Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001091
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001091: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 0
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 2
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 0
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 0
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 3
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 0
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 0
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 4
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 0
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
Description
The number of parts in an integer partition whose next smaller part has the same size. In other words, this is the number of distinct parts subtracted from the number of all parts.
Matching statistic: St000160
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000160: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 1 = 0 + 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2 = 1 + 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 0 + 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3 = 2 + 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4 = 3 + 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3 = 2 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5 = 4 + 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
Description
The multiplicity of the smallest part of a partition. This counts the number of occurrences of the smallest part $spt(\lambda)$ of a partition $\lambda$. The sum $spt(n) = \sum_{\lambda \vdash n} spt(\lambda)$ satisfies the congruences \begin{align*} spt(5n+4) &\equiv 0\quad \pmod{5}\\\ spt(7n+5) &\equiv 0\quad \pmod{7}\\\ spt(13n+6) &\equiv 0\quad \pmod{13}, \end{align*} analogous to those of the counting function of partitions, see [1] and [2].
Matching statistic: St000475
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 1 = 0 + 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2 = 1 + 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 0 + 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3 = 2 + 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4 = 3 + 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3 = 2 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5 = 4 + 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
Description
The number of parts equal to 1 in a partition.
Matching statistic: St001933
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001933: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[]
=> ([],1)
=> ([],1)
=> [1]
=> 1 = 0 + 1
[[]]
=> ([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2 = 1 + 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 0 + 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3 = 2 + 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 1 = 0 + 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4 = 3 + 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 0 + 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2 = 1 + 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 3 = 2 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 5 = 4 + 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 1 = 0 + 1
Description
The largest multiplicity of a part in an integer partition.
St000974: Ordered trees ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[]
=> ? = 0
[[]]
=> 1
[[],[]]
=> 0
[[[]]]
=> 2
[[],[],[]]
=> 0
[[],[[]]]
=> 0
[[[]],[]]
=> 0
[[[],[]]]
=> 1
[[[[]]]]
=> 3
[[],[],[],[]]
=> 0
[[],[],[[]]]
=> 0
[[],[[]],[]]
=> 0
[[],[[],[]]]
=> 0
[[],[[[]]]]
=> 0
[[[]],[],[]]
=> 0
[[[]],[[]]]
=> 0
[[[],[]],[]]
=> 0
[[[[]]],[]]
=> 0
[[[],[],[]]]
=> 1
[[[],[[]]]]
=> 1
[[[[]],[]]]
=> 1
[[[[],[]]]]
=> 2
[[[[[]]]]]
=> 4
[[],[],[],[],[]]
=> 0
[[],[],[],[[]]]
=> 0
[[],[],[[]],[]]
=> 0
[[],[],[[],[]]]
=> 0
[[],[],[[[]]]]
=> 0
[[],[[]],[],[]]
=> 0
[[],[[]],[[]]]
=> 0
[[],[[],[]],[]]
=> 0
[[],[[[]]],[]]
=> 0
[[],[[],[],[]]]
=> 0
[[],[[],[[]]]]
=> 0
[[],[[[]],[]]]
=> 0
[[],[[[],[]]]]
=> 0
[[],[[[[]]]]]
=> 0
[[[]],[],[],[]]
=> 0
[[[]],[],[[]]]
=> 0
[[[]],[[]],[]]
=> 0
[[[]],[[],[]]]
=> 0
[[[]],[[[]]]]
=> 0
[[[],[]],[],[]]
=> 0
[[[[]]],[],[]]
=> 0
[[[],[]],[[]]]
=> 0
[[[[]]],[[]]]
=> 0
[[[],[],[]],[]]
=> 0
[[[],[[]]],[]]
=> 0
[[[[]],[]],[]]
=> 0
[[[[],[]]],[]]
=> 0
[[[[[]]]],[]]
=> 0
Description
The length of the trunk of an ordered tree. This is the length of the path from the root to the first vertex which has not exactly one child.
Mp00047: Ordered trees to posetPosets
St000907: Posets ⟶ ℤResult quality: 88% values known / values provided: 99%distinct values known / distinct values provided: 88%
Values
[]
=> ([],1)
=> 1 = 0 + 1
[[]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 0 + 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1 = 0 + 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 3 = 2 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 1 = 0 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1 = 0 + 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1 = 0 + 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 1 = 0 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1 = 0 + 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1 = 0 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1 = 0 + 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 1 = 0 + 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1 = 0 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1 = 0 + 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 1 = 0 + 1
[[[[[[[[]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
Description
The number of maximal antichains of minimal length in a poset.
Mp00051: Ordered trees to Dyck pathDyck paths
St001107: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[]
=> []
=> ? = 0
[[]]
=> [1,0]
=> ? = 1
[[],[]]
=> [1,0,1,0]
=> 0
[[[]]]
=> [1,1,0,0]
=> 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> 0
[[],[[]]]
=> [1,0,1,1,0,0]
=> 0
[[[]],[]]
=> [1,1,0,0,1,0]
=> 0
[[[],[]]]
=> [1,1,0,1,0,0]
=> 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> 3
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> 0
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> 0
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> 0
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 0
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> 0
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> 0
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 0
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> 0
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> 4
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 0
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St000221: Permutations ⟶ ℤResult quality: 88% values known / values provided: 99%distinct values known / distinct values provided: 88%
Values
[]
=> .
=> ? => ? = 0
[[]]
=> [.,.]
=> [1] => 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => 0
[[[]]]
=> [[.,.],.]
=> [1,2] => 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 0
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 0
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => 0
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 0
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 0
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 0
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 0
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 0
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 0
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 0
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 0
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 0
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 0
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 0
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => 0
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 0
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 0
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => 0
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => 0
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => 0
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => 0
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 0
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 0
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => 0
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 0
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 0
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 0
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 0
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 0
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 0
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => 0
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 0
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => 0
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 0
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => 0
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 0
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => 0
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 0
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 0
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 0
[[[[[[[[]]]]]]]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ? = 7
Description
The number of strong fixed points of a permutation. $i$ is called a strong fixed point of $\pi$ if 1. $j < i$ implies $\pi_j < \pi_i$, and 2. $j > i$ implies $\pi_j > \pi_i$ This can be described as an occurrence of the mesh pattern ([1], {(0,1),(1,0)}), i.e., the upper left and the lower right quadrants are shaded, see [3]. The generating function for the joint-distribution (RLmin, LRmax, strong fixed points) has a continued fraction expression as given in [4, Lemma 3.2], for LRmax see [[St000314]].
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000315: Graphs ⟶ ℤResult quality: 88% values known / values provided: 99%distinct values known / distinct values provided: 88%
Values
[]
=> .
=> ? => ?
=> ? = 0
[[]]
=> [.,.]
=> [1] => ([],1)
=> 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 0
[[[]]]
=> [[.,.],.]
=> [1,2] => ([],2)
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 0
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 0
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[[[[[[[]]]]]]]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> [1,2,3,4,5,6,7] => ([],7)
=> ? = 7
Description
The number of isolated vertices of a graph.
Matching statistic: St000461
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
St000461: Permutations ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[]
=> .
=> ? => ? => ? = 0
[[]]
=> [.,.]
=> [1] => [1] => ? = 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => [2,1] => 0
[[[]]]
=> [[.,.],.]
=> [1,2] => [1,2] => 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => 0
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => 0
[[[]],[]]
=> [[.,.],[.,.]]
=> [3,1,2] => [3,2,1] => 0
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => 0
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4,3,2,1] => 0
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,3,2,1] => 0
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,2,3,1] => 0
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => 0
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,2,1] => 0
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [4,3,2,1] => 0
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,3,2,1] => 0
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,2,3,1] => 0
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,2,1,4] => 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [5,4,3,2,1] => 0
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,4,3,2,1] => 0
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5,4,3,2,1] => 0
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [5,4,3,2,1] => 0
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,4,3,2,1] => 0
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5,4,3,2,1] => 0
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,4,3,2,1] => 0
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,4,3,2,1] => 0
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,3,2,4,1] => 0
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,3,2,4,1] => 0
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [5,3,2,4,1] => 0
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,2,3,4,1] => 0
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => 0
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [5,4,3,2,1] => 0
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [5,4,3,2,1] => 0
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5,4,3,2,1] => 0
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [5,4,3,2,1] => 0
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [5,4,3,2,1] => 0
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5,4,3,2,1] => 0
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [5,4,3,2,1] => 0
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [5,4,3,2,1] => 0
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [5,4,3,2,1] => 0
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [5,4,3,2,1] => 0
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [5,4,3,2,1] => 0
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5,4,3,2,1] => 0
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [5,3,2,4,1] => 0
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5,2,3,4,1] => 0
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1
Description
The rix statistic of a permutation. This statistic is defined recursively as follows: $rix([]) = 0$, and if $w_i = \max\{w_1, w_2,\dots, w_k\}$, then $rix(w) := 0$ if $i = 1 < k$, $rix(w) := 1 + rix(w_1,w_2,\dots,w_{k−1})$ if $i = k$ and $rix(w) := rix(w_{i+1},w_{i+2},\dots,w_k)$ if $1 < i < k$.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000674The number of hills of a Dyck path. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St000993The multiplicity of the largest part of an integer partition. St000264The girth of a graph, which is not a tree. St001826The maximal number of leaves on a vertex of a graph. St001672The restrained domination number of a graph. St001479The number of bridges of a graph.