Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001384
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001384: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,2,1]
=> 0
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,1,1]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [2,1,1]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,2]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2]
=> 1
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [2,2]
=> 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,1]
=> 1
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 0
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 0
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 0
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 0
Description
The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains.
Matching statistic: St001879
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00009: Binary trees left rotateBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 0% values known / values provided: 0%distinct values known / distinct values provided: 36%
Values
[1,2,3] => [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 2
[1,3,2] => [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 0 + 2
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 1 + 2
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 1 + 2
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 2
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 0 + 2
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 0 + 2
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
[1,5,3,2,4] => [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 2
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 2
[1,5,4,2,3] => [.,[[[.,[.,.]],.],.]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 2
[2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 2
[1,6,2,3,4,5] => [.,[[.,[.,[.,[.,.]]]],.]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,2,3,5,4] => [.,[[.,[.,[[.,.],.]]],.]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,2,5,3,4] => [.,[[.,[[.,[.,.]],.]],.]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,2,5,4,3] => [.,[[.,[[[.,.],.],.]],.]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,5,2,3,4] => [.,[[[.,[.,[.,.]]],.],.]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,5,2,4,3] => [.,[[[.,[[.,.],.]],.],.]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,5,4,2,3] => [.,[[[[.,[.,.]],.],.],.]]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
[1,7,2,3,4,5,6] => [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,3,4,6,5] => [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,3,6,4,5] => [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,3,6,5,4] => [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,6,3,4,5] => [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,6,3,5,4] => [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,6,5,3,4] => [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,2,6,5,4,3] => [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,2,3,4,5] => [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,2,3,5,4] => [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,2,5,3,4] => [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,2,5,4,3] => [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,5,2,3,4] => [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,5,2,4,3] => [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,5,4,2,3] => [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
[1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00009: Binary trees left rotateBinary trees
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 0% values known / values provided: 0%distinct values known / distinct values provided: 36%
Values
[1,2,3] => [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 3
[1,3,2] => [.,[[.,.],.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 0 + 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 1 + 3
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 1 + 3
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 1 + 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 0 + 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 0 + 3
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 3
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 0 + 3
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 3
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 3
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 3
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 3
[1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 2 + 3
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 2 + 3
[1,5,3,2,4] => [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 3
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 2 + 3
[1,5,4,2,3] => [.,[[[.,[.,.]],.],.]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 2 + 3
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 2 + 3
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 3
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 3
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 3
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 3
[2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 3
[2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 3
[2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 3
[2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 3
[2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 3
[2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 0 + 3
[2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 3
[2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 1 + 3
[1,6,2,3,4,5] => [.,[[.,[.,[.,[.,.]]]],.]]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,2,3,5,4] => [.,[[.,[.,[[.,.],.]]],.]]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,2,5,3,4] => [.,[[.,[[.,[.,.]],.]],.]]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,2,5,4,3] => [.,[[.,[[[.,.],.],.]],.]]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,5,2,3,4] => [.,[[[.,[.,[.,.]]],.],.]]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,5,2,4,3] => [.,[[[.,[[.,.],.]],.],.]]
=> [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,5,4,2,3] => [.,[[[[.,[.,.]],.],.],.]]
=> [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 3 + 3
[1,7,2,3,4,5,6] => [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,3,4,6,5] => [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,3,6,4,5] => [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,3,6,5,4] => [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,6,3,4,5] => [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,6,3,5,4] => [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,6,5,3,4] => [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [[.,[.,[[[.,[.,.]],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,2,6,5,4,3] => [.,[[.,[[[[.,.],.],.],.]],.]]
=> [[.,[.,[[[[.,.],.],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,2,3,4,5] => [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,2,3,5,4] => [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [[.,[[.,[.,[[.,.],.]]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,2,5,3,4] => [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [[.,[[.,[[.,[.,.]],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,2,5,4,3] => [.,[[[.,[[[.,.],.],.]],.],.]]
=> [[.,[[.,[[[.,.],.],.]],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,5,2,3,4] => [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [[.,[[[.,[.,[.,.]]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,5,2,4,3] => [.,[[[[.,[[.,.],.]],.],.],.]]
=> [[.,[[[.,[[.,.],.]],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,5,4,2,3] => [.,[[[[[.,[.,.]],.],.],.],.]]
=> [[.,[[[[.,[.,.]],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
[1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> [[.,[[[[[.,.],.],.],.],.]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 4 + 3
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.