Processing math: 100%

Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001258
Mp00251: Graphs clique sizesInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001258: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 3
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 3
Description
Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
Matching statistic: St001232
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 40%
Values
([],1)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([],2)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([],3)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([],4)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 3 - 2
([],5)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> ? = 4 - 2
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000771
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000771: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore statistic 1.
Matching statistic: St000772
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000772: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 1. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore also statistic 1. The graphs with statistic n1, n2 and n3 have been characterised, see [1].
Matching statistic: St000777
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000777: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St001645: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 3 - 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 2
Description
The pebbling number of a connected graph.
Matching statistic: St000259
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000259: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000260: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000302: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000466
Mp00154: Graphs coreGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000466: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([],2)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([],3)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([],4)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([],5)
=> ([],1)
=> ([],0)
=> ([],0)
=> ? = 2 - 3
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 4 - 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? = 3 - 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 3
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 3 - 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 3 - 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 4 - 3
Description
The Gutman (or modified Schultz) index of a connected graph. This is {u,v}Vd(u)d(v)d(u,v) where d(u) is the degree of vertex u and d(u,v) is the distance between vertices u and v. For trees on n vertices, the modified Schultz index is related to the Wiener index via S(T)=4W(T)(n1)(2n1) [1].
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000467The hyper-Wiener index of a connected graph. St001621The number of atoms of a lattice. St001624The breadth of a lattice.