searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001012
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
St001012: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 3
[1,1,0,0]
=> 3
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 5
[1,1,0,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 5
[1,1,1,0,0,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> 5
[1,1,1,0,1,0,0,0]
=> 5
[1,1,1,1,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> 6
Description
Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000676
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000676: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000676: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
Description
The number of odd rises of a Dyck path.
This is the number of ones at an odd position, with the initial position equal to 1.
The number of Dyck paths of semilength $n$ with $k$ up steps in odd positions and $k$ returns to the main diagonal are counted by the binomial coefficient $\binom{n-1}{k-1}$ [3,4].
Matching statistic: St001318
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001318: Graphs ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001318: Graphs ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1 = 2 - 1
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 3 - 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => [6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [7,5,4,3,2,1,6] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,4,6,1,7,5] => [7,6,4,3,2,1,5] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,3,5,1,6,7,4] => [7,6,5,3,2,1,4] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,4,1,5,6,7,3] => [7,6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,4,5,1,6,7,3] => [7,6,5,2,1,4,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,5,6,7,2] => [7,6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,4,1,5,6,7,2] => [7,6,5,4,1,3,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,5,1,6,7,2] => [7,6,5,1,4,3,2] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,6,1,7,2] => [7,6,1,5,4,3,2] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,1,2] => [7,1,6,5,4,3,2] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
Description
The number of vertices of the largest induced subforest with the same number of connected components of a graph.
Matching statistic: St001004
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [4,3,2,1,6,7,5] => ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => ? = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 6 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [3,2,1,6,5,7,4] => ? = 6 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,3,2,7,6,5,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,3,2,6,5,1,7] => ? = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [4,3,2,5,1,7,6] => ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [4,3,2,6,5,7,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,4,3,6,2,7,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,3,2,5,1,6,7] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [3,2,1,5,7,6,4] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,2,1,6,7,5,4] => ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [3,2,1,5,6,4,7] => ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [4,3,2,5,7,6,1] => ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [4,3,2,6,7,5,1] => ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,1,7] => ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [3,2,1,4,6,7,5] => ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [3,2,1,5,6,7,4] => ? = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 6 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,5,4,7,3] => ? = 6 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 8 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,4,7,6,3] => ? = 6 - 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,5,7,4,3] => ? = 6 - 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => ? = 7 - 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 8 - 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => ? = 8 - 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,4,6,7,3] => ? = 7 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 8 - 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => ? = 4 - 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,2,6,5,4,1,7] => ? = 5 - 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [3,2,5,4,1,7,6] => ? = 6 - 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => ? = 5 - 1
Description
The number of indices that are either left-to-right maxima or right-to-left minima.
The (bivariate) generating function for this statistic is (essentially) given in [1], the mid points of a $321$ pattern in the permutation are those elements which are neither left-to-right maxima nor a right-to-left minima, see [[St000371]] and [[St000372]].
Matching statistic: St001068
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 7
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 6
Description
Number of torsionless simple modules in the corresponding Nakayama algebra.
Matching statistic: St000053
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 6 - 1
Description
The number of valleys of the Dyck path.
Matching statistic: St001499
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 7 - 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 - 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 6 - 1
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra.
We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Matching statistic: St001880
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00140: Dyck paths —logarithmic height to pruning number⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Mp00140: Dyck paths —logarithmic height to pruning number⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1,0]
=> [.,.]
=> ([],1)
=> ? = 2 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 3 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 5 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [[.,.],[.,[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 7 - 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00140: Dyck paths —logarithmic height to pruning number⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Mp00140: Dyck paths —logarithmic height to pruning number⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1,0]
=> [.,.]
=> ([],1)
=> ? = 2 - 2
[1,0,1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 3 - 2
[1,1,0,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ? = 3 - 2
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 3 - 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 2
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 5 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 4 - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 6 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 5 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4 - 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 4 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [[.,.],[.,[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 7 - 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St000015
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000015: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 71%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St000015: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 5
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 5
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 5
Description
The number of peaks of a Dyck path.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!