searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000907
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00047: Ordered trees —to poset⟶ Posets
St000907: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000907: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> 1
[[]]
=> ([(0,1)],2)
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 3
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 1
Description
The number of maximal antichains of minimal length in a poset.
Matching statistic: St000974
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
St000974: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[]
=> ? = 1 - 1
[[]]
=> 1 = 2 - 1
[[],[]]
=> 0 = 1 - 1
[[[]]]
=> 2 = 3 - 1
[[],[],[]]
=> 0 = 1 - 1
[[],[[]]]
=> 0 = 1 - 1
[[[]],[]]
=> 0 = 1 - 1
[[[],[]]]
=> 1 = 2 - 1
[[[[]]]]
=> 3 = 4 - 1
[[],[],[],[]]
=> 0 = 1 - 1
[[],[],[[]]]
=> 0 = 1 - 1
[[],[[]],[]]
=> 0 = 1 - 1
[[],[[],[]]]
=> 0 = 1 - 1
[[],[[[]]]]
=> 0 = 1 - 1
[[[]],[],[]]
=> 0 = 1 - 1
[[[]],[[]]]
=> 0 = 1 - 1
[[[],[]],[]]
=> 0 = 1 - 1
[[[[]]],[]]
=> 0 = 1 - 1
[[[],[],[]]]
=> 1 = 2 - 1
[[[],[[]]]]
=> 1 = 2 - 1
[[[[]],[]]]
=> 1 = 2 - 1
[[[[],[]]]]
=> 2 = 3 - 1
[[[[[]]]]]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> 0 = 1 - 1
[[],[],[],[[]]]
=> 0 = 1 - 1
[[],[],[[]],[]]
=> 0 = 1 - 1
[[],[],[[],[]]]
=> 0 = 1 - 1
[[],[],[[[]]]]
=> 0 = 1 - 1
[[],[[]],[],[]]
=> 0 = 1 - 1
[[],[[]],[[]]]
=> 0 = 1 - 1
[[],[[],[]],[]]
=> 0 = 1 - 1
[[],[[[]]],[]]
=> 0 = 1 - 1
[[],[[],[],[]]]
=> 0 = 1 - 1
[[],[[],[[]]]]
=> 0 = 1 - 1
[[],[[[]],[]]]
=> 0 = 1 - 1
[[],[[[],[]]]]
=> 0 = 1 - 1
[[],[[[[]]]]]
=> 0 = 1 - 1
[[[]],[],[],[]]
=> 0 = 1 - 1
[[[]],[],[[]]]
=> 0 = 1 - 1
[[[]],[[]],[]]
=> 0 = 1 - 1
[[[]],[[],[]]]
=> 0 = 1 - 1
[[[]],[[[]]]]
=> 0 = 1 - 1
[[[],[]],[],[]]
=> 0 = 1 - 1
[[[[]]],[],[]]
=> 0 = 1 - 1
[[[],[]],[[]]]
=> 0 = 1 - 1
[[[[]]],[[]]]
=> 0 = 1 - 1
[[[],[],[]],[]]
=> 0 = 1 - 1
[[[],[[]]],[]]
=> 0 = 1 - 1
[[[[]],[]],[]]
=> 0 = 1 - 1
[[[[],[]]],[]]
=> 0 = 1 - 1
[[[[[]]]],[]]
=> 0 = 1 - 1
Description
The length of the trunk of an ordered tree.
This is the length of the path from the root to the first vertex which has not exactly one child.
Matching statistic: St001107
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 100%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 100%
Values
[]
=> []
=> []
=> []
=> ? = 1 - 1
[[]]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 2 - 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2 = 3 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 1 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0 = 1 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[[],[[],[[],[[],[[],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[],[[[],[]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[[],[]],[[],[]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[[],[[],[]]],[]]]]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[[[],[]],[]],[]]]]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[],[]],[[],[[],[]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[],[]],[[[],[]],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[],[[],[]]],[[],[]]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[[],[]],[]],[[],[]]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[],[[],[[],[]]]],[]]]
=> [1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[],[[[],[]],[]]],[]]]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[[],[]],[[],[]]],[]]]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[[],[[],[]]],[]],[]]]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[[[[],[]],[]],[]],[]]]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 - 1
[[[],[]],[[],[[],[[],[]]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[],[]],[[],[[[],[]],[]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[],[]],[[[],[]],[[],[]]]]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[],[]],[[[],[[],[]]],[]]]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[],[]],[[[[],[]],[]],[]]]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 - 1
[[[],[[],[]]],[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[],[[],[]]],[[[],[]],[]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[],[]],[]],[[],[[],[]]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[[],[]],[]],[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1 - 1
[[[],[[],[[],[]]]],[[],[]]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[[],[[[],[]],[]]],[[],[]]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[],[]],[[],[]]],[[],[]]]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[[],[[],[]]],[]],[[],[]]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[[],[]],[]],[]],[[],[]]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 - 1
[[[],[[],[[],[[],[]]]]],[]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[[],[[],[[[],[]],[]]]],[]]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[[],[[[],[]],[[],[]]]],[]]
=> [1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[],[[[],[[],[]]],[]]],[]]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[[],[[[[],[]],[]],[]]],[]]
=> [1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[],[]],[[],[[],[]]]],[]]
=> [1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[[],[]],[[[],[]],[]]],[]]
=> [1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[[],[[],[]]],[[],[]]],[]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[[],[]],[]],[[],[]]],[]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[[],[[],[[],[]]]],[]],[]]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
[[[[],[[[],[]],[]]],[]],[]]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[[],[]],[[],[]]],[]],[]]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> ?
=> ? = 1 - 1
[[[[[],[[],[]]],[]],[]],[]]
=> [1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> ?
=> ? = 1 - 1
[[[[[[],[]],[]],[]],[]],[]]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[],[[],[[],[[],[[],[[],[]]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[],[[],[[[],[]],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[],[[[],[]],[[],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,1,1,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[],[[[],[[],[]]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[],[[[[],[]],[]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0]
=> ?
=> ? = 1 - 1
[[],[[],[[[],[]],[[],[[],[]]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,1,0,0,0,0]
=> ?
=> ? = 1 - 1
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path.
In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
Matching statistic: St000160
Mp00047: Ordered trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000160: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000160: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[[],[[],[]]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[],[[[],[]],[]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[],[]],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[],[[],[]]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[[],[]],[]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[],[[],[]]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[[],[]]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[[],[]],[]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[[],[]]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[[],[]],[]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[],[[],[[],[[],[]]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[],[[[],[]],[]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[],[]],[[],[]]]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[],[[],[]]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[[],[]],[]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[]],[[],[[],[]]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[]],[[[],[]],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[],[]]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[]],[]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[],[[],[]]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[[],[]],[]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[]],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[[],[]]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[[],[]],[]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[],[[],[[],[]]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[],[[[],[]],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[[],[]],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[],[]]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[]],[]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[[],[]]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[[],[]],[]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[],[[],[]]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[[],[]],[]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[]],[[],[]]]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[[],[]]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[[],[]],[]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[],[[],[]]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[[],[]],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[[],[]]],[[],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
Description
The multiplicity of the smallest part of a partition.
This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$.
The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences
\begin{align*}
spt(5n+4) &\equiv 0\quad \pmod{5}\\\
spt(7n+5) &\equiv 0\quad \pmod{7}\\\
spt(13n+6) &\equiv 0\quad \pmod{13},
\end{align*}
analogous to those of the counting function of partitions, see [1] and [2].
Matching statistic: St000475
Mp00047: Ordered trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[[],[[],[]]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[],[[[],[]],[]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[],[]],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[],[[],[]]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[[],[]],[]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[],[[],[]]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[[],[]]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[[],[]],[]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[[],[]]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[[],[]],[]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[],[[],[[],[[],[]]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[],[[[],[]],[]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[],[]],[[],[]]]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[],[[],[]]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[[],[]],[]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[]],[[],[[],[]]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[]],[[[],[]],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[],[]]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[]],[]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[],[[],[]]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[[],[]],[]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[]],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[[],[]]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[[],[]],[]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[],[[],[[],[]]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[],[[[],[]],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[[],[]],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[],[]]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[]],[]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[[],[]]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[[],[]],[]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[],[[],[]]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[[],[]],[]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[]],[[],[]]]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[[],[]]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[[],[]],[]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[],[[],[]]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[[],[]],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[[],[]]],[[],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
Description
The number of parts equal to 1 in a partition.
Matching statistic: St001933
Mp00047: Ordered trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St001933: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St001933: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1
[[],[[],[[],[[],[]]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[],[[[],[]],[]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[],[]],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[],[[],[]]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[[[],[]],[]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[],[[],[]]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[[],[]]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[[],[]],[]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[[],[]]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[[],[]],[]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[],[[],[[],[[],[[],[]]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[],[[[],[]],[]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[],[]],[[],[]]]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[],[[],[]]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[],[[[[],[]],[]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[]],[[],[[],[]]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[]],[[[],[]],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[],[]]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[]],[]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[],[[],[]]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[],[[[],[]],[]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[]],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[],[[],[]]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[],[[[[[],[]],[]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[],[[],[[],[]]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[],[[[],[]],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[]],[[[[],[]],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[],[]]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[]],[]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[[],[]]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[[],[]],[]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[],[[],[]]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[],[[[],[]],[]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[]],[[],[]]]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[],[[],[]]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[],[[[[],[]],[]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[],[[],[]]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[]],[[[],[]],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
[[[[],[[],[]]],[[],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1
Description
The largest multiplicity of a part in an integer partition.
Matching statistic: St001091
Mp00047: Ordered trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St001091: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St001091: Integer partitions ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 0 = 1 - 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0 = 1 - 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 2 = 3 - 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0 = 1 - 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 0 = 1 - 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 0 = 1 - 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 3 = 4 - 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 0 = 1 - 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2 = 3 - 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 4 = 5 - 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0 = 1 - 1
[[],[[],[[],[[],[]]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[],[[],[[[],[]],[]]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[],[[[],[]],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[],[[[],[[],[]]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[],[[[[],[]],[]],[]]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[],[]],[[],[[],[]]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[],[]],[[[],[]],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[],[[],[]]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[[],[]],[]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[],[[],[[],[]]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[],[[[],[]],[]]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[[],[]],[[],[]]],[]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[[],[[],[]]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[[[[],[]],[]],[]],[]]
=> ([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ([(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1 - 1
[[],[[],[[],[[],[[],[]]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[],[[],[[[],[]],[]]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[],[[[],[]],[[],[]]]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[],[[[],[[],[]]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[],[[[[],[]],[]],[]]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[],[]],[[],[[],[]]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[],[]],[[[],[]],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[],[[],[]]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[[],[]],[]],[[],[]]]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[],[[],[[],[]]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[],[[[],[]],[]]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[[],[]],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[[],[[],[]]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[],[[[[[],[]],[]],[]],[]]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[]],[[],[[],[[],[]]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[]],[[],[[[],[]],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[]],[[[],[]],[[],[]]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[]],[[[],[[],[]]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[]],[[[[],[]],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[],[]]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[],[]]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[]],[]],[[],[[],[]]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[]],[]],[[[],[]],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,8),(7,9),(8,10),(9,10)],11)
=> ([(1,2),(1,4),(1,7),(1,8),(1,10),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[],[[],[]]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[[],[]],[]]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[]],[[],[]]],[[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(1,8),(1,9),(1,10),(2,3),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,5),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[[],[]]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[[],[]],[]],[]],[[],[]]]
=> ([(0,9),(1,8),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(1,7),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[],[[],[[],[]]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[],[[[],[]],[]]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[[],[]],[[],[]]]],[]]
=> ([(0,9),(1,8),(2,7),(3,7),(4,6),(5,6),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[[],[[],[]]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[],[[[[],[]],[]],[]]],[]]
=> ([(0,6),(1,6),(2,8),(3,9),(4,10),(5,7),(6,10),(8,9),(9,7),(10,8)],11)
=> ([(1,10),(2,9),(2,10),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[]],[[],[[],[]]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[]],[[[],[]],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
[[[[],[[],[]]],[[],[]]],[]]
=> ([(0,8),(1,9),(2,6),(3,6),(4,7),(5,7),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(1,10),(2,6),(2,8),(2,9),(2,10),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 1 - 1
Description
The number of parts in an integer partition whose next smaller part has the same size.
In other words, this is the number of distinct parts subtracted from the number of all parts.
Matching statistic: St000221
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00050: Ordered trees —to binary tree: right brother = right child⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000221: Permutations ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St000221: Permutations ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> .
=> ? => ? = 1 - 1
[[]]
=> [.,.]
=> [1] => 1 = 2 - 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => 0 = 1 - 1
[[[]]]
=> [[.,.],.]
=> [1,2] => 2 = 3 - 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 0 = 1 - 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 0 = 1 - 1
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => 0 = 1 - 1
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => 1 = 2 - 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => 3 = 4 - 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 0 = 1 - 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 0 = 1 - 1
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 0 = 1 - 1
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 0 = 1 - 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 0 = 1 - 1
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 0 = 1 - 1
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 0 = 1 - 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 0 = 1 - 1
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 0 = 1 - 1
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 1 = 2 - 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 1 = 2 - 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 1 = 2 - 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 2 = 3 - 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 4 = 5 - 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 0 = 1 - 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 0 = 1 - 1
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => 0 = 1 - 1
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 0 = 1 - 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 0 = 1 - 1
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => 0 = 1 - 1
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => 0 = 1 - 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => 0 = 1 - 1
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => 0 = 1 - 1
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 0 = 1 - 1
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 0 = 1 - 1
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => 0 = 1 - 1
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 0 = 1 - 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 0 = 1 - 1
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 0 = 1 - 1
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 0 = 1 - 1
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 0 = 1 - 1
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 0 = 1 - 1
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => 0 = 1 - 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 0 = 1 - 1
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => 0 = 1 - 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 0 = 1 - 1
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => 0 = 1 - 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 0 = 1 - 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => 0 = 1 - 1
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 0 = 1 - 1
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 0 = 1 - 1
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 0 = 1 - 1
[[],[[],[[],[[],[]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,7,2,8,1] => ? = 1 - 1
[[],[[],[[[],[]],[]]]]
=> [.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [6,4,3,5,7,2,8,1] => ? = 1 - 1
[[],[[[],[]],[[],[]]]]
=> [.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [6,5,7,3,2,4,8,1] => ? = 1 - 1
[[],[[[],[[],[]]],[]]]
=> [.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [7,4,3,5,2,6,8,1] => ? = 1 - 1
[[],[[[[],[]],[]],[]]]
=> [.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [7,5,3,2,4,6,8,1] => ? = 1 - 1
[[[],[]],[[],[[],[]]]]
=> [[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [6,5,7,4,8,2,1,3] => ? = 1 - 1
[[[],[]],[[[],[]],[]]]
=> [[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [7,5,4,6,8,2,1,3] => ? = 1 - 1
[[[],[[],[]]],[[],[]]]
=> [[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [7,6,8,3,2,4,1,5] => ? = 1 - 1
[[[[],[]],[]],[[],[]]]
=> [[[.,[.,.]],[.,.]],[[.,[.,.]],.]]
=> [7,6,8,4,2,1,3,5] => ? = 1 - 1
[[[],[[],[[],[]]]],[]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [8,4,3,5,2,6,1,7] => ? = 1 - 1
[[[],[[[],[]],[]]],[]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [8,5,3,2,4,6,1,7] => ? = 1 - 1
[[[[],[]],[[],[]]],[]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[.,.]]
=> [8,5,4,6,2,1,3,7] => ? = 1 - 1
[[[[],[[],[]]],[]],[]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[.,.]]
=> [8,6,3,2,4,1,5,7] => ? = 1 - 1
[[[[[],[]],[]],[]],[]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [8,6,4,2,1,3,5,7] => ? = 1 - 1
[[],[[],[[],[[],[[],[]]]]]]
=> [.,[[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],.]]
=> [6,5,7,4,8,3,9,2,10,1] => ? = 1 - 1
[[],[[],[[],[[[],[]],[]]]]]
=> [.,[[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],.]]
=> [7,5,4,6,8,3,9,2,10,1] => ? = 1 - 1
[[],[[],[[[],[]],[[],[]]]]]
=> [.,[[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],.]]
=> [7,6,8,4,3,5,9,2,10,1] => ? = 1 - 1
[[],[[],[[[],[[],[]]],[]]]]
=> [.,[[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],.]]
=> [8,5,4,6,3,7,9,2,10,1] => ? = 1 - 1
[[],[[],[[[[],[]],[]],[]]]]
=> [.,[[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],.]]
=> [8,6,4,3,5,7,9,2,10,1] => ? = 1 - 1
[[],[[[],[]],[[],[[],[]]]]]
=> [.,[[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],.]]
=> [7,6,8,5,9,3,2,4,10,1] => ? = 1 - 1
[[],[[[],[]],[[[],[]],[]]]]
=> [.,[[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],.]]
=> [8,6,5,7,9,3,2,4,10,1] => ? = 1 - 1
[[],[[[],[[],[]]],[[],[]]]]
=> [.,[[[.,[[.,[.,.]],.]],[[.,[.,.]],.]],.]]
=> [8,7,9,4,3,5,2,6,10,1] => ? = 1 - 1
[[],[[[[],[]],[]],[[],[]]]]
=> [.,[[[[.,[.,.]],[.,.]],[[.,[.,.]],.]],.]]
=> [8,7,9,5,3,2,4,6,10,1] => ? = 1 - 1
[[],[[[],[[],[[],[]]]],[]]]
=> [.,[[[.,[[.,[[.,[.,.]],.]],.]],[.,.]],.]]
=> [9,5,4,6,3,7,2,8,10,1] => ? = 1 - 1
[[],[[[],[[[],[]],[]]],[]]]
=> [.,[[[.,[[[.,[.,.]],[.,.]],.]],[.,.]],.]]
=> [9,6,4,3,5,7,2,8,10,1] => ? = 1 - 1
[[],[[[[],[]],[[],[]]],[]]]
=> [.,[[[[.,[.,.]],[[.,[.,.]],.]],[.,.]],.]]
=> [9,6,5,7,3,2,4,8,10,1] => ? = 1 - 1
[[],[[[[],[[],[]]],[]],[]]]
=> [.,[[[[.,[[.,[.,.]],.]],[.,.]],[.,.]],.]]
=> [9,7,4,3,5,2,6,8,10,1] => ? = 1 - 1
[[],[[[[[],[]],[]],[]],[]]]
=> [.,[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],.]]
=> [9,7,5,3,2,4,6,8,10,1] => ? = 1 - 1
[[[],[]],[[],[[],[[],[]]]]]
=> [[.,[.,.]],[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [7,6,8,5,9,4,10,2,1,3] => ? = 1 - 1
[[[],[]],[[],[[[],[]],[]]]]
=> [[.,[.,.]],[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [8,6,5,7,9,4,10,2,1,3] => ? = 1 - 1
[[[],[]],[[[],[]],[[],[]]]]
=> [[.,[.,.]],[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [8,7,9,5,4,6,10,2,1,3] => ? = 1 - 1
[[[],[]],[[[],[[],[]]],[]]]
=> [[.,[.,.]],[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [9,6,5,7,4,8,10,2,1,3] => ? = 1 - 1
[[[],[]],[[[[],[]],[]],[]]]
=> [[.,[.,.]],[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [9,7,5,4,6,8,10,2,1,3] => ? = 1 - 1
[[[],[[],[]]],[[],[[],[]]]]
=> [[.,[[.,[.,.]],.]],[[.,[[.,[.,.]],.]],.]]
=> [8,7,9,6,10,3,2,4,1,5] => ? = 1 - 1
[[[],[[],[]]],[[[],[]],[]]]
=> [[.,[[.,[.,.]],.]],[[[.,[.,.]],[.,.]],.]]
=> [9,7,6,8,10,3,2,4,1,5] => ? = 1 - 1
[[[[],[]],[]],[[],[[],[]]]]
=> [[[.,[.,.]],[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [8,7,9,6,10,4,2,1,3,5] => ? = 1 - 1
[[[[],[]],[]],[[[],[]],[]]]
=> [[[.,[.,.]],[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [9,7,6,8,10,4,2,1,3,5] => ? = 1 - 1
[[[],[[],[[],[]]]],[[],[]]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[[.,[.,.]],.]]
=> [9,8,10,4,3,5,2,6,1,7] => ? = 1 - 1
[[[],[[[],[]],[]]],[[],[]]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[[.,[.,.]],.]]
=> [9,8,10,5,3,2,4,6,1,7] => ? = 1 - 1
[[[[],[]],[[],[]]],[[],[]]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [9,8,10,5,4,6,2,1,3,7] => ? = 1 - 1
[[[[],[[],[]]],[]],[[],[]]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[[.,[.,.]],.]]
=> [9,8,10,6,3,2,4,1,5,7] => ? = 1 - 1
[[[[[],[]],[]],[]],[[],[]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[[.,[.,.]],.]]
=> [9,8,10,6,4,2,1,3,5,7] => ? = 1 - 1
[[[],[[],[[],[[],[]]]]],[]]
=> [[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],[.,.]]
=> [10,5,4,6,3,7,2,8,1,9] => ? = 1 - 1
[[[],[[],[[[],[]],[]]]],[]]
=> [[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],[.,.]]
=> [10,6,4,3,5,7,2,8,1,9] => ? = 1 - 1
[[[],[[[],[]],[[],[]]]],[]]
=> [[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],[.,.]]
=> [10,6,5,7,3,2,4,8,1,9] => ? = 1 - 1
[[[],[[[],[[],[]]],[]]],[]]
=> [[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],[.,.]]
=> [10,7,4,3,5,2,6,8,1,9] => ? = 1 - 1
[[[],[[[[],[]],[]],[]]],[]]
=> [[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],[.,.]]
=> [10,7,5,3,2,4,6,8,1,9] => ? = 1 - 1
[[[[],[]],[[],[[],[]]]],[]]
=> [[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [10,6,5,7,4,8,2,1,3,9] => ? = 1 - 1
[[[[],[]],[[[],[]],[]]],[]]
=> [[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [10,7,5,4,6,8,2,1,3,9] => ? = 1 - 1
Description
The number of strong fixed points of a permutation.
$i$ is called a strong fixed point of $\pi$ if
1. $j < i$ implies $\pi_j < \pi_i$, and
2. $j > i$ implies $\pi_j > \pi_i$
This can be described as an occurrence of the mesh pattern ([1], {(0,1),(1,0)}), i.e., the upper left and the lower right quadrants are shaded, see [3].
The generating function for the joint-distribution (RLmin, LRmax, strong fixed points) has a continued fraction expression as given in [4, Lemma 3.2], for LRmax see [[St000314]].
Matching statistic: St000315
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00050: Ordered trees —to binary tree: right brother = right child⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000315: Graphs ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000315: Graphs ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> .
=> ? => ?
=> ? = 1 - 1
[[]]
=> [.,.]
=> [1] => ([],1)
=> 1 = 2 - 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 0 = 1 - 1
[[[]]]
=> [[.,.],.]
=> [1,2] => ([],2)
=> 2 = 3 - 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0 = 1 - 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 3 = 4 - 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 1 - 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 2 = 3 - 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[],[[],[[],[]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,7,2,8,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[],[[],[[[],[]],[]]]]
=> [.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [6,4,3,5,7,2,8,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[],[[[],[]],[[],[]]]]
=> [.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [6,5,7,3,2,4,8,1] => ([(0,7),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[],[[[],[[],[]]],[]]]
=> [.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [7,4,3,5,2,6,8,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[],[[[[],[]],[]],[]]]
=> [.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [7,5,3,2,4,6,8,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[[],[]],[[],[[],[]]]]
=> [[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [6,5,7,4,8,2,1,3] => ([(0,4),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[[],[]],[[[],[]],[]]]
=> [[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [7,5,4,6,8,2,1,3] => ?
=> ? = 1 - 1
[[[],[[],[]]],[[],[]]]
=> [[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [7,6,8,3,2,4,1,5] => ?
=> ? = 1 - 1
[[[[],[]],[]],[[],[]]]
=> [[[.,[.,.]],[.,.]],[[.,[.,.]],.]]
=> [7,6,8,4,2,1,3,5] => ?
=> ? = 1 - 1
[[[],[[],[[],[]]]],[]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [8,4,3,5,2,6,1,7] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[[],[[[],[]],[]]],[]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [8,5,3,2,4,6,1,7] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[[[],[]],[[],[]]],[]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[.,.]]
=> [8,5,4,6,2,1,3,7] => ?
=> ? = 1 - 1
[[[[],[[],[]]],[]],[]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[.,.]]
=> [8,6,3,2,4,1,5,7] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[[[[],[]],[]],[]],[]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [8,6,4,2,1,3,5,7] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 - 1
[[],[[],[[],[[],[[],[]]]]]]
=> [.,[[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],.]]
=> [6,5,7,4,8,3,9,2,10,1] => ([(0,9),(1,8),(1,9),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1 - 1
[[],[[],[[],[[[],[]],[]]]]]
=> [.,[[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],.]]
=> [7,5,4,6,8,3,9,2,10,1] => ?
=> ? = 1 - 1
[[],[[],[[[],[]],[[],[]]]]]
=> [.,[[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],.]]
=> [7,6,8,4,3,5,9,2,10,1] => ?
=> ? = 1 - 1
[[],[[],[[[],[[],[]]],[]]]]
=> [.,[[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],.]]
=> [8,5,4,6,3,7,9,2,10,1] => ?
=> ? = 1 - 1
[[],[[],[[[[],[]],[]],[]]]]
=> [.,[[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],.]]
=> [8,6,4,3,5,7,9,2,10,1] => ?
=> ? = 1 - 1
[[],[[[],[]],[[],[[],[]]]]]
=> [.,[[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],.]]
=> [7,6,8,5,9,3,2,4,10,1] => ?
=> ? = 1 - 1
[[],[[[],[]],[[[],[]],[]]]]
=> [.,[[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],.]]
=> [8,6,5,7,9,3,2,4,10,1] => ?
=> ? = 1 - 1
[[],[[[],[[],[]]],[[],[]]]]
=> [.,[[[.,[[.,[.,.]],.]],[[.,[.,.]],.]],.]]
=> [8,7,9,4,3,5,2,6,10,1] => ?
=> ? = 1 - 1
[[],[[[[],[]],[]],[[],[]]]]
=> [.,[[[[.,[.,.]],[.,.]],[[.,[.,.]],.]],.]]
=> [8,7,9,5,3,2,4,6,10,1] => ?
=> ? = 1 - 1
[[],[[[],[[],[[],[]]]],[]]]
=> [.,[[[.,[[.,[[.,[.,.]],.]],.]],[.,.]],.]]
=> [9,5,4,6,3,7,2,8,10,1] => ?
=> ? = 1 - 1
[[],[[[],[[[],[]],[]]],[]]]
=> [.,[[[.,[[[.,[.,.]],[.,.]],.]],[.,.]],.]]
=> [9,6,4,3,5,7,2,8,10,1] => ?
=> ? = 1 - 1
[[],[[[[],[]],[[],[]]],[]]]
=> [.,[[[[.,[.,.]],[[.,[.,.]],.]],[.,.]],.]]
=> [9,6,5,7,3,2,4,8,10,1] => ?
=> ? = 1 - 1
[[],[[[[],[[],[]]],[]],[]]]
=> [.,[[[[.,[[.,[.,.]],.]],[.,.]],[.,.]],.]]
=> [9,7,4,3,5,2,6,8,10,1] => ?
=> ? = 1 - 1
[[],[[[[[],[]],[]],[]],[]]]
=> [.,[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],.]]
=> [9,7,5,3,2,4,6,8,10,1] => ?
=> ? = 1 - 1
[[[],[]],[[],[[],[[],[]]]]]
=> [[.,[.,.]],[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [7,6,8,5,9,4,10,2,1,3] => ?
=> ? = 1 - 1
[[[],[]],[[],[[[],[]],[]]]]
=> [[.,[.,.]],[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [8,6,5,7,9,4,10,2,1,3] => ?
=> ? = 1 - 1
[[[],[]],[[[],[]],[[],[]]]]
=> [[.,[.,.]],[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [8,7,9,5,4,6,10,2,1,3] => ?
=> ? = 1 - 1
[[[],[]],[[[],[[],[]]],[]]]
=> [[.,[.,.]],[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [9,6,5,7,4,8,10,2,1,3] => ?
=> ? = 1 - 1
[[[],[]],[[[[],[]],[]],[]]]
=> [[.,[.,.]],[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [9,7,5,4,6,8,10,2,1,3] => ?
=> ? = 1 - 1
[[[],[[],[]]],[[],[[],[]]]]
=> [[.,[[.,[.,.]],.]],[[.,[[.,[.,.]],.]],.]]
=> [8,7,9,6,10,3,2,4,1,5] => ?
=> ? = 1 - 1
[[[],[[],[]]],[[[],[]],[]]]
=> [[.,[[.,[.,.]],.]],[[[.,[.,.]],[.,.]],.]]
=> [9,7,6,8,10,3,2,4,1,5] => ?
=> ? = 1 - 1
[[[[],[]],[]],[[],[[],[]]]]
=> [[[.,[.,.]],[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [8,7,9,6,10,4,2,1,3,5] => ?
=> ? = 1 - 1
[[[[],[]],[]],[[[],[]],[]]]
=> [[[.,[.,.]],[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [9,7,6,8,10,4,2,1,3,5] => ?
=> ? = 1 - 1
[[[],[[],[[],[]]]],[[],[]]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[[.,[.,.]],.]]
=> [9,8,10,4,3,5,2,6,1,7] => ?
=> ? = 1 - 1
[[[],[[[],[]],[]]],[[],[]]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[[.,[.,.]],.]]
=> [9,8,10,5,3,2,4,6,1,7] => ?
=> ? = 1 - 1
[[[[],[]],[[],[]]],[[],[]]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [9,8,10,5,4,6,2,1,3,7] => ?
=> ? = 1 - 1
[[[[],[[],[]]],[]],[[],[]]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[[.,[.,.]],.]]
=> [9,8,10,6,3,2,4,1,5,7] => ?
=> ? = 1 - 1
[[[[[],[]],[]],[]],[[],[]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[[.,[.,.]],.]]
=> [9,8,10,6,4,2,1,3,5,7] => ?
=> ? = 1 - 1
[[[],[[],[[],[[],[]]]]],[]]
=> [[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],[.,.]]
=> [10,5,4,6,3,7,2,8,1,9] => ?
=> ? = 1 - 1
[[[],[[],[[[],[]],[]]]],[]]
=> [[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],[.,.]]
=> [10,6,4,3,5,7,2,8,1,9] => ?
=> ? = 1 - 1
[[[],[[[],[]],[[],[]]]],[]]
=> [[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],[.,.]]
=> [10,6,5,7,3,2,4,8,1,9] => ?
=> ? = 1 - 1
[[[],[[[],[[],[]]],[]]],[]]
=> [[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],[.,.]]
=> [10,7,4,3,5,2,6,8,1,9] => ?
=> ? = 1 - 1
[[[],[[[[],[]],[]],[]]],[]]
=> [[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],[.,.]]
=> [10,7,5,3,2,4,6,8,1,9] => ?
=> ? = 1 - 1
[[[[],[]],[[],[[],[]]]],[]]
=> [[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [10,6,5,7,4,8,2,1,3,9] => ?
=> ? = 1 - 1
[[[[],[]],[[[],[]],[]]],[]]
=> [[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [10,7,5,4,6,8,2,1,3,9] => ?
=> ? = 1 - 1
Description
The number of isolated vertices of a graph.
Matching statistic: St000461
Mp00050: Ordered trees —to binary tree: right brother = right child⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000461: Permutations ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000461: Permutations ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[]
=> .
=> ? => ? => ? = 1 - 1
[[]]
=> [.,.]
=> [1] => [1] => ? = 2 - 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => [2,1] => 0 = 1 - 1
[[[]]]
=> [[.,.],.]
=> [1,2] => [1,2] => 2 = 3 - 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 0 = 1 - 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => 0 = 1 - 1
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => [3,2,1] => 0 = 1 - 1
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 1 = 2 - 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 3 = 4 - 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,3,2,1] => 0 = 1 - 1
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,3,2,1] => 0 = 1 - 1
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,2,3,1] => 0 = 1 - 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => 0 = 1 - 1
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,2,1] => 0 = 1 - 1
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [4,3,2,1] => 0 = 1 - 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,3,2,1] => 0 = 1 - 1
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,2,3,1] => 0 = 1 - 1
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => 1 = 2 - 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,2,1,4] => 1 = 2 - 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 2 = 3 - 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 4 = 5 - 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,4,3,2,1] => 0 = 1 - 1
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,3,2,4,1] => 0 = 1 - 1
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,3,2,4,1] => 0 = 1 - 1
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [5,3,2,4,1] => 0 = 1 - 1
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,2,3,4,1] => 0 = 1 - 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => 0 = 1 - 1
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [5,4,3,2,1] => 0 = 1 - 1
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [5,4,3,2,1] => 0 = 1 - 1
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5,4,3,2,1] => 0 = 1 - 1
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [5,4,3,2,1] => 0 = 1 - 1
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [5,4,3,2,1] => 0 = 1 - 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5,4,3,2,1] => 0 = 1 - 1
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [5,4,3,2,1] => 0 = 1 - 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [5,4,3,2,1] => 0 = 1 - 1
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [5,4,3,2,1] => 0 = 1 - 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [5,4,3,2,1] => 0 = 1 - 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [5,4,3,2,1] => 0 = 1 - 1
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5,4,3,2,1] => 0 = 1 - 1
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [5,3,2,4,1] => 0 = 1 - 1
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5,2,3,4,1] => 0 = 1 - 1
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1 = 2 - 1
[[],[[],[[],[[],[]]]]]
=> [.,[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [5,4,6,3,7,2,8,1] => [8,6,4,3,5,2,7,1] => ? = 1 - 1
[[],[[],[[[],[]],[]]]]
=> [.,[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [6,4,3,5,7,2,8,1] => [8,6,4,3,5,2,7,1] => ? = 1 - 1
[[],[[[],[]],[[],[]]]]
=> [.,[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [6,5,7,3,2,4,8,1] => [8,6,5,4,3,2,7,1] => ? = 1 - 1
[[],[[[],[[],[]]],[]]]
=> [.,[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [7,4,3,5,2,6,8,1] => [8,6,5,4,3,2,7,1] => ? = 1 - 1
[[],[[[[],[]],[]],[]]]
=> [.,[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [7,5,3,2,4,6,8,1] => [8,6,5,4,3,2,7,1] => ? = 1 - 1
[[[],[]],[[],[[],[]]]]
=> [[.,[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [6,5,7,4,8,2,1,3] => [8,7,6,4,5,3,2,1] => ? = 1 - 1
[[[],[]],[[[],[]],[]]]
=> [[.,[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [7,5,4,6,8,2,1,3] => [8,7,6,4,5,3,2,1] => ? = 1 - 1
[[[],[[],[]]],[[],[]]]
=> [[.,[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [7,6,8,3,2,4,1,5] => ? => ? = 1 - 1
[[[[],[]],[]],[[],[]]]
=> [[[.,[.,.]],[.,.]],[[.,[.,.]],.]]
=> [7,6,8,4,2,1,3,5] => ? => ? = 1 - 1
[[[],[[],[[],[]]]],[]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [8,4,3,5,2,6,1,7] => [8,7,5,4,3,6,2,1] => ? = 1 - 1
[[[],[[[],[]],[]]],[]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[.,.]]
=> [8,5,3,2,4,6,1,7] => [8,7,5,4,3,6,2,1] => ? = 1 - 1
[[[[],[]],[[],[]]],[]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[.,.]]
=> [8,5,4,6,2,1,3,7] => ? => ? = 1 - 1
[[[[],[[],[]]],[]],[]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[.,.]]
=> [8,6,3,2,4,1,5,7] => [8,7,6,4,5,3,2,1] => ? = 1 - 1
[[[[[],[]],[]],[]],[]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
=> [8,6,4,2,1,3,5,7] => [8,7,6,5,4,3,2,1] => ? = 1 - 1
[[],[[],[[],[[],[[],[]]]]]]
=> [.,[[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],.]]
=> [6,5,7,4,8,3,9,2,10,1] => [10,8,6,4,5,3,7,2,9,1] => ? = 1 - 1
[[],[[],[[],[[[],[]],[]]]]]
=> [.,[[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],.]]
=> [7,5,4,6,8,3,9,2,10,1] => ? => ? = 1 - 1
[[],[[],[[[],[]],[[],[]]]]]
=> [.,[[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],.]]
=> [7,6,8,4,3,5,9,2,10,1] => ? => ? = 1 - 1
[[],[[],[[[],[[],[]]],[]]]]
=> [.,[[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],.]]
=> [8,5,4,6,3,7,9,2,10,1] => ? => ? = 1 - 1
[[],[[],[[[[],[]],[]],[]]]]
=> [.,[[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],.]]
=> [8,6,4,3,5,7,9,2,10,1] => ? => ? = 1 - 1
[[],[[[],[]],[[],[[],[]]]]]
=> [.,[[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],.]]
=> [7,6,8,5,9,3,2,4,10,1] => ? => ? = 1 - 1
[[],[[[],[]],[[[],[]],[]]]]
=> [.,[[[.,[.,.]],[[[.,[.,.]],[.,.]],.]],.]]
=> [8,6,5,7,9,3,2,4,10,1] => ? => ? = 1 - 1
[[],[[[],[[],[]]],[[],[]]]]
=> [.,[[[.,[[.,[.,.]],.]],[[.,[.,.]],.]],.]]
=> [8,7,9,4,3,5,2,6,10,1] => ? => ? = 1 - 1
[[],[[[[],[]],[]],[[],[]]]]
=> [.,[[[[.,[.,.]],[.,.]],[[.,[.,.]],.]],.]]
=> [8,7,9,5,3,2,4,6,10,1] => ? => ? = 1 - 1
[[],[[[],[[],[[],[]]]],[]]]
=> [.,[[[.,[[.,[[.,[.,.]],.]],.]],[.,.]],.]]
=> [9,5,4,6,3,7,2,8,10,1] => ? => ? = 1 - 1
[[],[[[],[[[],[]],[]]],[]]]
=> [.,[[[.,[[[.,[.,.]],[.,.]],.]],[.,.]],.]]
=> [9,6,4,3,5,7,2,8,10,1] => ? => ? = 1 - 1
[[],[[[[],[]],[[],[]]],[]]]
=> [.,[[[[.,[.,.]],[[.,[.,.]],.]],[.,.]],.]]
=> [9,6,5,7,3,2,4,8,10,1] => ? => ? = 1 - 1
[[],[[[[],[[],[]]],[]],[]]]
=> [.,[[[[.,[[.,[.,.]],.]],[.,.]],[.,.]],.]]
=> [9,7,4,3,5,2,6,8,10,1] => ? => ? = 1 - 1
[[],[[[[[],[]],[]],[]],[]]]
=> [.,[[[[[.,[.,.]],[.,.]],[.,.]],[.,.]],.]]
=> [9,7,5,3,2,4,6,8,10,1] => ? => ? = 1 - 1
[[[],[]],[[],[[],[[],[]]]]]
=> [[.,[.,.]],[[.,[[.,[[.,[.,.]],.]],.]],.]]
=> [7,6,8,5,9,4,10,2,1,3] => ? => ? = 1 - 1
[[[],[]],[[],[[[],[]],[]]]]
=> [[.,[.,.]],[[.,[[[.,[.,.]],[.,.]],.]],.]]
=> [8,6,5,7,9,4,10,2,1,3] => ? => ? = 1 - 1
[[[],[]],[[[],[]],[[],[]]]]
=> [[.,[.,.]],[[[.,[.,.]],[[.,[.,.]],.]],.]]
=> [8,7,9,5,4,6,10,2,1,3] => ? => ? = 1 - 1
[[[],[]],[[[],[[],[]]],[]]]
=> [[.,[.,.]],[[[.,[[.,[.,.]],.]],[.,.]],.]]
=> [9,6,5,7,4,8,10,2,1,3] => ? => ? = 1 - 1
[[[],[]],[[[[],[]],[]],[]]]
=> [[.,[.,.]],[[[[.,[.,.]],[.,.]],[.,.]],.]]
=> [9,7,5,4,6,8,10,2,1,3] => ? => ? = 1 - 1
[[[],[[],[]]],[[],[[],[]]]]
=> [[.,[[.,[.,.]],.]],[[.,[[.,[.,.]],.]],.]]
=> [8,7,9,6,10,3,2,4,1,5] => ? => ? = 1 - 1
[[[],[[],[]]],[[[],[]],[]]]
=> [[.,[[.,[.,.]],.]],[[[.,[.,.]],[.,.]],.]]
=> [9,7,6,8,10,3,2,4,1,5] => ? => ? = 1 - 1
[[[[],[]],[]],[[],[[],[]]]]
=> [[[.,[.,.]],[.,.]],[[.,[[.,[.,.]],.]],.]]
=> [8,7,9,6,10,4,2,1,3,5] => ? => ? = 1 - 1
[[[[],[]],[]],[[[],[]],[]]]
=> [[[.,[.,.]],[.,.]],[[[.,[.,.]],[.,.]],.]]
=> [9,7,6,8,10,4,2,1,3,5] => ? => ? = 1 - 1
[[[],[[],[[],[]]]],[[],[]]]
=> [[.,[[.,[[.,[.,.]],.]],.]],[[.,[.,.]],.]]
=> [9,8,10,4,3,5,2,6,1,7] => ? => ? = 1 - 1
[[[],[[[],[]],[]]],[[],[]]]
=> [[.,[[[.,[.,.]],[.,.]],.]],[[.,[.,.]],.]]
=> [9,8,10,5,3,2,4,6,1,7] => ? => ? = 1 - 1
[[[[],[]],[[],[]]],[[],[]]]
=> [[[.,[.,.]],[[.,[.,.]],.]],[[.,[.,.]],.]]
=> [9,8,10,5,4,6,2,1,3,7] => ? => ? = 1 - 1
[[[[],[[],[]]],[]],[[],[]]]
=> [[[.,[[.,[.,.]],.]],[.,.]],[[.,[.,.]],.]]
=> [9,8,10,6,3,2,4,1,5,7] => ? => ? = 1 - 1
[[[[[],[]],[]],[]],[[],[]]]
=> [[[[.,[.,.]],[.,.]],[.,.]],[[.,[.,.]],.]]
=> [9,8,10,6,4,2,1,3,5,7] => ? => ? = 1 - 1
[[[],[[],[[],[[],[]]]]],[]]
=> [[.,[[.,[[.,[[.,[.,.]],.]],.]],.]],[.,.]]
=> [10,5,4,6,3,7,2,8,1,9] => ? => ? = 1 - 1
[[[],[[],[[[],[]],[]]]],[]]
=> [[.,[[.,[[[.,[.,.]],[.,.]],.]],.]],[.,.]]
=> [10,6,4,3,5,7,2,8,1,9] => ? => ? = 1 - 1
[[[],[[[],[]],[[],[]]]],[]]
=> [[.,[[[.,[.,.]],[[.,[.,.]],.]],.]],[.,.]]
=> [10,6,5,7,3,2,4,8,1,9] => ? => ? = 1 - 1
[[[],[[[],[[],[]]],[]]],[]]
=> [[.,[[[.,[[.,[.,.]],.]],[.,.]],.]],[.,.]]
=> [10,7,4,3,5,2,6,8,1,9] => ? => ? = 1 - 1
[[[],[[[[],[]],[]],[]]],[]]
=> [[.,[[[[.,[.,.]],[.,.]],[.,.]],.]],[.,.]]
=> [10,7,5,3,2,4,6,8,1,9] => ? => ? = 1 - 1
[[[[],[]],[[],[[],[]]]],[]]
=> [[[.,[.,.]],[[.,[[.,[.,.]],.]],.]],[.,.]]
=> [10,6,5,7,4,8,2,1,3,9] => ? => ? = 1 - 1
Description
The rix statistic of a permutation.
This statistic is defined recursively as follows: $rix([]) = 0$, and if $w_i = \max\{w_1, w_2,\dots, w_k\}$, then
$rix(w) := 0$ if $i = 1 < k$,
$rix(w) := 1 + rix(w_1,w_2,\dots,w_{k−1})$ if $i = k$ and
$rix(w) := rix(w_{i+1},w_{i+2},\dots,w_k)$ if $1 < i < k$.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000674The number of hills of a Dyck path. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St000993The multiplicity of the largest part of an integer partition. St000264The girth of a graph, which is not a tree. St001826The maximal number of leaves on a vertex of a graph. St001672The restrained domination number of a graph. St001479The number of bridges of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!