searching the database
Your data matches 450 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000987
(load all 26 compositions to match this statistic)
(load all 26 compositions to match this statistic)
Values
([],1)
=> 0 = 2 - 2
([],2)
=> 0 = 2 - 2
([(0,1)],2)
=> 1 = 3 - 2
([],3)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> 2 = 4 - 2
([(0,1),(0,2),(1,2)],3)
=> 2 = 4 - 2
([],4)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> 3 = 5 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 5 - 2
([],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 4 = 6 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 6 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 6 - 2
([],6)
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 5 = 7 - 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5 = 7 - 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
Description
The number of positive eigenvalues of the Laplacian matrix of the graph.
This is the number of vertices minus the number of connected components of the graph.
Matching statistic: St001814
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St001814: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001814: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 2
([],2)
=> [1,1]
=> 2
([(0,1)],2)
=> [2]
=> 3
([],3)
=> [1,1,1]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> 4
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4
([],4)
=> [1,1,1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 5
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 5
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5
([],5)
=> [1,1,1,1,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 6
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 6
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6
([],6)
=> [1,1,1,1,1,1]
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 7
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [6]
=> 7
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> 7
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 7
Description
The number of partitions interlacing the given partition.
Matching statistic: St000097
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([],6)
=> ([],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The order of the largest clique of the graph.
A clique in a graph G is a subset U⊆V(G) such that any pair of vertices in U are adjacent. I.e. the subgraph induced by U is a complete graph.
Matching statistic: St000098
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([],6)
=> ([],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St000147
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> 2 = 3 - 1
([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 4 - 1
([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([],6)
=> [1,1,1,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
Description
The largest part of an integer partition.
Matching statistic: St000172
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([],6)
=> ([],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The Grundy number of a graph.
The Grundy number Γ(G) is defined to be the largest k such that G admits a greedy k-coloring. Any order of the vertices of G induces a greedy coloring by assigning to the i-th vertex in this order the smallest positive integer such that the partial coloring remains a proper coloring.
In particular, we have that χ(G)≤Γ(G)≤Δ(G)+1, where χ(G) is the chromatic number of G ([[St000098]]), and where Δ(G) is the maximal degree of a vertex of G ([[St000171]]).
Matching statistic: St000363
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([],6)
=> ([],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The number of minimal vertex covers of a graph.
A '''vertex cover''' of a graph G is a subset S of the vertices of G such that each edge of G contains at least one vertex of S. A vertex cover is minimal if it contains the least possible number of vertices.
This is also the leading coefficient of the clique polynomial of the complement of G.
This is also the number of independent sets of maximal cardinality of G.
Matching statistic: St000667
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> 2 = 3 - 1
([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 4 - 1
([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 5 - 1
([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 6 - 1
([],6)
=> [1,1,1,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> 6 = 7 - 1
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St000722
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([],6)
=> ([],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The number of different neighbourhoods in a graph.
Matching statistic: St001029
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([],6)
=> ([],6)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
Description
The size of the core of a graph.
The core of the graph G is the smallest graph C such that there is a graph homomorphism from G to C and a graph homomorphism from C to G.
The following 440 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001389The number of partitions of the same length below the given integer partition. St001494The Alon-Tarsi number of a graph. St001571The Cartan determinant of the integer partition. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001670The connected partition number of a graph. St001883The mutual visibility number of a graph. St000171The degree of the graph. St000272The treewidth of a graph. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000362The size of a minimal vertex cover of a graph. St000454The largest eigenvalue of a graph if it is integral. St000536The pathwidth of a graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001644The dimension of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000300The number of independent sets of vertices of a graph. St000439The position of the first down step of a Dyck path. St001330The hat guessing number of a graph. St000010The length of the partition. St000011The number of touch points (or returns) of a Dyck path. St000048The multinomial of the parts of a partition. St000093The cardinality of a maximal independent set of vertices of a graph. St000160The multiplicity of the smallest part of a partition. St000273The domination number of a graph. St000469The distinguishing number of a graph. St000507The number of ascents of a standard tableau. St000544The cop number of a graph. St000548The number of different non-empty partial sums of an integer partition. St000636The hull number of a graph. St000676The number of odd rises of a Dyck path. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000734The last entry in the first row of a standard tableau. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St000775The multiplicity of the largest eigenvalue in a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000899The maximal number of repetitions of an integer composition. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St000904The maximal number of repetitions of an integer composition. St000916The packing number of a graph. St000926The clique-coclique number of a graph. St001102The number of words with multiplicities of the letters given by the composition, avoiding the consecutive pattern 132. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001312Number of parabolic noncrossing partitions indexed by the composition. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001462The number of factors of a standard tableaux under concatenation. St001645The pebbling number of a connected graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001675The number of parts equal to the part in the reversed composition. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001746The coalition number of a graph. St001829The common independence number of a graph. St001933The largest multiplicity of a part in an integer partition. St000008The major index of the composition. St000377The dinv defect of an integer partition. St000778The metric dimension of a graph. St000877The depth of the binary word interpreted as a path. St001091The number of parts in an integer partition whose next smaller part has the same size. St001176The size of a partition minus its first part. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001777The number of weak descents in an integer composition. St001949The rigidity index of a graph. St000054The first entry of the permutation. St000203The number of external nodes of a binary tree. St000294The number of distinct factors of a binary word. St000326The position of the first one in a binary word after appending a 1 at the end. St000381The largest part of an integer composition. St000451The length of the longest pattern of the form k 1 2. St000518The number of distinct subsequences in a binary word. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St000738The first entry in the last row of a standard tableau. St000808The number of up steps of the associated bargraph. St000839The largest opener of a set partition. St000983The length of the longest alternating subword. St001267The length of the Lyndon factorization of the binary word. St001313The number of Dyck paths above the lattice path given by a binary word. St001371The length of the longest Yamanouchi prefix of a binary word. St001415The length of the longest palindromic prefix of a binary word. St001437The flex of a binary word. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001884The number of borders of a binary word. St000007The number of saliances of the permutation. St000013The height of a Dyck path. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000047The number of standard immaculate tableaux of a given shape. St000063The number of linear extensions of a certain poset defined for an integer partition. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000108The number of partitions contained in the given partition. St000141The maximum drop size of a permutation. St000153The number of adjacent cycles of a permutation. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000288The number of ones in a binary word. St000290The major index of a binary word. St000295The length of the border of a binary word. St000296The length of the symmetric border of a binary word. St000297The number of leading ones in a binary word. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000378The diagonal inversion number of an integer partition. St000382The first part of an integer composition. St000383The last part of an integer composition. St000392The length of the longest run of ones in a binary word. St000393The number of strictly increasing runs in a binary word. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000492The rob statistic of a set partition. St000499The rcb statistic of a set partition. St000504The cardinality of the first block of a set partition. St000505The biggest entry in the block containing the 1. St000532The total number of rook placements on a Ferrers board. St000543The size of the conjugacy class of a binary word. St000579The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element. St000617The number of global maxima of a Dyck path. St000626The minimal period of a binary word. St000627The exponent of a binary word. St000645The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. St000655The length of the minimal rise of a Dyck path. St000657The smallest part of an integer composition. St000682The Grundy value of Welter's game on a binary word. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000691The number of changes of a binary word. St000703The number of deficiencies of a permutation. St000733The row containing the largest entry of a standard tableau. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000816The number of standard composition tableaux of the composition. St000823The number of unsplittable factors of the set partition. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000922The minimal number such that all substrings of this length are unique. St000971The smallest closer of a set partition. St000982The length of the longest constant subword. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001051The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001372The length of a longest cyclic run of ones of a binary word. St001400The total number of Littlewood-Richardson tableaux of given shape. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001485The modular major index of a binary word. St001527The cyclic permutation representation number of an integer partition. St001643The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path. St001733The number of weak left to right maxima of a Dyck path. St001809The index of the step at the first peak of maximal height in a Dyck path. St000012The area of a Dyck path. St000024The number of double up and double down steps of a Dyck path. St000052The number of valleys of a Dyck path not on the x-axis. St000074The number of special entries. St000148The number of odd parts of a partition. St000157The number of descents of a standard tableau. St000211The rank of the set partition. St000218The number of occurrences of the pattern 213 in a permutation. St000220The number of occurrences of the pattern 132 in a permutation. St000228The size of a partition. St000234The number of global ascents of a permutation. St000237The number of small exceedances. St000245The number of ascents of a permutation. St000293The number of inversions of a binary word. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000384The maximal part of the shifted composition of an integer partition. St000431The number of occurrences of the pattern 213 or of the pattern 321 in a permutation. St000433The number of occurrences of the pattern 132 or of the pattern 321 in a permutation. St000441The number of successions of a permutation. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000519The largest length of a factor maximising the subword complexity. St000546The number of global descents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St000747A variant of the major index of a set partition. St000784The maximum of the length and the largest part of the integer partition. St000867The sum of the hook lengths in the first row of an integer partition. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001127The sum of the squares of the parts of a partition. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001541The Gini index of an integer partition. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000993The multiplicity of the largest part of an integer partition. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001463The number of distinct columns in the nullspace of a graph. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000567The sum of the products of all pairs of parts. St000308The height of the tree associated to a permutation. St000444The length of the maximal rise of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000740The last entry of a permutation. St000815The number of semistandard Young tableaux of partition weight of given shape. St000946The sum of the skew hook positions in a Dyck path. St001062The maximal size of a block of a set partition. St001075The minimal size of a block of a set partition. St001461The number of topologically connected components of the chord diagram of a permutation. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001778The largest greatest common divisor of an element and its image in a permutation. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000502The number of successions of a set partitions. St000503The maximal difference between two elements in a common block. St000674The number of hills of a Dyck path. St000728The dimension of a set partition. St000874The position of the last double rise in a Dyck path. St000984The number of boxes below precisely one peak. St001298The number of repeated entries in the Lehmer code of a permutation. St001332The number of steps on the non-negative side of the walk associated with the permutation. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000654The first descent of a permutation. St000702The number of weak deficiencies of a permutation. St000727The largest label of a leaf in the binary search tree associated with the permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000989The number of final rises of a permutation. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001360The number of covering relations in Young's lattice below a partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St000681The Grundy value of Chomp on Ferrers diagrams. St001497The position of the largest weak excedence of a permutation. St001725The harmonious chromatic number of a graph. St000019The cardinality of the support of a permutation. St000003The number of standard Young tableaux of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001128The exponens consonantiae of a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St000225Difference between largest and smallest parts in a partition. St001593This is the number of standard Young tableaux of the given shifted shape. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St001586The number of odd parts smaller than the largest even part in an integer partition. St000653The last descent of a permutation. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001316The domatic number of a graph. St001963The tree-depth of a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001962The proper pathwidth of a graph. St000301The number of facets of the stable set polytope of a graph. St000087The number of induced subgraphs. St000286The number of connected components of the complement of a graph. St000553The number of blocks of a graph. St000822The Hadwiger number of the graph. St000947The major index east count of a Dyck path. St001161The major index north count of a Dyck path. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000741The Colin de Verdière graph invariant. St001391The disjunction number of a graph. St000501The size of the first part in the decomposition of a permutation. St000209Maximum difference of elements in cycles. St001172The number of 1-rises at odd height of a Dyck path. St001584The area statistic between a Dyck path and its bounce path. St000287The number of connected components of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001498The normalised height of a Nakayama algebra with magnitude 1. St000420The number of Dyck paths that are weakly above a Dyck path. St001180Number of indecomposable injective modules with projective dimension at most 1. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001808The box weight or horizontal decoration of a Dyck path. St000056The decomposition (or block) number of a permutation. St000062The length of the longest increasing subsequence of the permutation. St000078The number of alternating sign matrices whose left key is the permutation. St000084The number of subtrees. St000239The number of small weak excedances. St000240The number of indices that are not small excedances. St000255The number of reduced Kogan faces with the permutation as type. St000258The burning number of a graph. St000309The number of vertices with even degree. St000314The number of left-to-right-maxima of a permutation. St000315The number of isolated vertices of a graph. St000335The difference of lower and upper interactions. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000443The number of long tunnels of a Dyck path. St000479The Ramsey number of a graph. St000482The (zero)-forcing number of a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000843The decomposition number of a perfect matching. St000844The size of the largest block in the direct sum decomposition of a permutation. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St000991The number of right-to-left minima of a permutation. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001191Number of simple modules S with ExtiA(S,A)=0 for all i=0,1,...,g−1 in the corresponding Nakayama algebra A with global dimension g. St001201The grade of the simple module S0 in the special CNakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001286The annihilation number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001441The number of non-empty connected induced subgraphs of a graph. St001481The minimal height of a peak of a Dyck path. St001672The restrained domination number of a graph. St001691The number of kings in a graph. St001759The Rajchgot index of a permutation. St001828The Euler characteristic of a graph. St000051The size of the left subtree of a binary tree. St000091The descent variation of a composition. St000204The number of internal nodes of a binary tree. St000316The number of non-left-to-right-maxima of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000954Number of times the corresponding LNakayama algebra has Exti(D(A),A)=0 for i>0. St000956The maximal displacement of a permutation. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001340The cardinality of a minimal non-edge isolating set of a graph. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001723The differential of a graph. St001724The 2-packing differential of a graph. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St001379The number of inversions plus the major index of a permutation. St000061The number of nodes on the left branch of a binary tree. St000746The number of pairs with odd minimum in a perfect matching. St000794The mak of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St001671Haglund's hag of a permutation. St001959The product of the heights of the peaks of a Dyck path. St000083The number of left oriented leafs of a binary tree except the first one. St000424The number of occurrences of the pattern 132 or of the pattern 231 in a permutation. St000426The number of occurrences of the pattern 132 or of the pattern 312 in a permutation. St000462The major index minus the number of excedences of a permutation. St001377The major index minus the number of inversions of a permutation. St001480The number of simple summands of the module J^2/J^3. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001570The minimal number of edges to add to make a graph Hamiltonian. St000840The number of closers smaller than the largest opener in a perfect matching. St001812The biclique partition number of a graph. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001458The rank of the adjacency matrix of a graph. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001834The number of non-isomorphic minors of a graph. St000005The bounce statistic of a Dyck path. St000120The number of left tunnels of a Dyck path. St000111The sum of the descent tops (or Genocchi descents) of a permutation. St000144The pyramid weight of the Dyck path. St000616The inversion index of a permutation. St001346The number of parking functions that give the same permutation. St000004The major index of a permutation. St000089The absolute variation of a composition. St000090The variation of a composition. St000154The sum of the descent bottoms of a permutation. St000156The Denert index of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000230Sum of the minimal elements of the blocks of a set partition. St000305The inverse major index of a permutation. St000542The number of left-to-right-minima of a permutation. St000756The sum of the positions of the left to right maxima of a permutation. St000796The stat' of a permutation. St000833The comajor index of a permutation. St000990The first ascent of a permutation. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001273The projective dimension of the first term in an injective coresolution of the regular module. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000317The cycle descent number of a permutation. St000338The number of pixed points of a permutation. St000355The number of occurrences of the pattern 21-3. St000358The number of occurrences of the pattern 31-2. St000435The number of occurrences of the pattern 213 or of the pattern 231 in a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000732The number of double deficiencies of a permutation. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001727The number of invisible inversions of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000045The number of linear extensions of a binary tree. St001948The number of augmented double ascents of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!