searching the database
Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001258
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001258: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001258: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 3
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 3
Description
Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra.
For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
Matching statistic: St001232
Mp00154: Graphs —core⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 40%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 40%
Values
([],1)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([],2)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([],3)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([],4)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 3 - 2
([],5)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000771
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Matching statistic: St000772
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 1.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore also statistic 1.
The graphs with statistic n−1, n−2 and n−3 have been characterised, see [1].
Matching statistic: St000777
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The pebbling number of a connected graph.
Matching statistic: St000259
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000466
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The Gutman (or modified Schultz) index of a connected graph.
This is
∑{u,v}⊆Vd(u)d(v)d(u,v)
where d(u) is the degree of vertex u and d(u,v) is the distance between vertices u and v.
For trees on n vertices, the modified Schultz index is related to the Wiener index via S∗(T)=4W(T)−(n−1)(2n−1) [1].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!