searching the database
Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000941
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000941: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000941: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 0
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 0
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 0
Description
The number of characters of the symmetric group whose value on the partition is even.
Matching statistic: St001232
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 29% ●values known / values provided: 29%●distinct values known / distinct values provided: 33%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 29% ●values known / values provided: 29%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 3
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 3
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 3
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3},{4},{5,6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 3
{{1,4,5},{2},{3},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2,5},{3,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,4},{2,5},{3},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2,6},{3,5}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,4},{2},{3,5},{6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2,6},{3},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2},{3,6},{5}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2},{3},{5,6}}
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 3
{{1,5},{2,4},{3,6}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,5},{2,6},{3,4}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,6},{2,5},{3,4}}
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,3},{4,5},{6,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,3},{4,6},{5,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,3},{4,7},{5,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,4},{3,5},{6,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,4},{3,6},{5,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,4},{3,7},{5,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,5},{3,4},{6,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,4,5},{6,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,6},{3,4},{5,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,4,6},{5,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,7},{3,4},{5,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,4,7},{5,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,4},{5,6,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,4},{5,6},{7}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3,4},{5,7},{6}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3,4},{5},{6,7}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2,5},{3,6},{4,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,5},{3,7},{4,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,6},{3,5},{4,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,5,6},{4,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,7},{3,5},{4,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,5,7},{4,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,5},{4,6,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,5},{4,6},{7}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3,5},{4,7},{6}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3,5},{4},{6,7}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2,6},{3,7},{4,5}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2,7},{3,6},{4,5}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,6,7},{4,5}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,6},{4,5,7}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,6},{4,5},{7}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3,7},{4,5,6}}
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 0 + 3
{{1,2},{3,7},{4,5},{6}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3},{4,5},{6,7}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
{{1,2},{3,6},{4,7},{5}}
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 1 + 3
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000689
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000689: Dyck paths ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 33%
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000689: Dyck paths ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1},{2,3},{4},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
{{1,4,5},{2},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,4},{2,5},{3,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,4},{2,5},{3},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,4},{2,6},{3,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
{{1,4},{2},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
{{1,4},{2,6},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,4},{2},{3,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,4},{2},{3},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
{{1,4},{2},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3},{4},{5,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3},{4},{5,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3},{4},{5},{6,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,4},{3},{5,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,4},{3},{5,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,4},{3},{5},{6,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3,4,5},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3,4,6},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3,4,7},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,5},{3},{4,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,5},{3,7},{4},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,5},{3},{4,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,5},{3},{4},{6,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,6},{3,5},{4},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3,5,6},{4},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,7},{3,5},{4},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3,5,7},{4},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,6},{3},{4,5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3},{4,5,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,7},{3},{4,5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3},{4,5,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,6},{3,7},{4},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,6},{3},{4,7},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,6},{3},{4},{5,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,7},{3,6},{4},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3,6,7},{4},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2,7},{3},{4,6},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
{{1,2},{3},{4,6,7},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
Description
The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid.
The correspondence between LNakayama algebras and Dyck paths is explained in [[St000684]]. A module M is n-rigid, if Exti(M,M)=0 for 1≤i≤n.
This statistic gives the maximal n such that the minimal generator-cogenerator module A⊕D(A) of the LNakayama algebra A corresponding to a Dyck path is n-rigid.
An application is to check for maximal n-orthogonal objects in the module category in the sense of [2].
Matching statistic: St001200
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 33%
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 0 + 3
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 1 + 3
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 3
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 3
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1},{2,3},{4},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 3
{{1,4,5},{2},{3},{6}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,4},{2,5},{3,6}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2,5},{3},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,4},{2,6},{3,5}}
=> [2,2,2]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 3
{{1,4},{2},{3,5},{6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 3
{{1,4},{2,6},{3},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,4},{2},{3,6},{5}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,4},{2},{3},{5,6}}
=> [2,2,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 3
{{1,4},{2},{3},{5},{6}}
=> [2,1,1,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 3
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,3},{4},{5,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,3},{4},{5,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,3},{4},{5},{6,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,4},{3},{5,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,4},{3},{5,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,4},{3},{5},{6,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3,4,5},{6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3,4,6},{5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3,4,7},{5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,5},{3},{4,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,5},{3,7},{4},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,5},{3},{4,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,5},{3},{4},{6,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,6},{3,5},{4},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3,5,6},{4},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,7},{3,5},{4},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3,5,7},{4},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,6},{3},{4,5},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3},{4,5,6},{7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,7},{3},{4,5},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3},{4,5,7},{6}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,6},{3,7},{4},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,6},{3},{4,7},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,6},{3},{4},{5,7}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,7},{3,6},{4},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3,6,7},{4},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2,7},{3},{4,6},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
{{1,2},{3},{4,6,7},{5}}
=> [3,2,1,1]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 0 + 3
Description
The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St000370
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St000370: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St000370: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,3},{2},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,4},{2,3},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,3,4},{5},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,5},{2,3},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,3,5},{4},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,6},{2,3},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
{{1},{2,3},{4,5},{6}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,3,6},{4},{5}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1},{2,3},{4,6},{5}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,3},{4},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
{{1,2,4,5},{3},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4,6},{3},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4,7},{3},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,4},{3},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
{{1,2,5},{3,4},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4,5},{6,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4,5},{6},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,6},{3,4},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4,6},{5,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4,6},{5},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,7},{3,4},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4,7},{5,6}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4},{5,6,7}}
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4},{5,6},{7}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4,7},{5},{6}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2},{3,4},{5,7},{6}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
{{1,2},{3,4},{5},{6,7}}
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
{{1,2},{3,4},{5},{6},{7}}
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
{{1,2,5,6},{3},{4},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,5},{3,6},{4,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,5},{3,7},{4,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,5},{3},{4,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
{{1,2,5,7},{3},{4},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0
Description
The genus of a graph.
This is the smallest genus of an oriented surface on which the graph can be embedded without crossings. One can indeed compute the genus as the sum of the genuses for the connected components.
Matching statistic: St001728
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001728: Permutations ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001728: Permutations ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1 = 0 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => 1 = 0 + 1
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 2 = 1 + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 2 = 1 + 1
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => 2 = 1 + 1
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 1 = 0 + 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => 1 = 0 + 1
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => 1 = 0 + 1
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,3},{4,5},{6,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,3},{4,6},{5,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,3},{4,7},{5,6}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,3},{4},{5,6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,3},{4},{5,7},{6}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,3},{4},{5},{6,7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,3},{4},{5},{6},{7}}
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1 + 1
{{1,2,4,5},{3},{6},{7}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,4},{3,5},{6,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,4,6},{3},{5},{7}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,4},{3,6},{5,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,4},{3,7},{5,6}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,4},{3},{5,6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,4,7},{3},{5},{6}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,4},{3},{5,7},{6}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,4},{3},{5},{6,7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,4},{3},{5},{6},{7}}
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => ? = 1 + 1
{{1,2,5},{3,4},{6,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2},{3,4,5},{6,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2},{3,4,5},{6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,6},{3,4},{5,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2},{3,4,6},{5,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2},{3,4,6},{5},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,7},{3,4},{5,6}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2},{3,4,7},{5,6}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2},{3,4},{5,6,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2},{3,4},{5,6},{7}}
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2},{3,4,7},{5},{6}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2},{3,4},{5,7},{6}}
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
{{1,2},{3,4},{5},{6,7}}
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => ? = 1 + 1
{{1,2},{3,4},{5},{6},{7}}
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => ? = 1 + 1
{{1,2,5,6},{3},{4},{7}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
{{1,2,5},{3,6},{4,7}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,5},{3,7},{4,6}}
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ? = 0 + 1
{{1,2,5},{3},{4,6},{7}}
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => ? = 0 + 1
{{1,2,5,7},{3},{4},{6}}
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => ? = 0 + 1
Description
The number of invisible descents of a permutation.
A visible descent of a permutation π is a position i such that π(i+1)≤min. Thus, an invisible descent satisfies \pi(i) > \pi(i+1) > i.
Matching statistic: St001345
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001345: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001345: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,4},{2,3},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,4},{5},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,5},{2,3},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,5},{4},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,6},{2,3},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1},{2,3},{4,5},{6}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,6},{4},{5}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3},{4,6},{5}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,4,5},{3},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4,6},{3},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4,7},{3},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,5},{3,4},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,5},{6,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,5},{6},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,6},{3,4},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,6},{5,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,6},{5},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,7},{3,4},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,7},{5,6}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,6,7}}
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,6},{7}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,7},{5},{6}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,7},{6}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2},{3,4},{5},{6,7}}
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2},{3,4},{5},{6},{7}}
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,5,6},{3},{4},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,6},{4,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,7},{4,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3},{4,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5,7},{3},{4},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
Description
The Hamming dimension of a graph.
Let H(n, k) be the graph whose vertices are the subsets of \{1,\dots,n\}, and (u,v) being an edge, for u\neq v, if the symmetric difference of u and v has cardinality at most k.
This statistic is the smallest n such that the graph is an induced subgraph of H(n, k) for some k.
Matching statistic: St001716
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001716: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001716: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,4},{2,3},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,4},{5},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,5},{2,3},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,5},{4},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,6},{2,3},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1},{2,3},{4,5},{6}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,6},{4},{5}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3},{4,6},{5}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,4,5},{3},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4,6},{3},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4,7},{3},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,5},{3,4},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,5},{6,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,5},{6},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,6},{3,4},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,6},{5,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,6},{5},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,7},{3,4},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,7},{5,6}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,6,7}}
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,6},{7}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,7},{5},{6}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,7},{6}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2},{3,4},{5},{6,7}}
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2},{3,4},{5},{6},{7}}
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,5,6},{3},{4},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,6},{4,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,7},{4,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3},{4,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5,7},{3},{4},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
Description
The 1-improper chromatic number of a graph.
This is the least number of colours in a vertex-colouring, such that each vertex has at most one neighbour with the same colour.
Matching statistic: St001792
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001792: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00154: Graphs —core⟶ Graphs
St001792: Graphs ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 33%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,4},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,5},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,6},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,3},{2},{4,5},{6}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4,6},{5}}
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5,6}}
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
{{1,4},{2,3},{5,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,4},{5},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,5},{2,3},{4,6}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,5},{4},{6}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,6},{2,3},{4,5}}
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 0 + 2
{{1},{2,3},{4,5},{6}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3,6},{4},{5}}
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2,3},{4,6},{5}}
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,3},{4},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,4,5},{3},{6},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,5},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,5},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4,6},{3},{5},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,6},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,6},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,7},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4,7},{3},{5},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3,7},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5,7},{6}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5},{6,7}}
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,4},{3},{5},{6},{7}}
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,5},{3,4},{6,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,4},{6},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,5},{6,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,5},{6},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,6},{3,4},{5,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,6},{3,4},{5},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,6},{5,7}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,6},{5},{7}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,7},{3,4},{5,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,7},{5,6}}
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,6,7}}
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,6},{7}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,7},{3,4},{5},{6}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4,7},{5},{6}}
=> [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2},{3,4},{5,7},{6}}
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2},{3,4},{5},{6,7}}
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2},{3,4},{5},{6},{7}}
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
{{1,2,5,6},{3},{4},{7}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,6},{4,7}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,6},{4},{7}}
=> [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3,7},{4,6}}
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5},{3},{4,6},{7}}
=> [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
{{1,2,5,7},{3},{4},{6}}
=> [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 2
Description
The arboricity of a graph.
This is the minimum number of forests that covers all edges of the graph.
Matching statistic: St001645
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 17%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 17%
Values
{{1},{2},{3},{4}}
=> [1,1,1,1] => [4] => ([],4)
=> ? = 0 + 7
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 7
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 0 + 7
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 7
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => [1,4] => ([(3,4)],5)
=> ? = 0 + 7
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => [5] => ([],5)
=> ? = 1 + 7
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3,4},{5,6}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3,5},{4,6}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3,6},{4,5}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3},{4,5},{6}}
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3},{4,6},{5}}
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3},{4},{5,6}}
=> [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 7
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2,4},{5,6}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2,5},{4,6}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2,6},{4,5}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2},{4,5},{6}}
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2},{4,6},{5}}
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2},{4},{5,6}}
=> [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 7
{{1,4},{2,3},{5,6}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1},{2,3,4},{5},{6}}
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,5},{2,3},{4,6}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1},{2,3,5},{4},{6}}
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,6},{2,3},{4,5}}
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1},{2,3},{4,5},{6}}
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1},{2,3,6},{4},{5}}
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1},{2,3},{4,6},{5}}
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 7
{{1,2,3,4},{5},{6},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,3,5},{4},{6},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,3,6},{4},{5},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,3,7},{4},{5},{6}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,4,5},{3},{6},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,4,6},{3},{5},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,4,7},{3},{5},{6}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,5,6},{3},{4},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,5,7},{3},{4},{6}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,2,6,7},{3},{4},{5}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,3,4,5},{2},{6},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,3,4,6},{2},{5},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,3,4,7},{2},{5},{6}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,3,5,6},{2},{4},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,3,5,7},{2},{4},{6}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,3,6,7},{2},{4},{5}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,4,5,6},{2},{3},{7}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,4,5,7},{2},{3},{6}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,4,6,7},{2},{3},{5}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
{{1,5,6,7},{2},{3},{4}}
=> [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 0 + 7
Description
The pebbling number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!