searching the database
Your data matches 24 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001165
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001165: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001165: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> 2
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
Description
Number of simple modules with even projective dimension in the corresponding Nakayama algebra.
Matching statistic: St001471
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001471: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001471: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> 2
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 2
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
Description
The magnitude of a Dyck path.
The magnitude of a finite dimensional algebra with invertible Cartan matrix C is defined as the sum of all entries of the inverse of C.
We define the magnitude of a Dyck path as the magnitude of the corresponding LNakayama algebra.
Matching statistic: St001964
Values
([],1)
=> ([(0,1)],2)
=> ([],2)
=> 0 = 2 - 2
([],2)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> 0 = 2 - 2
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0 = 2 - 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> 0 = 2 - 2
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0 = 2 - 2
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 2 - 2
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0 = 2 - 2
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 0 = 2 - 2
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],5)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],4)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(3,4),(3,5)],6)
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0 = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4)],6)
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0 = 2 - 2
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],5)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([],5)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> 1 = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],7)
=> ? = 2 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ? = 2 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5)],7)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7)
=> ? = 2 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(2,6),(3,4),(4,6)],7)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 2 - 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6)],7)
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5)],6)
=> ? = 2 - 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5)],6)
=> ? = 2 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? = 2 - 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ? = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(5,6)],7)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 - 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6)],7)
=> ? = 2 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(5,6)],7)
=> ? = 2 - 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 3 - 2
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St000771
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 1
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The pebbling number of a connected graph.
Matching statistic: St000259
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 2
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 2
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 2 - 2
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
([(3,6),(4,5)],7)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
Description
The determinant of the distance matrix of a connected graph.
The following 14 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!