Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
St001486: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => 4
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [5,1] => 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [5,1] => 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,2,2,1] => 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,4,1] => 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,4,1] => 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [5,1] => 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,4,1] => 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,4,1] => 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,1] => 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [1,1,2,1,1,1] => 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [2,2,1,1,1] => 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [1,3,1,1,1] => 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [1,3,1,1,1] => 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [4,1,1,1] => 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [1,1,3,1,1] => 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [2,3,1,1] => 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [1,1,3,1,1] => 4
Description
The number of corners of the ribbon associated with an integer composition. We associate a ribbon shape to a composition $c=(c_1,\dots,c_n)$ with $c_i$ cells in the $i$-th row from bottom to top, such that the cells in two rows overlap in precisely one cell. This statistic records the total number of corners of the ribbon shape.
Matching statistic: St000777
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St000453
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000453: Graphs ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
Description
The number of distinct Laplacian eigenvalues of a graph.
Matching statistic: St000455
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 1 - 3
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 3
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 3
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7 - 3
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,3,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [5,6,7,2,3,4,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [6,7,2,3,4,5,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 3 - 3
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St000288
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
Mp00096: Binary words Foata bijectionBinary words
St000288: Binary words ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [[1],[2]]
=> 1 => 1 => 1
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 10101 => 11001 => 3
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 1010101 => 1110001 => 4
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 1010010 => 1011000 => 3
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 1001001 => 0101001 => 3
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 101010101 => 111100001 => ? = 4
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> 101010010 => 101110000 => ? = 3
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> 101001001 => 010110001 => 4
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> 101001010 => 110110000 => ? = 4
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> 101000100 => 010011000 => ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> 100100101 => 101010001 => ? = 4
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> 100100010 => 100101000 => ? = 3
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> 100101001 => 011010001 => 4
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> 100010001 => 001001001 => 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9,11],[2,4,6,8,10,12]]
=> 10101010101 => 11111000001 => ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,9,10],[2,4,6,8,11,12]]
=> 10101010010 => 10111100000 => ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,7,8,11],[2,4,6,9,10,12]]
=> 10101001001 => 01011100001 => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,7,8,10],[2,4,6,9,11,12]]
=> 10101001010 => 11011100000 => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,7,8,9],[2,4,6,10,11,12]]
=> 10101000100 => 01001110000 => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,3,5,6,9,11],[2,4,7,8,10,12]]
=> 10100100101 => 10101100001 => ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,3,5,6,9,10],[2,4,7,8,11,12]]
=> 10100100010 => 10010110000 => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,3,5,6,8,11],[2,4,7,9,10,12]]
=> 10100101001 => 01101100001 => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,3,5,6,8,10],[2,4,7,9,11,12]]
=> 10100101010 => 11101100000 => ? = 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,3,5,6,8,9],[2,4,7,10,11,12]]
=> 10100100100 => 01010110000 => ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,3,5,6,7,11],[2,4,8,9,10,12]]
=> 10100010001 => 00100110001 => ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[1,3,5,6,7,10],[2,4,8,9,11,12]]
=> 10100010010 => 10100110000 => ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,3,5,6,7,9],[2,4,8,10,11,12]]
=> 10100010100 => 01100110000 => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,3,5,6,7,8],[2,4,9,10,11,12]]
=> 10100001000 => 00100011000 => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,3,4,7,9,11],[2,5,6,8,10,12]]
=> 10010010101 => 11010100001 => ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,3,4,7,9,10],[2,5,6,8,11,12]]
=> 10010010010 => 10101010000 => ? = 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,3,4,7,8,11],[2,5,6,9,10,12]]
=> 10010001001 => 01001010001 => 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,3,4,7,8,10],[2,5,6,9,11,12]]
=> 10010001010 => 11001010000 => ? = 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,3,4,7,8,9],[2,5,6,10,11,12]]
=> 10010000100 => 01000101000 => 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,3,4,6,9,11],[2,5,7,8,10,12]]
=> 10010100101 => 10110100001 => ? = 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[1,3,4,6,9,10],[2,5,7,8,11,12]]
=> 10010100010 => 10011010000 => ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,3,4,6,8,11],[2,5,7,9,10,12]]
=> 10010101001 => 01110100001 => ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[1,3,4,6,7,11],[2,5,8,9,10,12]]
=> 10010010001 => 00101010001 => 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[1,3,4,5,9,11],[2,6,7,8,10,12]]
=> 10001000101 => 10010010001 => 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[1,3,4,5,9,10],[2,6,7,8,11,12]]
=> 10001000010 => 10001001000 => 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[1,3,4,5,8,11],[2,6,7,9,10,12]]
=> 10001001001 => 01010010001 => 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[1,3,4,5,7,11],[2,6,8,9,10,12]]
=> 10001010001 => 00110010001 => ? = 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[1,3,4,5,6,11],[2,7,8,9,10,12]]
=> 10000100001 => 00010001001 => 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9,11,13],[2,4,6,8,10,12,14]]
=> 1010101010101 => ? => ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,9,11,12],[2,4,6,8,10,13,14]]
=> 1010101010010 => ? => ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,7,9,10,13],[2,4,6,8,11,12,14]]
=> 1010101001001 => ? => ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,7,9,10,12],[2,4,6,8,11,13,14]]
=> 1010101001010 => ? => ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,7,9,10,11],[2,4,6,8,12,13,14]]
=> 1010101000100 => ? => ? = 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,3,5,7,8,11,13],[2,4,6,9,10,12,14]]
=> 1010100100101 => ? => ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,3,5,7,8,11,12],[2,4,6,9,10,13,14]]
=> 1010100100010 => ? => ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,3,5,7,8,10,13],[2,4,6,9,11,12,14]]
=> 1010100101001 => ? => ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,3,5,7,8,10,12],[2,4,6,9,11,13,14]]
=> 1010100101010 => ? => ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,3,5,7,8,10,11],[2,4,6,9,12,13,14]]
=> 1010100100100 => ? => ? = 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [[1,3,5,7,8,9,13],[2,4,6,10,11,12,14]]
=> 1010100010001 => ? => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [[1,3,5,7,8,9,12],[2,4,6,10,11,13,14]]
=> 1010100010010 => ? => ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,3,5,7,8,9,11],[2,4,6,10,12,13,14]]
=> 1010100010100 => ? => ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,3,5,7,8,9,10],[2,4,6,11,12,13,14]]
=> 1010100001000 => ? => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,3,5,6,9,11,13],[2,4,7,8,10,12,14]]
=> 1010010010101 => ? => ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,3,5,6,9,11,12],[2,4,7,8,10,13,14]]
=> 1010010010010 => ? => ? = 5
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,3,5,6,9,10,13],[2,4,7,8,11,12,14]]
=> 1010010001001 => ? => ? = 4
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,3,5,6,9,10,12],[2,4,7,8,11,13,14]]
=> 1010010001010 => ? => ? = 4
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,3,5,6,9,10,11],[2,4,7,8,12,13,14]]
=> 1010010000100 => ? => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,3,5,6,8,11,13],[2,4,7,9,10,12,14]]
=> 1010010100101 => ? => ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [[1,3,5,6,8,11,12],[2,4,7,9,10,13,14]]
=> 1010010100010 => ? => ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,3,5,6,8,10,13],[2,4,7,9,11,12,14]]
=> 1010010101001 => ? => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,3,5,6,8,10,12],[2,4,7,9,11,13,14]]
=> 1010010101010 => ? => ? = 6
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Matching statistic: St000159
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000159: Integer partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,1,1]
=> ? = 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,1,1]
=> ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,1,1]
=> ? = 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1,1,1]
=> ? = 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,2,1,1,1]
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,1,1,1]
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,3,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,5,3,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [6,5,3,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [5,3,3,3,2,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,2,1]
=> ? = 6
Description
The number of distinct parts of the integer partition. This statistic is also the number of removeable cells of the partition, and the number of valleys of the Dyck path tracing the shape of the partition.
Matching statistic: St001432
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,1,1]
=> ? = 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,1,1]
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,1,1]
=> ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,1,1]
=> ? = 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1,1,1]
=> ? = 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,2,1,1,1]
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,1,1,1]
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,3,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,5,3,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [6,5,3,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [5,3,3,3,2,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,2,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,2,1]
=> ? = 6
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001488
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
St001488: Skew partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1] => [[1],[]]
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => [[2,2],[1]]
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => [[2,2,1],[1]]
=> 4
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => [[3,3],[2]]
=> 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => [[3,3],[2]]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => [[3,3,3],[2,2]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => [[3,3,1],[2]]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => [[3,3,1],[2]]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => [[4,4],[3]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => [[3,3,1],[2]]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => [[4,4],[3]]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => [[3,3,1],[2]]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => [[4,4],[3]]
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => [[3,3,3,1],[2,2]]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => [[4,4,4],[3,3]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => [[4,4,3],[3,2]]
=> ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [5,1] => [[5,5],[4]]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => [[3,3,1,1],[2]]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => [[4,4,2],[3,1]]
=> ? = 5
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [5,1] => [[5,5],[4]]
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => [[4,4,3],[3,2]]
=> ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [5,1] => [[5,5],[4]]
=> ? = 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,4,1] => [[4,4,1],[3]]
=> ? = 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,1] => [[5,5],[4]]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [4,1,1,1] => [[4,4,4,4],[3,3,3]]
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [1,4,1,1] => [[4,4,4,1],[3,3]]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => [1,4,1,1] => [[4,4,4,1],[3,3]]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => [1,4,1,1] => [[4,4,4,1],[3,3]]
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [5,1,1] => [[5,5,5],[4,4]]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => [2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [1,4,1,1] => [[4,4,4,1],[3,3]]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => [1,4,1,1] => [[4,4,4,1],[3,3]]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [5,1,1] => [[5,5,5],[4,4]]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => [2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => [1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> ? = 6
Description
The number of corners of a skew partition. This is also known as the number of removable cells of the skew partition.
Matching statistic: St000480
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000480: Integer partitions ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> ? = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> ? = 3 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 4 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,1,1]
=> ? = 5 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,1,1]
=> ? = 4 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,1,1]
=> ? = 4 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,1,1]
=> ? = 5 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,1,1]
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,1,1]
=> ? = 4 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1,1,1]
=> ? = 4 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,2,1,1,1]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,1,1]
=> ? = 4 - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,1,1]
=> ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,1,1,1]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> ? = 3 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,3,2,1]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,2,1]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,3,3,3,2,1]
=> ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,2,2,1]
=> ? = 5 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,5,3,3,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [6,5,3,3,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [5,3,3,3,2,2,1]
=> ? = 3 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,2,1]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,2,2,1]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,2,1]
=> ? = 6 - 1
Description
The number of lower covers of a partition in dominance order. According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is $$ \frac{1}{2}(\sqrt{1+8n}-3) $$ and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001960: Permutations ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1] => ? = 1 - 3
[1,0,1,0,1,0]
=> [2,1,3] => 0 = 3 - 3
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => 1 = 4 - 3
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 0 = 3 - 3
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => 0 = 3 - 3
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => 1 = 4 - 3
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => 0 = 3 - 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => 1 = 4 - 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => 1 = 4 - 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => 0 = 3 - 3
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => 1 = 4 - 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => 0 = 3 - 3
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => 1 = 4 - 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => 0 = 3 - 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => ? = 4 - 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => ? = 5 - 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ? = 3 - 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => ? = 4 - 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,5,6] => ? = 3 - 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => ? = 6 - 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,5,3,6] => ? = 6 - 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ? = 5 - 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,5,6,3] => ? = 4 - 3
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => ? = 4 - 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ? = 4 - 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ? = 3 - 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4] => ? = 4 - 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ? = 5 - 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => ? = 4 - 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => ? = 4 - 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => ? = 3 - 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,5,3,4,6] => ? = 6 - 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,5,1,3,4,6] => ? = 5 - 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,3,5,4,6] => ? = 6 - 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,3,5,6,4] => ? = 4 - 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,5] => ? = 4 - 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,6,1,3,4,5] => ? = 3 - 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,3,6,4,5] => ? = 4 - 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,3,4,6,5] => ? = 4 - 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,5,6] => ? = 3 - 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 4 - 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => ? = 5 - 3
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5,7] => ? = 4 - 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5,7] => ? = 4 - 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,7] => ? = 3 - 3
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,6,7,5] => ? = 5 - 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,7,5] => ? = 5 - 3
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,6,7,3,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,6,7,3,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,6,1,7,3,5] => ? = 4 - 3
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => ? = 3 - 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,7,5,6] => ? = 4 - 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,3,7,5,6] => ? = 5 - 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,7,3,5,6] => ? = 4 - 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,4,1,7,3,5,6] => ? = 4 - 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,7,1,3,5,6] => ? = 3 - 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 4 - 3
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,3,5,7,6] => ? = 5 - 3
Description
The number of descents of a permutation minus one if its first entry is not one. This statistic appears in [1, Theorem 2.3] in a gamma-positivity result, see also [2].
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001569The maximal modular displacement of a permutation. St001520The number of strict 3-descents. St001811The Castelnuovo-Mumford regularity of a permutation.