searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000771
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1] => ([],1)
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[],[],[]],[],[]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]],[]],[],[]]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Matching statistic: St000982
Mp00049: Ordered trees —to binary tree: left brother = left child⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000982: Binary words ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000982: Binary words ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => => ? = 1
[[],[]]
=> [[.,.],.]
=> [1,2] => 1 => 1
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => 11 => 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 01 => 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 111 => 3
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => 101 => 1
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 011 => 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 001 => 2
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 001 => 2
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => 1111 => 4
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => 1101 => 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => 1011 => 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => 1001 => 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => 1001 => 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 0111 => 3
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => 0101 => 1
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => 0011 => 2
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 0011 => 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 0001 => 3
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => 0001 => 3
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 0001 => 3
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 0001 => 3
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 0001 => 3
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => 11111 => 5
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> [1,2,3,5,4,6] => 11101 => 3
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> [1,2,4,3,5,6] => 11011 => 2
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> [1,2,4,5,3,6] => 11001 => 2
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> [1,2,5,4,3,6] => 11001 => 2
[[],[[]],[],[],[]]
=> [[[[[.,.],[.,.]],.],.],.]
=> [1,3,2,4,5,6] => 10111 => 3
[[],[[]],[[]],[]]
=> [[[[.,.],[.,.]],[.,.]],.]
=> [1,3,2,5,4,6] => 10101 => 1
[[],[[],[]],[],[]]
=> [[[[.,.],[[.,.],.]],.],.]
=> [1,3,4,2,5,6] => 10011 => 2
[[],[[[]]],[],[]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> [1,4,3,2,5,6] => 10011 => 2
[[],[[],[],[]],[]]
=> [[[.,.],[[[.,.],.],.]],.]
=> [1,3,4,5,2,6] => 10001 => 3
[[],[[],[[]]],[]]
=> [[[.,.],[[.,.],[.,.]]],.]
=> [1,3,5,4,2,6] => 10001 => 3
[[],[[[]],[]],[]]
=> [[[.,.],[[.,[.,.]],.]],.]
=> [1,4,3,5,2,6] => 10001 => 3
[[],[[[],[]]],[]]
=> [[[.,.],[.,[[.,.],.]]],.]
=> [1,4,5,3,2,6] => 10001 => 3
[[],[[[[]]]],[]]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> [1,5,4,3,2,6] => 10001 => 3
[[[]],[],[],[],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> [2,1,3,4,5,6] => 01111 => 4
[[[]],[],[[]],[]]
=> [[[[.,[.,.]],.],[.,.]],.]
=> [2,1,3,5,4,6] => 01101 => 2
[[[]],[[]],[],[]]
=> [[[[.,[.,.]],[.,.]],.],.]
=> [2,1,4,3,5,6] => 01011 => 2
[[[]],[[],[]],[]]
=> [[[.,[.,.]],[[.,.],.]],.]
=> [2,1,4,5,3,6] => 01001 => 2
[[[]],[[[]]],[]]
=> [[[.,[.,.]],[.,[.,.]]],.]
=> [2,1,5,4,3,6] => 01001 => 2
[[[],[]],[],[],[]]
=> [[[[.,[[.,.],.]],.],.],.]
=> [2,3,1,4,5,6] => 00111 => 3
[[[[]]],[],[],[]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> [3,2,1,4,5,6] => 00111 => 3
[[[],[]],[[]],[]]
=> [[[.,[[.,.],.]],[.,.]],.]
=> [2,3,1,5,4,6] => 00101 => 2
[[[[]]],[[]],[]]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> [3,2,1,5,4,6] => 00101 => 2
[[[],[],[]],[],[]]
=> [[[.,[[[.,.],.],.]],.],.]
=> [2,3,4,1,5,6] => 00011 => 3
[[[],[[]]],[],[]]
=> [[[.,[[.,.],[.,.]]],.],.]
=> [2,4,3,1,5,6] => 00011 => 3
[[[[]],[]],[],[]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> [3,2,4,1,5,6] => 00011 => 3
[[[[],[]]],[],[]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> [3,4,2,1,5,6] => 00011 => 3
[[[[[]]]],[],[]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> [4,3,2,1,5,6] => 00011 => 3
Description
The length of the longest constant subword.
Matching statistic: St000774
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000774: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000774: Graphs ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1] => ([],1)
=> 1
[[],[]]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[],[],[]],[],[]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[]],[]],[],[]]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[],[],[[[]]],[],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00050: Ordered trees —to binary tree: right brother = right child⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 83%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 83%
Values
[[]]
=> [.,.]
=> [.,.]
=> ([],1)
=> ? = 1 + 1
[[],[]]
=> [.,[.,.]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 + 1
[[[]],[]]
=> [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 + 1
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 + 1
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 + 1
[[],[],[],[[]],[]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[[],[],[[]],[],[]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[],[],[[],[]],[]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[],[],[[[]]],[]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[],[[]],[],[],[]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[[],[[]],[[]],[]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 1
[[],[[],[]],[],[]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 1
[[],[[[]]],[],[]]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 1
[[],[[],[],[]],[]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[],[[],[[]]],[]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[],[[[]],[]],[]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[[],[[[],[]]],[]]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[],[[[[]]]],[]]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[[]],[],[],[],[]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 4 + 1
[[[]],[],[[]],[]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 1
[[[]],[[]],[],[]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 1
[[[]],[[],[]],[]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[[]],[[[]]],[]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[[],[]],[],[],[]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[[[[]]],[],[],[]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[[[],[]],[[]],[]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[[[]]],[[]],[]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[[[],[],[]],[],[]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[[],[[]]],[],[]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> [[[.,[[.,.],.]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[[[]],[]],[],[]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[[[[],[]]],[],[]]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> [[[[.,[.,.]],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[[[[]]]],[],[]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[[[],[],[],[]],[]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[],[],[[]]],[]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[],[[]],[]],[]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> [[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 4 + 1
[[[],[[],[]]],[]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[],[[[]]]],[]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[]],[],[]],[]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 1
[[[[]],[[]]],[]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 1
[[[[],[]],[]],[]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> [[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 1
[[[[[]]],[]],[]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 1
[[[[],[],[]]],[]]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[],[[]]]],[]]
=> [[[.,[[.,.],.]],.],[.,.]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[[]],[]]],[]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 4 + 1
[[[[[],[]]]],[]]
=> [[[[.,[.,.]],.],.],[.,.]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[[[[]]]]],[]]
=> [[[[[.,.],.],.],.],[.,.]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[[[],[],[],[],[]],[]]
=> [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[],[],[[]]],[]]
=> [[.,[.,[.,[[.,.],.]]]],[.,.]]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[],[[],[]]],[]]
=> [[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[],[[[]]]],[]]
=> [[.,[.,[[[.,.],.],.]]],[.,.]]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[[],[],[]]],[]]
=> [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[[],[[]]]],[]]
=> [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[[[],[]]]],[]]
=> [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[],[[[[]]]]],[]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [[[.,[[[[.,.],.],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[],[],[],[]]],[]]
=> [[[.,[.,[.,[.,.]]]],.],[.,.]]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[],[],[[]]]],[]]
=> [[[.,[.,[[.,.],.]]],.],[.,.]]
=> [[[[.,[.,[[.,.],.]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[],[[],[]]]],[]]
=> [[[.,[[.,[.,.]],.]],.],[.,.]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[],[[[]]]]],[]]
=> [[[.,[[[.,.],.],.]],.],[.,.]]
=> [[[[.,[[[.,.],.],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[],[],[]]]],[]]
=> [[[[.,[.,[.,.]]],.],.],[.,.]]
=> [[[[[.,[.,[.,.]]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[],[[]]]]],[]]
=> [[[[.,[[.,.],.]],.],.],[.,.]]
=> [[[[[.,[[.,.],.]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[[],[]]]]],[]]
=> [[[[[.,[.,.]],.],.],.],[.,.]]
=> [[[[[[.,[.,.]],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[[[[[[[]]]]]],[]]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00050: Ordered trees —to binary tree: right brother = right child⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 83%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 83%
Values
[[]]
=> [.,.]
=> [.,.]
=> ([],1)
=> ? = 1 + 2
[[],[]]
=> [.,[.,.]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 2
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 + 2
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 2
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 + 2
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 2
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 + 2
[[],[],[],[[]],[]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 2
[[],[],[[]],[],[]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[],[],[[],[]],[]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[],[],[[[]]],[]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[],[[]],[],[],[]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[[],[[]],[[]],[]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 2
[[],[[],[]],[],[]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 2
[[],[[[]]],[],[]]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 2
[[],[[],[],[]],[]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[],[[],[[]]],[]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[],[[[]],[]],[]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 2
[[],[[[],[]]],[]]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[],[[[[]]]],[]]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[[]],[],[],[],[]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 4 + 2
[[[]],[],[[]],[]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 2
[[[]],[[]],[],[]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 2
[[[]],[[],[]],[]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[[]],[[[]]],[]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[[],[]],[],[],[]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[[[[]]],[],[],[]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[[[],[]],[[]],[]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[[[]]],[[]],[]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[[[],[],[]],[],[]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[[],[[]]],[],[]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> [[[.,[[.,.],.]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[[[]],[]],[],[]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 2
[[[[],[]]],[],[]]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> [[[[.,[.,.]],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[[[[]]]],[],[]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[[[],[],[],[]],[]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[],[],[[]]],[]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[],[[]],[]],[]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> [[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 4 + 2
[[[],[[],[]]],[]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[],[[[]]]],[]]
=> [[.,[[[.,.],.],.]],[.,.]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[]],[],[]],[]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 2
[[[[]],[[]]],[]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 2
[[[[],[]],[]],[]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> [[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 2
[[[[[]]],[]],[]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 4 + 2
[[[[],[],[]]],[]]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[],[[]]]],[]]
=> [[[.,[[.,.],.]],.],[.,.]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[[]],[]]],[]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 4 + 2
[[[[[],[]]]],[]]
=> [[[[.,[.,.]],.],.],[.,.]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[[[[]]]]],[]]
=> [[[[[.,.],.],.],.],[.,.]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[[[],[],[],[],[]],[]]
=> [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[],[],[[]]],[]]
=> [[.,[.,[.,[[.,.],.]]]],[.,.]]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[],[[],[]]],[]]
=> [[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[],[[[]]]],[]]
=> [[.,[.,[[[.,.],.],.]]],[.,.]]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[[],[],[]]],[]]
=> [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[[],[[]]]],[]]
=> [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[[[],[]]]],[]]
=> [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[],[[[[]]]]],[]]
=> [[.,[[[[.,.],.],.],.]],[.,.]]
=> [[[.,[[[[.,.],.],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[],[],[],[]]],[]]
=> [[[.,[.,[.,[.,.]]]],.],[.,.]]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[],[],[[]]]],[]]
=> [[[.,[.,[[.,.],.]]],.],[.,.]]
=> [[[[.,[.,[[.,.],.]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[],[[],[]]]],[]]
=> [[[.,[[.,[.,.]],.]],.],[.,.]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[],[[[]]]]],[]]
=> [[[.,[[[.,.],.],.]],.],[.,.]]
=> [[[[.,[[[.,.],.],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[],[],[]]]],[]]
=> [[[[.,[.,[.,.]]],.],.],[.,.]]
=> [[[[[.,[.,[.,.]]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[],[[]]]]],[]]
=> [[[[.,[[.,.],.]],.],.],[.,.]]
=> [[[[[.,[[.,.],.]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[[],[]]]]],[]]
=> [[[[[.,[.,.]],.],.],.],[.,.]]
=> [[[[[[.,[.,.]],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[[[[[[[]]]]]],[]]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!