Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00086: Permutations first fundamental transformationPermutations
St000673: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => 0
[2,1] => [2,1] => 2
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 2
[2,1,3] => [2,1,3] => 2
[2,3,1] => [3,2,1] => 2
[3,1,2] => [2,3,1] => 3
[3,2,1] => [3,1,2] => 3
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 2
[1,3,2,4] => [1,3,2,4] => 2
[1,3,4,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,3,4,2] => 3
[1,4,3,2] => [1,4,2,3] => 3
[2,1,3,4] => [2,1,3,4] => 2
[2,1,4,3] => [2,1,4,3] => 4
[2,3,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,2,3,1] => 2
[2,4,1,3] => [3,2,4,1] => 3
[2,4,3,1] => [4,2,1,3] => 3
[3,1,2,4] => [2,3,1,4] => 3
[3,1,4,2] => [3,4,1,2] => 4
[3,2,1,4] => [3,1,2,4] => 3
[3,2,4,1] => [4,3,2,1] => 4
[3,4,1,2] => [2,4,3,1] => 3
[3,4,2,1] => [4,1,3,2] => 3
[4,1,2,3] => [2,3,4,1] => 4
[4,1,3,2] => [3,4,2,1] => 4
[4,2,1,3] => [3,1,4,2] => 4
[4,2,3,1] => [4,3,1,2] => 4
[4,3,1,2] => [2,4,1,3] => 4
[4,3,2,1] => [4,1,2,3] => 4
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => 2
[1,2,4,3,5] => [1,2,4,3,5] => 2
[1,2,4,5,3] => [1,2,5,4,3] => 2
[1,2,5,3,4] => [1,2,4,5,3] => 3
[1,2,5,4,3] => [1,2,5,3,4] => 3
[1,3,2,4,5] => [1,3,2,4,5] => 2
[1,3,2,5,4] => [1,3,2,5,4] => 4
[1,3,4,2,5] => [1,4,3,2,5] => 2
[1,3,4,5,2] => [1,5,3,4,2] => 2
[1,3,5,2,4] => [1,4,3,5,2] => 3
[1,3,5,4,2] => [1,5,3,2,4] => 3
[1,4,2,3,5] => [1,3,4,2,5] => 3
[1,4,2,5,3] => [1,4,5,2,3] => 4
[1,4,3,2,5] => [1,4,2,3,5] => 3
[1,4,3,5,2] => [1,5,4,3,2] => 4
[1,4,5,2,3] => [1,3,5,4,2] => 3
[1,4,5,3,2] => [1,5,2,4,3] => 3
Description
The number of non-fixed points of a permutation. In other words, this statistic is n minus the number of fixed points ([[St000022]]) of π.
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
St000235: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [2,1] => 0
[2,1] => [2,1] => [1,2] => 2
[1,2,3] => [1,2,3] => [2,3,1] => 0
[1,3,2] => [1,3,2] => [3,2,1] => 2
[2,1,3] => [2,1,3] => [1,3,2] => 2
[2,3,1] => [3,2,1] => [2,1,3] => 2
[3,1,2] => [3,1,2] => [3,1,2] => 3
[3,2,1] => [2,3,1] => [1,2,3] => 3
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => 0
[1,2,4,3] => [1,2,4,3] => [2,4,3,1] => 2
[1,3,2,4] => [1,3,2,4] => [3,2,4,1] => 2
[1,3,4,2] => [1,4,3,2] => [4,3,2,1] => 2
[1,4,2,3] => [1,4,2,3] => [3,4,2,1] => 3
[1,4,3,2] => [1,3,4,2] => [4,2,3,1] => 3
[2,1,3,4] => [2,1,3,4] => [1,3,4,2] => 2
[2,1,4,3] => [2,1,4,3] => [1,4,3,2] => 4
[2,3,1,4] => [3,2,1,4] => [2,1,4,3] => 2
[2,3,4,1] => [4,2,3,1] => [2,3,1,4] => 2
[2,4,1,3] => [4,2,1,3] => [2,4,1,3] => 3
[2,4,3,1] => [3,2,4,1] => [2,1,3,4] => 3
[3,1,2,4] => [3,1,2,4] => [3,1,4,2] => 3
[3,1,4,2] => [3,4,1,2] => [4,1,2,3] => 4
[3,2,1,4] => [2,3,1,4] => [1,2,4,3] => 3
[3,2,4,1] => [4,3,2,1] => [3,2,1,4] => 4
[3,4,1,2] => [4,1,3,2] => [4,3,1,2] => 3
[3,4,2,1] => [2,4,3,1] => [1,3,2,4] => 3
[4,1,2,3] => [4,1,2,3] => [3,4,1,2] => 4
[4,1,3,2] => [4,3,1,2] => [4,2,1,3] => 4
[4,2,1,3] => [2,4,1,3] => [1,4,2,3] => 4
[4,2,3,1] => [3,4,2,1] => [3,1,2,4] => 4
[4,3,1,2] => [3,1,4,2] => [4,1,3,2] => 4
[4,3,2,1] => [2,3,4,1] => [1,2,3,4] => 4
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,5,4,1] => 2
[1,2,4,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => 2
[1,2,4,5,3] => [1,2,5,4,3] => [2,5,4,3,1] => 2
[1,2,5,3,4] => [1,2,5,3,4] => [2,4,5,3,1] => 3
[1,2,5,4,3] => [1,2,4,5,3] => [2,5,3,4,1] => 3
[1,3,2,4,5] => [1,3,2,4,5] => [3,2,4,5,1] => 2
[1,3,2,5,4] => [1,3,2,5,4] => [3,2,5,4,1] => 4
[1,3,4,2,5] => [1,4,3,2,5] => [4,3,2,5,1] => 2
[1,3,4,5,2] => [1,5,3,4,2] => [5,3,4,2,1] => 2
[1,3,5,2,4] => [1,5,3,2,4] => [4,3,5,2,1] => 3
[1,3,5,4,2] => [1,4,3,5,2] => [5,3,2,4,1] => 3
[1,4,2,3,5] => [1,4,2,3,5] => [3,4,2,5,1] => 3
[1,4,2,5,3] => [1,4,5,2,3] => [4,5,2,3,1] => 4
[1,4,3,2,5] => [1,3,4,2,5] => [4,2,3,5,1] => 3
[1,4,3,5,2] => [1,5,4,3,2] => [5,4,3,2,1] => 4
[1,4,5,2,3] => [1,5,2,4,3] => [3,5,4,2,1] => 3
[1,4,5,3,2] => [1,3,5,4,2] => [5,2,4,3,1] => 3
Description
The number of indices that are not cyclical small weak excedances. A cyclical small weak excedance is an index i<n such that πi=i+1, or the index i=n if πn=1.
Mp00086: Permutations first fundamental transformationPermutations
Mp00108: Permutations cycle typeInteger partitions
St001279: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,1]
=> 0
[2,1] => [2,1] => [2]
=> 2
[1,2,3] => [1,2,3] => [1,1,1]
=> 0
[1,3,2] => [1,3,2] => [2,1]
=> 2
[2,1,3] => [2,1,3] => [2,1]
=> 2
[2,3,1] => [3,2,1] => [2,1]
=> 2
[3,1,2] => [2,3,1] => [3]
=> 3
[3,2,1] => [3,1,2] => [3]
=> 3
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> 0
[1,2,4,3] => [1,2,4,3] => [2,1,1]
=> 2
[1,3,2,4] => [1,3,2,4] => [2,1,1]
=> 2
[1,3,4,2] => [1,4,3,2] => [2,1,1]
=> 2
[1,4,2,3] => [1,3,4,2] => [3,1]
=> 3
[1,4,3,2] => [1,4,2,3] => [3,1]
=> 3
[2,1,3,4] => [2,1,3,4] => [2,1,1]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,2]
=> 4
[2,3,1,4] => [3,2,1,4] => [2,1,1]
=> 2
[2,3,4,1] => [4,2,3,1] => [2,1,1]
=> 2
[2,4,1,3] => [3,2,4,1] => [3,1]
=> 3
[2,4,3,1] => [4,2,1,3] => [3,1]
=> 3
[3,1,2,4] => [2,3,1,4] => [3,1]
=> 3
[3,1,4,2] => [3,4,1,2] => [2,2]
=> 4
[3,2,1,4] => [3,1,2,4] => [3,1]
=> 3
[3,2,4,1] => [4,3,2,1] => [2,2]
=> 4
[3,4,1,2] => [2,4,3,1] => [3,1]
=> 3
[3,4,2,1] => [4,1,3,2] => [3,1]
=> 3
[4,1,2,3] => [2,3,4,1] => [4]
=> 4
[4,1,3,2] => [3,4,2,1] => [4]
=> 4
[4,2,1,3] => [3,1,4,2] => [4]
=> 4
[4,2,3,1] => [4,3,1,2] => [4]
=> 4
[4,3,1,2] => [2,4,1,3] => [4]
=> 4
[4,3,2,1] => [4,1,2,3] => [4]
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> 2
[1,2,4,5,3] => [1,2,5,4,3] => [2,1,1,1]
=> 2
[1,2,5,3,4] => [1,2,4,5,3] => [3,1,1]
=> 3
[1,2,5,4,3] => [1,2,5,3,4] => [3,1,1]
=> 3
[1,3,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => [2,2,1]
=> 4
[1,3,4,2,5] => [1,4,3,2,5] => [2,1,1,1]
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [2,1,1,1]
=> 2
[1,3,5,2,4] => [1,4,3,5,2] => [3,1,1]
=> 3
[1,3,5,4,2] => [1,5,3,2,4] => [3,1,1]
=> 3
[1,4,2,3,5] => [1,3,4,2,5] => [3,1,1]
=> 3
[1,4,2,5,3] => [1,4,5,2,3] => [2,2,1]
=> 4
[1,4,3,2,5] => [1,4,2,3,5] => [3,1,1]
=> 3
[1,4,3,5,2] => [1,5,4,3,2] => [2,2,1]
=> 4
[1,4,5,2,3] => [1,3,5,4,2] => [3,1,1]
=> 3
[1,4,5,3,2] => [1,5,2,4,3] => [3,1,1]
=> 3
Description
The sum of the parts of an integer partition that are at least two.
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
Mp00063: Permutations to alternating sign matrixAlternating sign matrices
St000896: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,2] => [[1,0],[0,1]]
=> 0
[2,1] => [2,1] => [2,1] => [[0,1],[1,0]]
=> 2
[1,2,3] => [1,2,3] => [1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,3,2] => [1,3,2] => [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 2
[2,1,3] => [2,1,3] => [2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> 2
[2,3,1] => [1,3,2] => [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 2
[3,1,2] => [3,1,2] => [3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> 3
[3,2,1] => [3,2,1] => [2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,3,4,2] => [1,2,4,3] => [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 3
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[2,3,1,4] => [1,3,2,4] => [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[2,3,4,1] => [1,2,4,3] => [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[2,4,1,3] => [2,4,1,3] => [4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 3
[2,4,3,1] => [1,4,3,2] => [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[3,1,2,4] => [3,1,2,4] => [3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[3,1,4,2] => [2,1,4,3] => [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[3,2,4,1] => [2,1,4,3] => [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[3,4,1,2] => [2,4,1,3] => [4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 3
[3,4,2,1] => [1,4,3,2] => [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[4,1,2,3] => [4,1,2,3] => [4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 4
[4,1,3,2] => [4,1,3,2] => [4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 4
[4,2,1,3] => [4,2,1,3] => [2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 4
[4,2,3,1] => [4,1,3,2] => [4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 4
[4,3,1,2] => [4,3,1,2] => [3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 4
[4,3,2,1] => [4,3,2,1] => [2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 3
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,3,5,2,4] => [1,3,5,2,4] => [1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 3
[1,3,5,4,2] => [1,2,5,4,3] => [1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3
[1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,4,5,2,3] => [1,3,5,2,4] => [1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 3
[1,4,5,3,2] => [1,2,5,4,3] => [1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
Description
The number of zeros on the main diagonal of an alternating sign matrix.
Matching statistic: St001005
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St001005: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[2,1] => [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 2
[2,1,3] => [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 2
[2,3,1] => [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 2
[3,1,2] => [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 3
[3,2,1] => [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 3
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 3
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 3
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 3
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 3
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 3
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 3
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 3
Description
The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both.
Matching statistic: St001182
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001182: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 3 = 2 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 3 = 2 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 4 = 3 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 5 = 4 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 2 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 5 = 4 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5 = 4 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5 = 4 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4 = 3 + 1
Description
Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001232
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 2
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 2
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 2
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ? = 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 3
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 3
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? = 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 3
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 4
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 3
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 4
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 3
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 3
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 4
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 3
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 4
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 3
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 4
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 3
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 3
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 4
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 4
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00026: Dyck paths to ordered treeOrdered trees
Mp00047: Ordered trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ? = 0
[2,1] => [1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0
[1,3,2] => [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,1,3] => [1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,3,1] => [1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2
[3,1,2] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? = 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? = 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00026: Dyck paths to ordered treeOrdered trees
Mp00047: Ordered trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 1
[2,1] => [1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ? = 2 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? = 2 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 3 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 3 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 + 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 + 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 + 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 + 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 + 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 + 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2 + 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4 + 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.