Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001340
St001340: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 2
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 3
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 4
([(3,4)],5)
=> 3
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The cardinality of a minimal non-edge isolating set of a graph. Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$. This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with two isolated vertices.
Matching statistic: St000706
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000706: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 1
([],2)
=> []
=> ?
=> ? = 1 - 1
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 1
([],3)
=> []
=> ?
=> ? = 2 - 1
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 1
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 1
([],4)
=> []
=> ?
=> ? = 3 - 1
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 1
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 1
([],5)
=> []
=> ?
=> ? = 4 - 1
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 1
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 2 - 1
Description
The product of the factorials of the multiplicities of an integer partition.
Matching statistic: St000993
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 1
([],2)
=> []
=> ?
=> ? = 1 - 1
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 1
([],3)
=> []
=> ?
=> ? = 2 - 1
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 1
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 1
([],4)
=> []
=> ?
=> ? = 3 - 1
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 1
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 1
([],5)
=> []
=> ?
=> ? = 4 - 1
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 1
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 2 - 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001568
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001568: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 1
([],2)
=> []
=> ?
=> ? = 1 - 1
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 1
([],3)
=> []
=> ?
=> ? = 2 - 1
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 1
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 1
([],4)
=> []
=> ?
=> ? = 3 - 1
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 1
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 1
([],5)
=> []
=> ?
=> ? = 4 - 1
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 1
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 1 = 2 - 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 1 = 2 - 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 1 = 2 - 1
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 1 = 2 - 1
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St000567
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000567: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 2
([],2)
=> []
=> ?
=> ? = 1 - 2
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([],3)
=> []
=> ?
=> ? = 2 - 2
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([],4)
=> []
=> ?
=> ? = 3 - 2
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 2
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([],5)
=> []
=> ?
=> ? = 4 - 2
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 2
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 2 - 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 2 - 2
Description
The sum of the products of all pairs of parts. This is the evaluation of the second elementary symmetric polynomial which is equal to $$e_2(\lambda) = \binom{n+1}{2} - \sum_{i=1}^\ell\binom{\lambda_i+1}{2}$$ for a partition $\lambda = (\lambda_1,\dots,\lambda_\ell) \vdash n$, see [1]. This is the maximal number of inversions a permutation with the given shape can have, see [2, cor.2.4].
Matching statistic: St000929
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000929: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 2
([],2)
=> []
=> ?
=> ? = 1 - 2
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([],3)
=> []
=> ?
=> ? = 2 - 2
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([],4)
=> []
=> ?
=> ? = 3 - 2
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 2
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([],5)
=> []
=> ?
=> ? = 4 - 2
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 2
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 2 - 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 2 - 2
Description
The constant term of the character polynomial of an integer partition. The definition of the character polynomial can be found in [1]. Indeed, this constant term is $0$ for partitions $\lambda \neq 1^n$ and $1$ for $\lambda = 1^n$.
Matching statistic: St001099
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001099: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 2
([],2)
=> []
=> ?
=> ? = 1 - 2
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([],3)
=> []
=> ?
=> ? = 2 - 2
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([],4)
=> []
=> ?
=> ? = 3 - 2
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 2
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([],5)
=> []
=> ?
=> ? = 4 - 2
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 2
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 2 - 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 2 - 2
Description
The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1]. This statistic records the coefficient of the monomial symmetric function $m_\lambda$ times the product of the factorials of the parts of $\lambda$ in the formal group law for leaf labelled binary trees, with generating function $f(x) = 1-\sqrt{1-2x}$, see [1, sec. 3.2] Fix a set of distinguishable vertices and a coloring of the vertices so that $\lambda_i$ are colored $i$. This statistic gives the number of rooted binary trees with leaves labeled with this set of vertices and internal vertices unlabeled so that no pair of 'twin' leaves have the same color.
Matching statistic: St001100
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001100: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 2
([],2)
=> []
=> ?
=> ? = 1 - 2
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([],3)
=> []
=> ?
=> ? = 2 - 2
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([],4)
=> []
=> ?
=> ? = 3 - 2
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 2
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([],5)
=> []
=> ?
=> ? = 4 - 2
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 2
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 2 - 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 2 - 2
Description
The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1]. This statistic records the coefficient of the monomial symmetric function $m_\lambda$ times the product of the factorials of the parts of $\lambda$ in the formal group law for leaf labelled binary trees, whose generating function is the reversal of $f^{(-1)}(x) = 1+2x-\exp(x)$, see [1, sec. 3.2] Fix a set of distinguishable vertices and a coloring of the vertices so that $\lambda_i$ are colored $i$. This statistic gives the number of rooted trees with leaves labeled with this set of vertices and internal vertices unlabeled so that no pair of 'twin' leaves have the same color.
Matching statistic: St001101
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001101: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ? = 0 - 2
([],2)
=> []
=> ?
=> ? = 1 - 2
([(0,1)],2)
=> [1]
=> []
=> ? = 1 - 2
([],3)
=> []
=> ?
=> ? = 2 - 2
([(1,2)],3)
=> [1]
=> []
=> ? = 1 - 2
([(0,2),(1,2)],3)
=> [2]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? = 1 - 2
([],4)
=> []
=> ?
=> ? = 3 - 2
([(2,3)],4)
=> [1]
=> []
=> ? = 2 - 2
([(1,3),(2,3)],4)
=> [2]
=> []
=> ? = 1 - 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> ? = 1 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> ? = 1 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> ? = 1 - 2
([],5)
=> []
=> ?
=> ? = 4 - 2
([(3,4)],5)
=> [1]
=> []
=> ? = 3 - 2
([(2,4),(3,4)],5)
=> [2]
=> []
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> ? = 1 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> ? = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> ? = 1 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> 0 = 2 - 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> 0 = 2 - 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> 1 = 3 - 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> 0 = 2 - 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> 0 = 2 - 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> 0 = 2 - 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> 0 = 2 - 2
Description
The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1]. This statistic records the coefficient of the monomial symmetric function $m_\lambda$ times the product of the factorials of the parts of $\lambda$ in the formal group law for increasing trees, whose generating function is $f(x) = -\log(1-x)$, see [1, sec. 9.1] Fix a coloring of $\{1,2, \ldots, n\}$ so that $\lambda_i$ are colored with the $i$th color. This statistic gives the number of increasing trees on this colored set of vertices so that no leaf has the same color as its parent. (An increasing tree is a rooted tree on the vertex set $\{1,2, \ldots, n\}$ with the property that any child of $i$ is greater than $i$.)
Matching statistic: St000668
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 29%
Values
([],1)
=> []
=> ?
=> ?
=> ? = 0 - 1
([],2)
=> []
=> ?
=> ?
=> ? = 1 - 1
([(0,1)],2)
=> [1]
=> []
=> []
=> ? = 1 - 1
([],3)
=> []
=> ?
=> ?
=> ? = 2 - 1
([(1,2)],3)
=> [1]
=> []
=> []
=> ? = 1 - 1
([(0,2),(1,2)],3)
=> [2]
=> []
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 1
([],4)
=> []
=> ?
=> ?
=> ? = 3 - 1
([(2,3)],4)
=> [1]
=> []
=> []
=> ? = 2 - 1
([(1,3),(2,3)],4)
=> [2]
=> []
=> []
=> ? = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> []
=> []
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> [1,1]
=> [1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> []
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> []
=> []
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> []
=> []
=> ? = 1 - 1
([],5)
=> []
=> ?
=> ?
=> ? = 4 - 1
([(3,4)],5)
=> [1]
=> []
=> []
=> ? = 3 - 1
([(2,4),(3,4)],5)
=> [2]
=> []
=> []
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [1,1]
=> [1]
=> [1]
=> ? = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> []
=> []
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [1]
=> [1]
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3]
=> []
=> []
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> []
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> []
=> []
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1]
=> [1]
=> ? = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> []
=> []
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(1,6),(2,5),(3,4)],7)
=> [1,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(0,3),(1,2),(4,6),(5,6)],7)
=> [2,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> [4,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> [5,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> [3,1,1]
=> [1,1]
=> [2]
=> 2 = 3 - 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [3,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> [4,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7)
=> [4,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,2]
=> [2]
=> [1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,3]
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
Description
The least common multiple of the parts of the partition.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition.