Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001158
St001158: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> 1
['B',2]
=> 2
['G',2]
=> 2
['A',3]
=> 4
Description
The size of the mutation class of quivers of given type.
Matching statistic: St001700
St001700: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> 3 = 1 + 2
['B',2]
=> 4 = 2 + 2
['G',2]
=> 4 = 2 + 2
['A',3]
=> 6 = 4 + 2
Description
The maximum degree of the Hasse diagram of the strong Bruhat order in the Weyl group of the Cartan type.
Matching statistic: St001281
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
St001281: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
Description
The normalized isoperimetric number of a graph. The isoperimetric number, or Cheeger constant, of a graph $G$ is $$ i(G) = \min\left\{\frac{|\partial A|}{|A|}\ : \ A\subseteq V(G), 0 < |A|\leq |V(G)|/2\right\}, $$ where $$ \partial A := \{(x, y)\in E(G)\ : \ x\in A, y\in V(G)\setminus A \}. $$ This statistic is $i(G)\cdot\lfloor n/2\rfloor$.
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
St001707: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 4
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St001383: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> -1 = 1 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 0 = 2 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 0 = 2 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 2 = 4 - 2
Description
The BG-rank of an integer partition. This is the sum of the entries in a checkerboard filling of the Ferrers diagram of the partition, where cells whose sum of coordinates is even have entry $+1$ and the others have entry $-1$.
Matching statistic: St000278
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St000278: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,1,1,1]
=> 4
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. This is the multinomial of the multiplicities of the parts, see [1]. This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$, where $k$ is the number of parts of $\lambda$. An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$ where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
Matching statistic: St000992
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000992: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 4
Description
The alternating sum of the parts of an integer partition. For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
Matching statistic: St000175
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,1,1]
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [3,1]
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [5,1]
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,1,1,1]
=> 3 = 4 - 1
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial $$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$ The statistic of the degree of this polynomial. For example, the partition $(3, 2, 1, 1, 1)$ gives $$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$ which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$. This is the same as the number of unordered pairs of different parts, which follows from: $$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Matching statistic: St001329
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001329: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 4 - 1
Description
The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. A graph is outerplanar if and only if in any linear ordering of its vertices, there are no four vertices $a < b < c < d$ such that $(a,c)$ and $(b,d)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001575
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001575: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
Description
The minimal number of edges to add or remove to make a graph edge transitive. A graph is edge transitive, if for any two edges, there is an automorphism that maps one edge to the other.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001642The Prague dimension of a graph. St001910The height of the middle non-run of a Dyck path. St000452The number of distinct eigenvalues of a graph. St000256The number of parts from which one can substract 2 and still get an integer partition. St000480The number of lower covers of a partition in dominance order. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St000257The number of distinct parts of a partition that occur at least twice. St000481The number of upper covers of a partition in dominance order. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001117The game chromatic index of a graph.