Your data matches 17 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001304: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> 1
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],5)
=> 1
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
Description
The number of maximally independent sets of vertices of a graph. An '''independent set''' of vertices of a graph is a set of vertices no two of which are adjacent. If a set of vertices is independent then so is every subset. This statistic counts the number of maximally independent sets of vertices.
Matching statistic: St000228
Mp00111: Graphs complementGraphs
Mp00250: Graphs clique graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 94%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> [1,1]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> [1,1]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> [1,1,1]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [3]
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> [1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> [1,1,1,1]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [6]
=> 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> [2,1,1]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> 3
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(2,11),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(3,11),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(8,9),(8,11),(9,10)],12)
=> ?
=> ? = 12
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,5),(0,6),(0,7),(0,9),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ?
=> ? = 10
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ?
=> ? = 9
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,7),(5,8),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ?
=> ? = 10
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ?
=> ? = 9
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8)],10)
=> ?
=> ? = 10
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,2),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,7),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(0,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,7),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(0,7),(1,3),(1,5),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,5),(6,7)],8)
=> ?
=> ? = 8
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,7),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(2,3),(2,6),(3,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,1),(0,3),(0,6),(1,2),(1,6),(2,4),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ?
=> ? = 8
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7)
=> ([(0,4),(0,7),(1,2),(1,3),(1,5),(2,5),(2,7),(3,6),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,11),(2,3),(2,5),(2,8),(2,10),(3,4),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,7),(5,10),(6,7),(6,11),(7,8),(9,10),(9,11),(10,11)],12)
=> ?
=> ? = 12
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,8),(0,9),(0,10),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(2,10),(3,4),(3,6),(3,9),(4,5),(4,8),(5,6),(5,7),(5,8),(6,7),(6,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ?
=> ? = 11
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,4),(3,5),(3,8),(4,5),(4,9),(5,6),(5,7),(6,7),(7,8),(7,9),(8,9)],10)
=> ?
=> ? = 10
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,7),(4,9),(5,6),(5,8),(6,9),(7,8)],10)
=> ?
=> ? = 10
([(0,1),(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(5,6)],8)
=> ?
=> ? = 8
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(0,8),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(5,7),(6,7)],9)
=> ?
=> ? = 9
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,7),(1,2),(1,3),(1,6),(2,3),(2,5),(2,9),(3,4),(3,8),(4,5),(4,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ?
=> ? = 10
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,8),(0,9),(1,6),(1,7),(2,3),(2,5),(2,7),(2,9),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,9),(6,7),(8,9)],10)
=> ?
=> ? = 10
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,8),(0,9),(1,6),(1,7),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,9),(5,6),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ?
=> ? = 10
([(0,1),(0,2),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(4,5),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,6),(0,8),(1,5),(1,7),(2,4),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,8),(1,9),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,5),(4,9),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],10)
=> ?
=> ? = 10
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(0,8),(1,2),(1,3),(1,6),(1,8),(2,3),(2,5),(2,8),(3,4),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),(7,8)],9)
=> ?
=> ? = 9
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,8),(1,2),(1,3),(1,7),(2,3),(2,6),(3,5),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,8),(5,6),(5,7),(6,7)],9)
=> ?
=> ? = 9
([(0,1),(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,3),(0,7),(1,2),(1,7),(2,3),(2,6),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,7),(1,2),(1,3),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,7),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 8
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 90%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> [1]
=> []
=> 0 = 1 - 1
([],2)
=> ([(0,1)],2)
=> [2]
=> []
=> 0 = 1 - 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [1]
=> 1 = 2 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [2,2,2]
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [2,2]
=> 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [2,2]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [2,1]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [4]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [3,3,3]
=> 3 = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [3,2,2]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,2]
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,2]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,1]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [2,2]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [2,2]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [2,2]
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [2,1]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [2,2,2]
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [2,2,2,2,2]
=> 5 = 6 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [2,2,2,2]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [2,2,2,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [2,2,2,2]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [2,2,2]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [2,2,1]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [2,2,2]
=> 3 = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [2,2,2]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [2,2,1]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [2,1,1]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [2,2]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 2 = 3 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [3,3,3,3,3,3,3]
=> ? = 8 - 1
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> ?
=> ? = 4 - 1
([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4,4,4]
=> ?
=> ? = 8 - 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [4,4,4,4,4]
=> ? = 6 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3,3,3]
=> ?
=> ? = 8 - 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [4,4,4,4,4]
=> ? = 6 - 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 6 - 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 6 - 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ?
=> ? = 5 - 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ?
=> ? = 5 - 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,2,2]
=> ?
=> ? = 6 - 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ?
=> ? = 5 - 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5 - 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ?
=> ? = 5 - 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6 - 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,2]
=> ?
=> ? = 6 - 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5 - 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6 - 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5 - 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6 - 1
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5 - 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,4,3,3,2,2]
=> ?
=> ? = 6 - 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,2,2]
=> ?
=> ? = 6 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,2,2,2]
=> ?
=> ? = 6 - 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3,3,3]
=> ?
=> ? = 8 - 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 12 - 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3,3,3,3]
=> ?
=> ? = 8 - 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 10 - 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 9 - 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3,2,2]
=> ?
=> ? = 10 - 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,2]
=> ?
=> ? = 9 - 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3,1]
=> ?
=> ? = 9 - 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3,3,3]
=> ?
=> ? = 7 - 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 10 - 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 9 - 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3]
=> [3,3,3,3,3,3,3]
=> ? = 8 - 1
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3]
=> [3,3,3,3,3,3,3]
=> ? = 8 - 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3]
=> [3,3,3,3,3,3,3]
=> ? = 8 - 1
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3]
=> [3,3,3,3,3,3,3]
=> ? = 8 - 1
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> [3,3,3,3,3,3,3,2]
=> ?
=> ? = 8 - 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3]
=> [3,3,3,3,3,3]
=> ? = 7 - 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3]
=> [3,3,3,3,3,3]
=> ? = 7 - 1
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,2,2]
=> ?
=> ? = 8 - 1
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,2,2]
=> ?
=> ? = 8 - 1
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3]
=> [3,3,3,3,3,3]
=> ? = 7 - 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,2,2]
=> ?
=> ? = 8 - 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3]
=> [3,3,3,3,3,3]
=> ? = 7 - 1
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,2]
=> ?
=> ? = 7 - 1
Description
The length of the partition.
Matching statistic: St000147
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 75% values known / values provided: 85%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [2]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [4,4,4]
=> 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> 4
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [8,8,8]
=> ? = 8
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [6,6,6]
=> ? = 6
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [6,6,6]
=> ? = 6
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [9,9]
=> ? = 9
([(3,6),(4,5)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? = 4
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> [4,4,4,4,2]
=> ? = 4
([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4,4,4]
=> ?
=> ? = 8
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> ? = 4
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? = 6
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3,3,3]
=> ?
=> ? = 8
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? = 6
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [5,5,5,5]
=> ? = 5
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 6
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [5,5,5,5]
=> ? = 5
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,3,3]
=> ?
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> [5,5,5,4]
=> ? = 5
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> [5,5,5,4]
=> ? = 5
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,2,2]
=> [6,6,4,4]
=> ? = 6
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> [5,5,5,4]
=> ? = 5
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,2]
=> [5,5,4,4]
=> ? = 5
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,2]
=> [5,5,4,4]
=> ? = 5
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,1]
=> [5,4,4,4]
=> ? = 5
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4]
=> [5,5,5,5]
=> ? = 5
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> [5,5,5,4]
=> ? = 5
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> [6,6,6,3]
=> ? = 6
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> [6,6,6,3]
=> ? = 6
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,2]
=> ?
=> ? = 6
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ?
=> ? = 6
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ?
=> ? = 5
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,4,3,3,2,2]
=> ?
=> ? = 6
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,2,2]
=> ?
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,2,2,2]
=> ?
=> ? = 6
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,3,3,3,3,2]
=> ?
=> ? = 6
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [4,3,3,3,3,3]
=> [6,6,6,1]
=> ? = 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3,3]
=> [6,6,6,1]
=> ? = 6
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,3,3,3,3,2]
=> ?
=> ? = 6
([(0,1),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3,3,3]
=> ?
=> ? = 8
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 12
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,3,3,3,3,3,3,3]
=> ?
=> ? = 8
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 10
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,3]
=> ?
=> ? = 9
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,3,3,3,3,3,3,3,2,2]
=> ?
=> ? = 10
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [3,3,3,3,3,3,3,3,2]
=> ?
=> ? = 9
Description
The largest part of an integer partition.
Matching statistic: St000288
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000288: Binary words ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 58%
Values
([],1)
=> ([],1)
=> [1]
=> 10 => 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 100 => 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 110 => 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1100 => 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1010 => 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> 1110 => 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 11000 => 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 10100 => 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 111100 => 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 11100 => 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 11100 => 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 11010 => 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 10110 => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> 11110 => 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> 110000 => 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 101000 => 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 100100 => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> 1111000 => 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 1101100 => 4
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 110010 => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 101010 => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 1011100 => 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 11111100 => 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1111100 => 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1111010 => 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> 1111100 => 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 111100 => 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 110110 => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 11100 => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> 11111111000 => ? = 8
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> 111101100 => ? = 6
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> 111011100 => ? = 6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> 110111100 => ? = 6
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> 110111100 => ? = 6
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> 101111100 => ? = 6
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> 11111111100 => ? = 9
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> 101111100 => ? = 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> 1111111100 => ? = 8
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> 1111111100 => ? = 8
([(2,3),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,5,4,4]
=> ? => ? = 4
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [5,5,3,3]
=> 110011000 => ? = 4
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [5,5,2,2]
=> 110001100 => ? = 4
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,3]
=> 101101000 => ? = 4
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,3,3]
=> 101011000 => ? = 4
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3,3,3]
=> 100111000 => ? = 4
([(1,6),(2,5),(3,4)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4,4,4]
=> ? => ? = 8
([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,4,4,4]
=> 101110000 => ? = 4
([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> 1111110000 => ? = 6
([(0,3),(1,2),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3,3,3]
=> ? => ? = 8
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,4,4]
=> 1111110000 => ? = 6
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,3,3]
=> ? => ? = 6
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,4,4,3,3]
=> ? => ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ? => ? = 5
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ? => ? = 5
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,4,4,2,2]
=> ? => ? = 6
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ? => ? = 5
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,1]
=> 111100010 => ? = 5
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ? => ? = 5
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,4,2,2]
=> 111001100 => ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,2,2]
=> 111001100 => ? = 5
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,4,3]
=> ? => ? = 5
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> ([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> 1110111000 => ? = 6
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3,3]
=> 1110111000 => ? = 6
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ? => ? = 6
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ? => ? = 6
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ? => ? = 6
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3,2]
=> ? => ? = 6
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ? => ? = 5
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3,3]
=> ? => ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ? => ? = 5
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,3,3]
=> ? => ? = 6
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,4,3,3]
=> ? => ? = 5
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> 110111000 => ? = 5
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> 110111000 => ? = 5
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [4,4,3,3,2,2]
=> ? => ? = 6
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> 110111000 => ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> 110111000 => ? = 5
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,4,3,3,2,2]
=> ? => ? = 6
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,4,3,3,3]
=> 110111000 => ? = 5
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Matching statistic: St000733
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1]
=> [[1]]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [[1,2]]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [[1],[2]]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10]]
=> 4
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 4
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13,14]]
=> ? = 4
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18],[19,20,21],[22,23,24]]
=> ? = 8
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12,13]]
=> ? = 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 6
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 6
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 5
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 5
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14],[15,16]]
=> ? = 6
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 5
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13]]
=> ? = 5
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 5
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14]]
=> ? = 5
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13],[14,15]]
=> ? = 6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 6
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 5
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 6
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12,13]]
=> ? = 5
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13]]
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11,12]]
=> ? = 5
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 5
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 5
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? = 9
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13]]
=> ? = 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 8
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 8
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 7
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 7
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13]]
=> ? = 7
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 7
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 6
Description
The row containing the largest entry of a standard tableau.
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1]
=> [[1]]
=> 0 = 1 - 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [[1],[2]]
=> 1 = 2 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 3 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 4 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6],[8,9]]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 5 = 6 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 3 = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 3 = 4 - 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [[1,2,3,10],[4,5,6,14],[7,8,9],[11,12,13]]
=> ? = 4 - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 3 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18],[19,20,21],[22,23,24]]
=> ? = 8 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> [[1,2,3,13],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 6 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? = 6 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 5 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 5 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9,16],[11,12],[14,15]]
=> ? = 6 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10,14],[12,13]]
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10,14],[12,13]]
=> ? = 5 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8,12,13],[11]]
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? = 5 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9],[11,12]]
=> ? = 5 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10,14],[12,13]]
=> ? = 5 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6,15],[7,8],[10,11],[13,14]]
=> ? = 6 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,11],[3,4,14],[5,6],[7,8],[9,10],[12,13]]
=> ? = 6 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9],[11,12]]
=> ? = 5 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [[1,2,11],[3,4,14],[5,6],[7,8],[9,10],[12,13]]
=> ? = 6 - 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9],[11,12]]
=> ? = 5 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 4 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> [[1,2,13],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> ? = 6 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 5 - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? = 5 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? = 9 - 1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [[1,2,13],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> ? = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 8 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? = 8 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 7 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 7 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? = 7 - 1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 6 - 1
Description
The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St001227
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001227: Dyck paths ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 42%
Values
([],1)
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 4
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 2
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 4
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 6
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 5
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 5
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 6
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 5
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 6
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 5
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 5
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 5
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St000329
Mp00111: Graphs complementGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000329: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1]
=> [1,0]
=> 0 = 1 - 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 3 = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 4 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [4,4,3,3]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 4 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 4 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,2]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 4 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,3,2,2]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 4 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 8 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,3,3,3]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 6 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 6 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 5 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 5 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 5 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 5 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 5 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 5 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 9 - 1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 8 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 8 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 7 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 7 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 6 - 1
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 50%
Values
([],1)
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
([],2)
=> [2] => [2] => ([],2)
=> 0 = 1 - 1
([(0,1)],2)
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> [3] => [3] => ([],3)
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([],4)
=> [4] => [4] => ([],4)
=> 0 = 1 - 1
([(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,1] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([],5)
=> [5] => [5] => ([],5)
=> 0 = 1 - 1
([(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 4 - 1
([(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 4 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([],6)
=> [6] => [6] => ([],6)
=> 0 = 1 - 1
([(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
([(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 8 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 6 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 5 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
The following 7 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001391The disjunction number of a graph. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001330The hat guessing number of a graph.