searching the database
Your data matches 176 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000071
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1
Description
The number of maximal chains in a poset.
Matching statistic: St000147
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [1,1,1,1,1,1,1,1]
=> 1
Description
The largest part of an integer partition.
Matching statistic: St000345
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [1,1,1,1,1,1,1,1]
=> 1
Description
The number of refinements of a partition.
A partition λ refines a partition μ if the parts of μ can be subdivided to obtain the parts of λ.
Matching statistic: St000533
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [1,1,1,1,1,1,1,1]
=> 1
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000757
Values
([],1)
=> ([],1)
=> ([],1)
=> [1] => 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [2] => 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [3] => 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1,4] => 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1,4] => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [1,5] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [6] => 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [7] => 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [8] => 1
Description
The length of the longest weakly inreasing subsequence of parts of an integer composition.
Matching statistic: St000765
Values
([],1)
=> ([],1)
=> ([],1)
=> [1] => 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [2] => 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [3] => 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1,4] => 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1,4] => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [1,5] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [6] => 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [7] => 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [8] => 1
Description
The number of weak records in an integer composition.
A weak record is an element ai such that ai≥aj for all j<i.
Matching statistic: St000820
Values
([],1)
=> ([],1)
=> ([],1)
=> [1] => 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [2] => 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [3] => 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1,4] => 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1,4] => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [1,5] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [6] => 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [7] => 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [8] => 1
Description
The number of compositions obtained by rotating the composition.
Matching statistic: St000909
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 1
Description
The number of maximal chains of maximal size in a poset.
Matching statistic: St000935
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [1,1,1,1,1,1,1,1]
=> 1
Description
The number of ordered refinements of an integer partition.
This is, for an integer partition μ=(μ1,…,μn) the number of integer partition λ=(λ1,…,λm) such that there are indices 1=a0<…<an=m with μj=λaj−1+…+λaj−1.
Matching statistic: St001389
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [1,1,1,1,1,1,1,1]
=> 1
Description
The number of partitions of the same length below the given integer partition.
For a partition λ1≥…λk>0, this number is
\det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.
The following 166 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001924The number of cells in an integer partition whose arm and leg length coincide. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001214The aft of an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000100The number of linear extensions of a poset. St000088The row sums of the character table of the symmetric group. St000184The size of the centralizer of any permutation of given cycle type. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000228The size of a partition. St000321The number of integer partitions of n that are dominated by an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000388The number of orbits of vertices of a graph under automorphisms. St000453The number of distinct Laplacian eigenvalues of a graph. St000459The hook length of the base cell of a partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000468The Hosoya index of a graph. St000531The leading coefficient of the rook polynomial of an integer partition. St000667The greatest common divisor of the parts of the partition. St000784The maximum of the length and the largest part of the integer partition. St000812The sum of the entries in the column specified by the partition of the change of basis matrix from complete homogeneous symmetric functions to monomial symmetric functions. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000992The alternating sum of the parts of an integer partition. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001093The detour number of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001360The number of covering relations in Young's lattice below a partition. St001367The smallest number which does not occur as degree of a vertex in a graph. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001612The number of coloured multisets of cycles such that the multiplicities of colours are given by a partition. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001674The number of vertices of the largest induced star graph in the graph. St001725The harmonious chromatic number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000063The number of linear extensions of a certain poset defined for an integer partition. St000081The number of edges of a graph. St000108The number of partitions contained in the given partition. St000145The Dyson rank of a partition. St000171The degree of the graph. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000532The total number of rook placements on a Ferrers board. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001120The length of a longest path in a graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001341The number of edges in the center of a graph. St001382The number of boxes in the diagram of a partition that do not lie in its Durfee square. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St001479The number of bridges of a graph. St001512The minimum rank of a graph. St001814The number of partitions interlacing the given partition. St001826The maximal number of leaves on a vertex of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000010The length of the partition. St000148The number of odd parts of a partition. St000160The multiplicity of the smallest part of a partition. St000346The number of coarsenings of a partition. St000475The number of parts equal to 1 in a partition. St000548The number of different non-empty partial sums of an integer partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000867The sum of the hook lengths in the first row of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001127The sum of the squares of the parts of a partition. St001128The exponens consonantiae of a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000377The dinv defect of an integer partition. St000448The number of pairs of vertices of a graph with distance 2. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001091The number of parts in an integer partition whose next smaller part has the same size. St001176The size of a partition minus its first part. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001268The size of the largest ordinal summand in the poset. St001779The order of promotion on the set of linear extensions of a poset. St001397Number of pairs of incomparable elements in a finite poset. St000086The number of subgraphs. St000299The number of nonisomorphic vertex-induced subtrees. St000454The largest eigenvalue of a graph if it is integral. St001117The game chromatic index of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001649The length of a longest trail in a graph. St001742The difference of the maximal and the minimal degree in a graph. St001869The maximum cut size of a graph. St000456The monochromatic index of a connected graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001319The minimal number of occurrences of the star-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001877Number of indecomposable injective modules with projective dimension 2. St000849The number of 1/3-balanced pairs in a poset. St000455The second largest eigenvalue of a graph if it is integral. St001624The breadth of a lattice. St000450The number of edges minus the number of vertices plus 2 of a graph. St000095The number of triangles of a graph. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000632The jump number of the poset. St000307The number of rowmotion orbits of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001271The competition number of a graph. St001399The distinguishing number of a poset. St001645The pebbling number of a connected graph. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000741The Colin de Verdière graph invariant. St000848The balance constant multiplied with the number of linear extensions of a poset. St000850The number of 1/2-balanced pairs in a poset. St001330The hat guessing number of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000477The weight of a partition according to Alladi. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000937The number of positive values of the symmetric group character corresponding to the partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000478Another weight of a partition according to Alladi. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000939The number of characters of the symmetric group whose value on the partition is positive. St001118The acyclic chromatic index of a graph. St000264The girth of a graph, which is not a tree. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000928The sum of the coefficients of the character polynomial of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001964The interval resolution global dimension of a poset. St000941The number of characters of the symmetric group whose value on the partition is even. St000181The number of connected components of the Hasse diagram for the poset. St000635The number of strictly order preserving maps of a poset into itself. St001890The maximum magnitude of the Möbius function of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!