searching the database
Your data matches 65 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001392
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001392: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 0
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Matching statistic: St000455
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 17%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 17%
Values
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> ? = 0
[1,0,1,1,0,0]
=> [1,2] => [1,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => ([],6)
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [1,5] => ([(4,5)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,4] => ([(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1] => [7] => ([],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,2] => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,1] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000487
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
St000487: Permutations ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 50%
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
St000487: Permutations ⟶ ℤResult quality: 5% ●values known / values provided: 5%●distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,2] => [2,1] => [1,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [2,3,1] => [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,2,1] => [2,1,3] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [1,3,2] => [3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [2,3,4,1] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,4,3,1] => [1,3,2,4] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,2,4,1] => [2,1,3,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,3,1] => [2,3,1,4] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,4,2,1] => [3,1,2,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3,4,2] => [4,2,3,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,3,2] => [4,3,2,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,4,3] => [2,4,3,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,4,2] => [4,1,3,2] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [2,3,4,5,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,3,5,4,1] => [1,2,4,3,5] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,4,3,5,1] => [1,3,2,4,5] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,5,3,4,1] => [1,3,4,2,5] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [2,4,5,3,1] => [1,4,2,3,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,2,4,5,1] => [2,1,3,4,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2,5,4,1] => [2,1,4,3,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [4,2,3,5,1] => [2,3,1,4,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,2,3,4,1] => [2,3,4,1,5] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => [2,4,1,3,5] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,4,2,5,1] => [3,1,2,4,5] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => [3,1,4,2,5] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [4,5,2,3,1] => [3,4,1,2,5] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [3,4,5,2,1] => [4,1,2,3,5] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,3,4,5,2] => [5,2,3,4,1] => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,5,4,2] => [5,2,4,3,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,3,5,2] => [5,3,2,4,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,5,3,4,2] => [5,3,4,2,1] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,4,5,3,2] => [5,4,2,3,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,4,5,3] => [2,5,3,4,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,4,3] => [2,5,4,3,1] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,5,4] => [2,3,5,4,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,4,2,5,3] => [3,5,2,4,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,4,5,2] => [5,1,3,4,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,5,4,2] => [5,1,4,3,2] => 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1,3,5,2] => [5,3,1,4,2] => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [4,1,2,5,3] => [3,5,1,4,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [3,4,1,5,2] => [5,1,2,4,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,3,4,6,5,1] => [1,2,3,5,4,6] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,3,5,4,6,1] => [1,2,4,3,5,6] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [2,3,6,4,5,1] => [1,2,4,5,3,6] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [2,3,5,6,4,1] => [1,2,5,3,4,6] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [2,4,3,5,6,1] => [1,3,2,4,5,6] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [2,4,3,6,5,1] => [1,3,2,5,4,6] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [2,5,3,4,6,1] => [1,3,4,2,5,6] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [2,6,3,4,5,1] => [1,3,4,5,2,6] => 1 = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => [2,4,5,6,3,7,1] => [1,5,2,3,4,6,7] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => [2,4,5,7,3,6,1] => [1,5,2,3,6,4,7] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [2,4,6,7,3,5,1] => [1,5,2,6,3,4,7] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [2,5,6,7,3,4,1] => [1,5,6,2,3,4,7] => ? = 0 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [2,4,5,6,7,3,1] => [1,6,2,3,4,5,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [3,2,4,5,6,7,1] => [2,1,3,4,5,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [3,2,4,5,7,6,1] => [2,1,3,4,6,5,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [3,2,4,6,5,7,1] => [2,1,3,5,4,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [3,2,4,7,5,6,1] => [2,1,3,5,6,4,7] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,5,6] => [3,2,4,6,7,5,1] => [2,1,3,6,4,5,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [3,2,5,4,6,7,1] => [2,1,4,3,5,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [3,2,5,4,7,6,1] => [2,1,4,3,6,5,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [3,2,6,4,5,7,1] => [2,1,4,5,3,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [3,2,7,4,5,6,1] => [2,1,4,5,6,3,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [3,2,6,4,7,5,1] => [2,1,4,6,3,5,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,4,5,7] => [3,2,5,6,4,7,1] => [2,1,5,3,4,6,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [3,2,5,7,4,6,1] => [2,1,5,3,6,4,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,4,5] => [3,2,6,7,4,5,1] => [2,1,5,6,3,4,7] => ? = 0 + 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,4,5,6] => [3,2,5,6,7,4,1] => [2,1,6,3,4,5,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => [4,2,3,5,6,7,1] => [2,3,1,4,5,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5,7,6] => [4,2,3,5,7,6,1] => [2,3,1,4,6,5,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5,7] => [4,2,3,6,5,7,1] => [2,3,1,5,4,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => [4,2,3,7,5,6,1] => [2,3,1,5,6,4,7] => ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,5,6] => [4,2,3,6,7,5,1] => [2,3,1,6,4,5,7] => ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [5,2,3,4,6,7,1] => [2,3,4,1,5,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [5,2,3,4,7,6,1] => [2,3,4,1,6,5,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [6,2,3,4,5,7,1] => [2,3,4,5,1,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => [7,2,3,4,5,6,1] => [2,3,4,5,6,1,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,4,5,7,2,6] => [6,2,3,4,7,5,1] => [2,3,4,6,1,5,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,2,5,7] => [5,2,3,6,4,7,1] => [2,3,5,1,4,6,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,2,7,5] => [5,2,3,7,4,6,1] => [2,3,5,1,6,4,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,6,7,2,5] => [6,2,3,7,4,5,1] => [2,3,5,6,1,4,7] => ? = 0 + 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,2,5,6] => [5,2,3,6,7,4,1] => [2,3,6,1,4,5,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,2,4,6,7] => [4,2,5,3,6,7,1] => [2,4,1,3,5,6,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,2,4,7,6] => [4,2,5,3,7,6,1] => [2,4,1,3,6,5,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,6,4,7] => [4,2,6,3,5,7,1] => [2,4,1,5,3,6,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,2,6,7,4] => [4,2,7,3,5,6,1] => [2,4,1,5,6,3,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,7,4,6] => [4,2,6,3,7,5,1] => [2,4,1,6,3,5,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,2,4,7] => [5,2,6,3,4,7,1] => [2,4,5,1,3,6,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,5,6,2,7,4] => [5,2,7,3,4,6,1] => [2,4,5,1,6,3,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,5,6,7,2,4] => [6,2,7,3,4,5,1] => [2,4,5,6,1,3,7] => ? = 0 + 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [5,2,6,3,7,4,1] => [2,4,6,1,3,5,7] => ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,2,4,5,7] => [4,2,5,6,3,7,1] => [2,5,1,3,4,6,7] => ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,2,4,7,5] => [4,2,5,7,3,6,1] => [2,5,1,3,6,4,7] => ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => [4,2,6,7,3,5,1] => [2,5,1,6,3,4,7] => ? = 0 + 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [5,2,6,7,3,4,1] => [2,5,6,1,3,4,7] => ? = 0 + 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,2,4,5,6] => [4,2,5,6,7,3,1] => [2,6,1,3,4,5,7] => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,4,2,3,5,6,7] => [3,4,2,5,6,7,1] => [3,1,2,4,5,6,7] => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,4,2,3,5,7,6] => [3,4,2,5,7,6,1] => [3,1,2,4,6,5,7] => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,4,2,3,6,5,7] => [3,4,2,6,5,7,1] => [3,1,2,5,4,6,7] => ? = 0 + 1
Description
The length of the shortest cycle of a permutation.
Matching statistic: St001236
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St001236: Integer compositions ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St001236: Integer compositions ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,1] => [2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1] => [2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [2,1,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [2,1,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1,1,2] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1,1,2] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1,2,1] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [2,1,1,1] => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [1,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [1,1,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [1,1,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,3] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [1,1,1,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1] => [7] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => [1,6] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,2,1] => [2,5] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,3] => [1,1,5] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,3] => [1,1,5] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1] => [3,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2] => [1,2,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,3,1] => [2,1,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,4] => [1,1,1,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,3,1] => [2,1,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,4] => [1,1,1,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1] => [4,3] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,2] => [1,3,3] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,1] => [2,2,3] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,2,3] => [1,1,2,3] => ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,2,3] => [1,1,2,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,3,2] => [1,2,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,3,2] => [1,2,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,4,1] => [2,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,5] => [1,1,1,1,3] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1] => [5,2] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,1,1,2] => [1,4,2] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,2,1,2,1] => [2,3,2] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,2,1,3] => [1,1,3,2] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,2,1,3] => [1,1,3,2] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,2,1,1] => [3,2,2] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,2,2] => [1,2,2,2] => ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,2,3,1] => [2,1,2,2] => ? = 0 + 1
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Matching statistic: St000310
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000310: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000310: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,6,4,5,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([],7)
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => ([(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ([(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => ([(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ([(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ([(3,6),(4,5)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => ([(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,4,6] => [1,2,3,6,7,4,5] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => ([(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => [1,2,3,7,5,6,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,7,5,6,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ([(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ([(3,6),(4,5)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ([(3,6),(4,5)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => ([(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,4,5,6,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,3,6] => [1,2,6,4,7,3,5] => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [1,2,5,7,3,6,4] => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [1,2,6,7,5,3,4] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,3,5,6] => [1,2,5,7,3,6,4] => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => ([(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => [1,2,7,4,5,6,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => [1,2,6,4,7,3,5] => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [1,2,7,5,4,6,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [1,2,7,6,5,4,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => [1,2,6,7,5,3,4] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => [1,2,6,4,5,3,7] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => [1,2,7,4,5,6,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [1,2,7,4,6,5,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [1,2,7,6,5,4,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [1,2,7,4,5,6,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => ([(5,6)],7)
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => ([(3,6),(4,5)],7)
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ([(3,6),(4,5)],7)
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,6,5] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,5,6] => [1,3,2,4,7,6,5] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ([(3,6),(4,5)],7)
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ([(1,6),(2,5),(3,4)],7)
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,5,4,7] => ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
Description
The minimal degree of a vertex of a graph.
Matching statistic: St001481
(load all 24 compositions to match this statistic)
(load all 24 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001481: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001481: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,5,4,3,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,6,4,5,3] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,4,6] => [1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,4,5,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,3,6] => [1,2,6,4,7,3,5] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,3,5,6] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => [1,2,7,4,5,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => [1,2,6,4,7,3,5] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [1,2,7,5,4,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [1,2,7,6,5,4,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => [1,2,7,4,5,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [1,2,7,4,6,5,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [1,2,7,6,5,4,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [1,2,7,4,5,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,5,6] => [1,3,2,4,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,5,4,7] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 0 + 1
Description
The minimal height of a peak of a Dyck path.
Matching statistic: St001060
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 17%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 17%
Values
[1,0,1,0]
=> [1,2] => ([],2)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> ? = 0 + 2
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,2,6,3] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,1,5,2,4,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,4,6] => ([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => ([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,3,6] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,3,5,7] => ([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,3,5,6] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4,7] => ([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,4,5,7,2,6] => ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,2,5,7] => ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,2,7,5] => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,6,7,2,5] => ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,2,5,6] => ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,2,4,6,7] => ([(3,6),(4,5),(5,6)],7)
=> ([(1,4),(2,3),(3,4)],5)
=> 2 = 0 + 2
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001435
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 17%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 17%
Values
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 0
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [[5,3,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [[5,2,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [[5,3,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [[5,4,2,2,1],[]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
Description
The number of missing boxes in the first row.
Matching statistic: St001438
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001438: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 17%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001438: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 17%
Values
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 0
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 0
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 0
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [[5,3,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [[5,2,2,1,1],[]]
=> ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [[5,3,1,1,1],[]]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [[5,4,2,2,1],[]]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [[2],[]]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 0
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 0
Description
The number of missing boxes of a skew partition.
Matching statistic: St001487
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001487: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 17%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001487: Skew partitions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 17%
Values
[1,0,1,0]
=> [1,1,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[4,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> [[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> [[3,2,1],[]]
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [[3],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1]
=> [[4,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1]
=> [[4,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> [[4,3,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1]
=> [[4,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1]
=> [[4,3,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> [[3,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> [[3,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> [[3,3,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1]
=> [[3,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1]
=> [[2,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> [[3,3,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> [[4,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> [[4,2,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> [[4,3,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> [[4,3,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [[3,3,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [[2,2,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> [[3,3,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> [[4,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> [[4,2],[]]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> [[4,3],[]]
=> ? = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [[3,3],[]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [[4],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [[5,3,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [[5,2,2,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [[5,3,1,1,1],[]]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [[5,4,2,2,1],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,1]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> [[3,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [2,2,1]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [3,1]
=> [[3,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [3,2]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [[2,2],[]]
=> 1 = 0 + 1
Description
The number of inner corners of a skew partition.
The following 55 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001490The number of connected components of a skew partition. St001545The second Elser number of a connected graph. St000002The number of occurrences of the pattern 123 in a permutation. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000405The number of occurrences of the pattern 1324 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000441The number of successions of a permutation. St000534The number of 2-rises of a permutation. St000546The number of global descents of a permutation. St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000669The number of permutations obtained by switching ascents or descents of size 2. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000035The number of left outer peaks of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000842The breadth of a permutation. St000862The number of parts of the shifted shape of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001095The number of non-isomorphic posets with precisely one further covering relation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001330The hat guessing number of a graph. St001964The interval resolution global dimension of a poset. St000307The number of rowmotion orbits of a poset. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000221The number of strong fixed points of a permutation. St000461The rix statistic of a permutation. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000056The decomposition (or block) number of a permutation. St000261The edge connectivity of a graph. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St000700The protection number of an ordered tree. St000906The length of the shortest maximal chain in a poset. St000768The number of peaks in an integer composition. St000068The number of minimal elements in a poset. St001866The nesting alignments of a signed permutation. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001846The number of elements which do not have a complement in the lattice. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001513The number of nested exceedences of a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St001533The largest coefficient of the Poincare polynomial of the poset cone.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!