶ Binary words
Mp00262: Binary words —poset of factors⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Mp00262: Binary words —poset of factors⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Values
1 => 1 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
01 => 00 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
11 => 10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1 = 2 - 1
001 => 011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 2 - 1
011 => 001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 3 - 1
101 => 111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
111 => 101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ? = 3 - 1
0001 => 0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 3 - 1
0011 => 0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,9),(2,17),(3,11),(3,15),(4,11),(4,14),(5,12),(6,13),(7,10),(8,7),(8,17),(9,2),(9,8),(10,14),(10,15),(11,18),(12,16),(13,16),(14,5),(14,18),(15,6),(15,18),(16,1),(17,3),(17,4),(17,10),(18,12),(18,13)],19)
=> ? = 2 - 1
0101 => 0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
0111 => 0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,9),(2,14),(2,15),(3,13),(3,14),(4,17),(5,12),(6,11),(7,10),(8,7),(8,17),(9,4),(9,8),(10,13),(10,15),(11,16),(12,16),(13,18),(14,6),(14,18),(15,5),(15,18),(16,1),(17,2),(17,3),(17,10),(18,11),(18,12)],19)
=> ? = 4 - 1
1001 => 1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 2 - 1
1011 => 1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 4 - 1
1101 => 1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 2 - 1
1111 => 1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,8),(2,11),(3,11),(4,9),(5,9),(6,10),(7,10),(8,2),(8,3),(9,1),(10,4),(10,5),(11,6),(11,7)],12)
=> ? = 4 - 1
00001 => 01011 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 4 - 1
00011 => 01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 3 - 1
00101 => 01111 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 2 - 1
00111 => 01101 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ?
=> ? = 5 - 1
01001 => 00011 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 2 - 1
01011 => 00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ?
=> ? = 5 - 1
01101 => 00111 => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3 - 1
01111 => 00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ?
=> ? = 5 - 1
10001 => 11011 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ?
=> ? = 3 - 1
10011 => 11001 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
10101 => 11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0 = 1 - 1
10111 => 11101 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 5 - 1
11001 => 10011 => ([(0,3),(0,4),(1,9),(2,6),(2,11),(3,2),(3,10),(3,12),(4,1),(4,10),(4,12),(6,7),(7,5),(8,5),(9,8),(10,6),(11,7),(11,8),(12,9),(12,11)],13)
=> ?
=> ? = 2 - 1
11011 => 10001 => ([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> ?
=> ? = 5 - 1
11101 => 10111 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ?
=> ? = 3 - 1
11111 => 10101 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ([(0,10),(2,14),(3,14),(4,11),(5,11),(6,13),(7,13),(8,12),(9,12),(10,2),(10,3),(11,1),(12,6),(12,7),(13,4),(13,5),(14,8),(14,9)],15)
=> ? = 5 - 1
000001 => 010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ?
=> ? = 5 - 1
000011 => 010110 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ?
=> ? = 4 - 1
000101 => 010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 3 - 1
000111 => 010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ?
=> ? = 3 - 1
001001 => 011100 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ?
=> ? = 2 - 1
001011 => 011110 => ([(0,4),(0,5),(1,3),(1,7),(1,8),(2,13),(2,14),(3,2),(3,11),(3,12),(4,9),(4,10),(5,1),(5,9),(5,10),(7,12),(8,11),(9,8),(10,7),(11,13),(12,14),(13,6),(14,6)],15)
=> ?
=> ? = 3 - 1
001101 => 011000 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 2 - 1
001111 => 011010 => ([(0,2),(0,3),(1,6),(1,11),(2,14),(2,15),(3,1),(3,14),(3,15),(5,8),(6,7),(7,9),(8,10),(9,4),(10,4),(11,7),(11,13),(12,8),(12,13),(13,9),(13,10),(14,5),(14,6),(14,12),(15,5),(15,11),(15,12)],16)
=> ?
=> ? = 6 - 1
010001 => 000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 3 - 1
010011 => 000110 => ([(0,4),(0,5),(1,11),(2,1),(2,13),(3,7),(3,14),(4,2),(4,12),(4,16),(5,3),(5,12),(5,16),(7,8),(8,9),(9,6),(10,6),(11,10),(12,7),(13,11),(13,15),(14,8),(14,15),(15,9),(15,10),(16,13),(16,14)],17)
=> ?
=> ? = 2 - 1
010101 => 000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 1 - 1
010111 => 000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ?
=> ? = 6 - 1
011001 => 001100 => ([(0,3),(0,4),(1,15),(1,16),(2,10),(2,11),(3,1),(3,13),(3,14),(4,2),(4,13),(4,14),(6,9),(7,8),(8,5),(9,5),(10,7),(11,6),(12,8),(12,9),(13,10),(13,15),(14,11),(14,16),(15,7),(15,12),(16,6),(16,12)],17)
=> ?
=> ? = 2 - 1
011011 => 001110 => ([(0,4),(0,5),(1,12),(2,3),(2,13),(2,16),(3,8),(3,14),(4,1),(4,9),(4,15),(5,2),(5,9),(5,15),(7,10),(8,11),(9,13),(10,6),(11,6),(12,7),(13,8),(14,10),(14,11),(15,12),(15,16),(16,7),(16,14)],17)
=> ?
=> ? = 6 - 1
011101 => 001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ?
=> ? = 4 - 1
011111 => 001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ?
=> ? = 6 - 1
100001 => 110100 => ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,6),(12,14),(13,7),(13,14),(14,8),(14,9),(15,12),(15,13),(16,10),(16,11),(16,12),(16,13)],17)
=> ?
=> ? = 4 - 1
100011 => 110110 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ?
=> ? = 3 - 1
100101 => 110000 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 2 - 1
100111 => 110010 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ?
=> ? = 6 - 1
101001 => 111100 => ([(0,5),(0,6),(1,4),(1,14),(2,11),(3,10),(4,3),(4,12),(5,1),(5,13),(6,2),(6,13),(8,9),(9,7),(10,7),(11,8),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ?
=> ? = 2 - 1
101011 => 111110 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ? = 6 - 1
101101 => 111000 => ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ?
=> ? = 4 - 1
101111 => 111010 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ?
=> ? = 6 - 1
110001 => 100100 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ?
=> ? = 3 - 1
Description
Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!