Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
St001279: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [2,1] => [2]
=> 2
[1,1,0,0]
=> [1,2] => [1,1]
=> 0
[1,0,1,0,1,0]
=> [2,1,3] => [2,1]
=> 2
[1,0,1,1,0,0]
=> [2,3,1] => [3]
=> 3
[1,1,0,0,1,0]
=> [3,1,2] => [3]
=> 3
[1,1,0,1,0,0]
=> [1,3,2] => [2,1]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [2,2]
=> 4
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [4]
=> 4
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,1]
=> 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> 4
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [4]
=> 4
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,2]
=> 4
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [2,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [3,1]
=> 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [2,1,1]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,1]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [3,2]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [5]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [2,2,1]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [3,1,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [2,2,1]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [5]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [5]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [3,2]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [3,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [4,1]
=> 4
Description
The sum of the parts of an integer partition that are at least two.
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000673: Permutations ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 42%
Values
[1,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 2
[1,1,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 3
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 3
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 2
[1,1,1,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 4
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 3
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 3
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 3
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 2
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 5
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 5
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 5
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 5
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 5
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 4
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 7
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => ? = 7
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? = 7
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => ? = 6
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => ? = 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => ? = 7
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => ? = 7
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => ? = 7
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => ? = 7
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? = 7
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => ? = 7
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? = 4
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,2,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,2,1] => ? = 5
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,5,6,2,1] => ? = 6
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,2,1] => ? = 6
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 7
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => ? = 7
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,2,1] => ? = 7
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 7
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => ? = 6
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => ? = 6
Description
The number of non-fixed points of a permutation. In other words, this statistic is $n$ minus the number of fixed points ([[St000022]]) of $\pi$.
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001005: Permutations ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 42%
Values
[1,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 2
[1,1,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [2,1,3] => 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 3
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 3
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 2
[1,1,1,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => 4
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 4
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => 2
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => 3
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 4
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => 3
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 3
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 4
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 3
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [2,1] => 2
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => 5
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 5
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => 5
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => 5
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 5
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => 5
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 4
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> [] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5,7] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5,7] => ? = 6
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,7] => ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 7
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,6,7,5] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 7
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,7,5] => ? = 7
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,6,7,3,5] => ? = 7
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,6,7,3,5] => ? = 7
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,6,1,7,3,5] => ? = 7
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,7,5,6] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,3,7,5,6] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,7,3,5,6] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,4,1,7,3,5,6] => ? = 7
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,7,1,3,5,6] => ? = 7
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 6
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,3,5,7,6] => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,1,5,3,7,6] => ? = 7
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,7,6] => ? = 7
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,5,7,3,6] => ? = 7
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,7,3,6] => ? = 7
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,7,3,6] => ? = 7
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,5,7,1,3,6] => ? = 7
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 4
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,5,6,7] => ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,5,3,6,7] => ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,3,6,7] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,4,5,1,3,6,7] => ? = 5
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,4,5,6,3,7] => ? = 6
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,4,1,5,6,3,7] => ? = 6
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,4,5,1,6,3,7] => ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,4,5,6,1,3,7] => ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 7
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,4,1,5,6,7,3] => ? = 7
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,4,5,1,6,7,3] => ? = 7
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,4,5,6,1,7,3] => ? = 7
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,5,6,7,1,3] => ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4,7] => ? = 6
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4,7] => ? = 6
Description
The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both.
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
St000235: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [1,2] => 2
[1,1,0,0]
=> [1,2] => [2,1] => 0
[1,0,1,0,1,0]
=> [2,1,3] => [3,2,1] => 2
[1,0,1,1,0,0]
=> [2,3,1] => [1,2,3] => 3
[1,1,0,0,1,0]
=> [3,1,2] => [3,1,2] => 3
[1,1,0,1,0,0]
=> [1,3,2] => [2,1,3] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [2,3,1] => 0
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [3,2,1,4] => 4
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 4
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [3,2,4,1] => 2
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [4,2,3,1] => 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => 4
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [3,1,2,4] => 4
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,1,2,3] => 4
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [3,4,2,1] => 3
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [2,4,3,1] => 2
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [2,1,3,4] => 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [3,4,1,2] => 4
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [2,4,1,3] => 3
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [2,3,1,4] => 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [2,3,4,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [3,2,5,4,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [3,2,1,4,5] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [4,2,1,3,5] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,3,4] => 5
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [3,2,5,1,4] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [4,2,5,1,3] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [3,2,4,1,5] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [4,2,3,1,5] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [3,2,4,5,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [4,2,3,5,1] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [5,2,3,4,1] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 5
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [4,5,2,3,1] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [3,1,2,4,5] => 5
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [4,1,2,3,5] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,1,2,3,4] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [3,5,2,1,4] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [4,5,2,1,3] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,4,2,1,5] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [2,4,3,1,5] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [2,5,3,1,4] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,4,2,5,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [2,5,3,4,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [2,1,3,4,5] => 4
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7] => [3,2,5,4,7,6,1] => ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => [4,2,5,3,7,6,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5,7] => [3,2,6,4,7,5,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5,7] => [4,2,6,3,7,5,1] => ? = 6
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,7] => [5,2,6,3,7,4,1] => ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => [3,2,5,4,1,6,7] => ? = 7
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,6,7,5] => [4,2,5,3,1,6,7] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => [3,2,6,4,1,5,7] => ? = 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,6,3,7,5] => [4,2,6,3,1,5,7] => ? = 7
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,7,5] => [5,2,6,3,1,4,7] => ? = 7
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,6,7,3,5] => [3,2,7,4,1,5,6] => ? = 7
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,6,7,3,5] => [4,2,7,3,1,5,6] => ? = 7
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,6,1,7,3,5] => [5,2,7,3,1,4,6] => ? = 7
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,6,7,1,3,5] => [6,2,7,3,1,4,5] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,7,5,6] => [3,2,5,4,7,1,6] => ? = 7
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,4,1,3,7,5,6] => [4,2,5,3,7,1,6] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,7,3,5,6] => [3,2,6,4,7,1,5] => ? = 7
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,4,1,7,3,5,6] => [4,2,6,3,7,1,5] => ? = 7
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,7,1,3,5,6] => [5,2,6,3,7,1,4] => ? = 7
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,3,5,7,6] => [3,2,5,4,6,1,7] => ? = 6
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,3,5,7,6] => [4,2,5,3,6,1,7] => ? = 6
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [3,2,6,4,5,1,7] => ? = 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,1,5,3,7,6] => [4,2,6,3,5,1,7] => ? = 7
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,7,6] => [5,2,6,3,4,1,7] => ? = 7
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,5,7,3,6] => [3,2,7,4,5,1,6] => ? = 7
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,7,3,6] => [4,2,7,3,5,1,6] => ? = 7
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,7,3,6] => [5,2,7,3,4,1,6] => ? = 7
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,5,7,1,3,6] => [6,2,7,3,4,1,5] => ? = 7
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [3,2,5,4,6,7,1] => ? = 4
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,5,6,7] => [4,2,5,3,6,7,1] => ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,5,3,6,7] => [3,2,6,4,5,7,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,3,6,7] => [4,2,6,3,5,7,1] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,4,5,1,3,6,7] => [5,2,6,3,4,7,1] => ? = 5
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,4,5,6,3,7] => [3,2,7,4,5,6,1] => ? = 6
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [2,4,1,5,6,3,7] => [4,2,7,3,5,6,1] => ? = 6
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [2,4,5,1,6,3,7] => [5,2,7,3,4,6,1] => ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,4,5,6,1,3,7] => [6,2,7,3,4,5,1] => ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,4,5,6,7,3] => [3,2,1,4,5,6,7] => ? = 7
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,4,1,5,6,7,3] => [4,2,1,3,5,6,7] => ? = 7
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,4,5,1,6,7,3] => [5,2,1,3,4,6,7] => ? = 7
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,4,5,6,1,7,3] => [6,2,1,3,4,5,7] => ? = 7
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,5,6,7,1,3] => [7,2,1,3,4,5,6] => ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4,7] => [3,2,5,7,4,6,1] => ? = 6
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4,7] => [4,2,5,7,3,6,1] => ? = 6
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4,7] => [3,2,6,7,4,5,1] => ? = 6
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4,7] => [4,2,6,7,3,5,1] => ? = 6
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4,7] => [5,2,6,7,3,4,1] => ? = 6
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,6,7,4] => [3,2,5,1,4,6,7] => ? = 7
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,6,7,4] => [4,2,5,1,3,6,7] => ? = 7
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,5,6,3,7,4] => [3,2,6,1,4,5,7] => ? = 7
Description
The number of indices that are not cyclical small weak excedances. A cyclical small weak excedance is an index $i < n$ such that $\pi_i = i+1$, or the index $i = n$ if $\pi_n = 1$.
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001255: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 6 = 5 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 6 = 5 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 6 = 5 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 6 = 5 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 6 = 5 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 6 = 5 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 6 = 5 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 6 = 5 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 6 = 5 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 6 = 5 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 6 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 6 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 7 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 6 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 6 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 7 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> ? = 7 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 7 + 1
Description
The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J.
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00063: Permutations to alternating sign matrixAlternating sign matrices
St000896: Alternating sign matrices ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [[1]]
=> ? = 0
[1,0,1,0]
=> [2,1] => [[0,1],[1,0]]
=> 2
[1,1,0,0]
=> [1,2] => [[1,0],[0,1]]
=> 0
[1,0,1,0,1,0]
=> [2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> 2
[1,0,1,1,0,0]
=> [2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[1,1,0,0,1,0]
=> [3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> 3
[1,1,0,1,0,0]
=> [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 4
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 4
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 4
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0]]
=> 5
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,5,6,3] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0]]
=> ? = 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,3,5,6,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,1,5,6,4] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,3,5,1,6,4] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,6,1,3,4,5] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0]]
=> ? = 6
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,3,6,4,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,4,5] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,3,6,1,4,5] => [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5] => [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,4,6,2,5] => [[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [3,1,4,5,6,2] => [[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [3,4,1,5,6,2] => [[0,0,1,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,4,5,1,6,2] => [[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,5,2,6,4] => [[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,5,1,2,6,4] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,6,2,4] => [[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,5,1,6,2,4] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,5,6,1,2,4] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,6,4] => [[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,2,5,6,4] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,6,4] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 5
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 6
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [3,6,1,2,4,5] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0]]
=> ? = 6
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [3,1,2,6,4,5] => [[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 6
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,2,6,4,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0]]
=> ? = 5
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => [[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0]]
=> ? = 5
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => [[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> ? = 5
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [4,1,5,2,6,3] => [[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,5,1,2,6,3] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> ? = 6
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [4,1,5,6,2,3] => [[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> ? = 6
Description
The number of zeros on the main diagonal of an alternating sign matrix.
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001225: Dyck paths ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 42%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 5
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 5
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 5
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 5
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 6
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 5
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 6
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 6
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 6
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 6
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> ? = 5
Description
The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra.
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001480: Dyck paths ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 42%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 5
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 5
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 5
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 5
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 5
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 6
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 5
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 6
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 6
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> ? = 6
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> ? = 6
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 6
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? = 6
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> ? = 6
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 4
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 4
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 5
Description
The number of simple summands of the module J^2/J^3. Here J is the Jacobson radical of the Nakayama algebra algebra corresponding to the Dyck path.
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00066: Permutations inversePermutations
St000238: Permutations ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 42%
Values
[1,0]
=> [1,0]
=> [2,1] => [2,1] => 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => 4 = 3 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 4 = 3 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => 5 = 4 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => 5 = 4 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => 4 = 3 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 4 = 3 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,1,5,2,6,4] => 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,5,2,1,6,4] => 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => 6 = 5 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => 6 = 5 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => 6 = 5 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => 6 = 5 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => 6 = 5 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => 6 = 5 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => 6 = 5 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,1,4,5,6,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => 6 = 5 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,1,5,3,6,2] => 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [5,1,2,3,6,4] => 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,1,5,6,3,2] => 6 = 5 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,1,2,6,4,3] => 6 = 5 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [5,6,2,3,4,1] => 6 = 5 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,1,6,3,2,5] => 6 = 5 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,1,6,3,4,2] => 6 = 5 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [4,1,2,6,3,5] => 6 = 5 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => 5 = 4 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [4,1,2,5,6,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [2,4,1,5,6,3] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,4,5,3,6,1] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [3,1,5,2,7,4,6] => ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,3,1,6,2,7,5] => [3,5,2,1,7,4,6] => ? = 6 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [3,1,5,7,4,2,6] => ? = 6 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [6,3,1,5,2,7,4] => [3,5,2,7,4,1,6] => ? = 6 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => [3,6,2,7,4,5,1] => ? = 6 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [3,1,5,2,6,7,4] => ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => [3,5,2,1,6,7,4] => ? = 4 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [3,1,5,6,4,7,2] => ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [3,5,2,6,4,7,1] => ? = 5 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => [3,6,2,1,4,7,5] => ? = 5 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [3,1,5,6,7,4,2] => ? = 6 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [3,5,2,6,7,4,1] => ? = 6 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => [3,6,2,1,7,5,4] => ? = 6 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [3,6,7,2,4,5,1] => ? = 6 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => [3,1,6,2,7,5,4] => ? = 6 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => [3,5,6,2,7,4,1] => ? = 6 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [3,1,7,2,4,5,6] => ? = 6 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [3,5,7,2,4,1,6] => ? = 6 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => [3,7,2,1,4,5,6] => ? = 6 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [3,1,6,2,4,7,5] => ? = 5 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [3,5,6,2,4,7,1] => ? = 5 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [3,1,4,6,2,7,5] => ? = 4 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => [3,4,2,6,1,7,5] => ? = 5 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [3,4,6,2,1,7,5] => ? = 5 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [3,1,4,6,7,5,2] => ? = 5 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,4,2,6,7,5,1] => ? = 6 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [3,4,6,2,7,5,1] => ? = 6 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [3,4,7,2,1,5,6] => ? = 6 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [3,1,6,7,4,5,2] => ? = 6 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [3,5,6,7,4,1,2] => ? = 6 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [3,1,4,7,2,5,6] => ? = 5 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => [3,4,2,7,1,5,6] => ? = 6 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [3,4,6,7,1,5,2] => ? = 6 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [3,1,4,5,7,2,6] => ? = 4 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [3,4,2,5,7,1,6] => ? = 5 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [3,4,5,2,7,1,6] => ? = 6 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [3,4,5,7,1,2,6] => ? = 6 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [3,1,4,5,6,7,2] => ? = 2 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,4,2,5,6,7,1] => ? = 3 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [3,4,5,2,6,7,1] => ? = 4 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [3,4,5,6,1,7,2] => ? = 5 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [3,4,5,6,7,2,1] => ? = 6 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [4,1,5,3,7,2,6] => ? = 6 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [5,1,2,3,7,4,6] => ? = 6 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [4,1,5,7,3,2,6] => ? = 6 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [5,1,2,7,4,3,6] => ? = 6 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [5,6,2,7,4,3,1] => ? = 6 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [2,7,4,1,3,5,6] => [4,1,5,3,6,7,2] => ? = 4 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [5,1,2,3,6,7,4] => ? = 4 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [4,1,5,6,3,7,2] => ? = 5 + 1
Description
The number of indices that are not small weak excedances. A small weak excedance is an index $i$ such that $\pi_i \in \{i,i+1\}$.
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00066: Permutations inversePermutations
St000240: Permutations ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 42%
Values
[1,0]
=> [1,0]
=> [2,1] => [2,1] => 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [3,4,2,1] => 4 = 3 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 4 = 3 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,5,2,1,4] => 5 = 4 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,4,2,5,1] => 4 = 3 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,4,5,2,1] => 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,5,3,2] => 5 = 4 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => 4 = 3 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [2,4,5,3,1] => 4 = 3 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,5,2,3,1] => 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 4 = 3 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [3,1,5,2,6,4] => 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,5,2,1,6,4] => 5 = 4 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [3,1,5,6,4,2] => 6 = 5 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [3,5,2,6,4,1] => 6 = 5 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,6,2,1,4,5] => 6 = 5 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [3,1,6,2,4,5] => 6 = 5 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,5,6,2,4,1] => 6 = 5 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [3,1,4,6,2,5] => 5 = 4 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,4,2,6,1,5] => 6 = 5 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [3,4,6,2,1,5] => 6 = 5 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [3,1,4,5,6,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,4,2,5,6,1] => 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [3,4,5,2,6,1] => 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,4,5,6,1,2] => 6 = 5 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,1,5,3,6,2] => 5 = 4 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [5,1,2,3,6,4] => 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,1,5,6,3,2] => 6 = 5 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [5,1,2,6,4,3] => 6 = 5 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [5,6,2,3,4,1] => 6 = 5 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [4,1,6,3,2,5] => 6 = 5 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [5,1,6,3,4,2] => 6 = 5 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [4,1,2,6,3,5] => 6 = 5 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [2,4,1,6,3,5] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,4,6,3,1,5] => 5 = 4 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [4,1,2,5,6,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [2,4,1,5,6,3] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [2,4,5,3,6,1] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [2,4,5,6,3,1] => 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => [3,1,5,2,7,4,6] => ? = 6 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,3,1,6,2,7,5] => [3,5,2,1,7,4,6] => ? = 6 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [3,1,5,7,4,2,6] => ? = 6 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [6,3,1,5,2,7,4] => [3,5,2,7,4,1,6] => ? = 6 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => [3,6,2,7,4,5,1] => ? = 6 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => [3,1,5,2,6,7,4] => ? = 4 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => [3,5,2,1,6,7,4] => ? = 4 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,7,1,5,3,4,6] => [3,1,5,6,4,7,2] => ? = 5 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [3,5,2,6,4,7,1] => ? = 5 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => [3,6,2,1,4,7,5] => ? = 5 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,7,1,6,3,4,5] => [3,1,5,6,7,4,2] => ? = 6 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [3,5,2,6,7,4,1] => ? = 6 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => [3,6,2,1,7,5,4] => ? = 6 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [3,6,7,2,4,5,1] => ? = 6 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => [3,1,6,2,7,5,4] => ? = 6 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => [3,5,6,2,7,4,1] => ? = 6 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [3,1,7,2,4,5,6] => ? = 6 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [6,4,1,5,2,7,3] => [3,5,7,2,4,1,6] => ? = 6 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => [3,7,2,1,4,5,6] => ? = 6 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => [3,1,6,2,4,7,5] => ? = 5 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [3,5,6,2,4,7,1] => ? = 5 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,5,1,3,7,4,6] => [3,1,4,6,2,7,5] => ? = 4 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [5,3,1,2,7,4,6] => [3,4,2,6,1,7,5] => ? = 5 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,4,1,2,7,3,6] => [3,4,6,2,1,7,5] => ? = 5 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,7,1,3,6,4,5] => [3,1,4,6,7,5,2] => ? = 5 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [3,4,2,6,7,5,1] => ? = 6 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [3,4,6,2,7,5,1] => ? = 6 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [5,4,1,2,6,7,3] => [3,4,7,2,1,5,6] => ? = 6 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,7,1,5,6,3,4] => [3,1,6,7,4,5,2] => ? = 6 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [6,7,1,5,2,3,4] => [3,5,6,7,4,1,2] => ? = 6 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [3,1,4,7,2,5,6] => ? = 5 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [5,3,1,2,6,7,4] => [3,4,2,7,1,5,6] => ? = 6 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [5,7,1,2,6,3,4] => [3,4,6,7,1,5,2] => ? = 6 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [3,1,4,5,7,2,6] => ? = 4 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [6,3,1,2,4,7,5] => [3,4,2,5,7,1,6] => ? = 5 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [6,4,1,2,3,7,5] => [3,4,5,2,7,1,6] => ? = 6 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,6,1,2,3,7,4] => [3,4,5,7,1,2,6] => ? = 6 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => [3,1,4,5,6,7,2] => ? = 2 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [3,4,2,5,6,7,1] => ? = 3 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [3,4,5,2,6,7,1] => ? = 4 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,7,1,2,3,4,6] => [3,4,5,6,1,7,2] => ? = 5 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [3,4,5,6,7,2,1] => ? = 6 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [4,1,5,3,7,2,6] => ? = 6 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [5,1,2,3,7,4,6] => ? = 6 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [4,1,5,7,3,2,6] => ? = 6 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [5,1,2,7,4,3,6] => ? = 6 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [7,3,6,5,1,2,4] => [5,6,2,7,4,3,1] => ? = 6 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [2,7,4,1,3,5,6] => [4,1,5,3,6,7,2] => ? = 4 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [5,1,2,3,6,7,4] => ? = 4 + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,7,5,1,3,4,6] => [4,1,5,6,3,7,2] => ? = 5 + 1
Description
The number of indices that are not small excedances. A small excedance is an index $i$ for which $\pi_i = i+1$.
The following 1 statistic also match your data. Click on any of them to see the details.
St000075The orbit size of a standard tableau under promotion.