searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001418
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
St001418: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 0
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> 1
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Matching statistic: St000845
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 77% ●values known / values provided: 77%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 77% ●values known / values provided: 77%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [5,7,3,6,4,2,1] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [5,3,7,6,4,2,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [4,7,3,6,5,2,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [4,3,7,6,5,2,1] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [6,7,4,5,2,3,1] => ([(1,6),(2,5),(3,4)],7)
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [6,4,7,5,2,3,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [5,7,4,6,2,3,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => [5,7,6,2,4,3,1] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,2,7,5] => [5,7,2,6,4,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,6,7,2,5] => [5,2,7,6,4,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,2,4,7,6] => [6,7,4,2,5,3,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,2,6,4,7] => [7,4,6,2,5,3,1] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,2,6,7,4] => [4,7,6,2,5,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,7,4,6] => [6,4,7,2,5,3,1] => ([(1,5),(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,2,4,7] => [7,4,2,6,5,3,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,5,6,2,7,4] => [4,7,2,6,5,3,1] => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,5,6,7,2,4] => [4,2,7,6,5,3,1] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6] => [6,4,2,7,5,3,1] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,2,4,7,5] => [5,7,4,2,6,3,1] => ([(1,6),(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6] => [6,7,3,5,2,4,1] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,2,5,7,3,6] => [6,3,7,5,2,4,1] => ([(1,6),(2,5),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,6,3,7,5] => [5,7,3,6,2,4,1] => ([(1,5),(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,4,5,2,6,3,7] => [7,3,6,2,5,4,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,2,6,7,3] => [3,7,6,2,5,4,1] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,2,3,7] => [7,3,2,6,5,4,1] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,5,6,2,7,3] => [3,7,2,6,5,4,1] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,2,3] => [3,2,7,6,5,4,1] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 4
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [5,3,7,2,6,4,1] => ([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [5,3,2,7,6,4,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => [4,7,3,6,2,5,1] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [4,3,7,2,6,5,1] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3,2,7,6,5,1] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [6,7,4,5,3,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? = 1
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,4,6] => [6,4,7,5,3,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,4,7,5] => [5,7,4,6,3,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [6,7,5,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [7,5,6,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [5,7,6,3,4,1,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? = 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [6,7,3,5,4,1,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? = 2
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,3,6] => [6,3,7,5,4,1,2] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? = 3
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,7] => [7,5,3,6,4,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,7,5] => [5,7,3,6,4,1,2] => ([(0,5),(1,4),(1,6),(2,3),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,1,4,6,7,3,5] => [5,3,7,6,4,1,2] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(2,6)],7)
=> ? = 3
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4,7] => [7,4,6,3,5,1,2] => ([(1,6),(2,5),(3,4),(3,6)],7)
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,3,6,7,4] => [4,7,6,3,5,1,2] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? = 3
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,1,5,6,3,7,4] => [4,7,3,6,5,1,2] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(2,6)],7)
=> ? = 3
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,3,4] => [4,3,7,6,5,1,2] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3)],7)
=> ? = 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => [5,7,6,4,1,3,2] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => [6,7,4,5,1,3,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1,5,6,4,7] => [7,4,6,5,1,3,2] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St000662
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 4
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => ? = 3
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,4,3,7,6,2] => ? = 3
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,4,3,6,7,2] => ? = 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,4,6,3,2,7] => ? = 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,4,6,3,7,2] => ? = 3
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,4,6,7,3,2] => ? = 3
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 3
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,3,7,2] => ? = 3
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,5,7,3,2] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => ? = 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 2
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 3
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,6,7,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => ? = 1
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 3
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,5,4,7,3] => ? = 3
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => ? = 2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,4,7,6,3] => ? = 2
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,5,7,4,3] => ? = 3
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,4,6,7,3] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,6,5,3] => ? = 3
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,5,6,4,3,7] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,6,4,3] => ? = 3
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,5,4,3] => ? = 3
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,1,5,6,4,7,3] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => ? = 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,6,3] => ? = 2
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,1,4,6,7,5,3] => ? = 2
Description
The staircase size of the code of a permutation.
The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$.
The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$.
This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St000651
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00326: Permutations —weak order rowmotion⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00326: Permutations —weak order rowmotion⟶ Permutations
St000651: Permutations ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [1,3,2] => 2
[1,1,1,0,0,0]
=> [3,1,2] => [3,2,1] => [1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [3,4,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [2,4,3,1] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [4,3,1,2] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [4,1,3,2] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [1,4,3,2] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,3,1,2] => [1,3,4,2] => 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,2,1,4] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => [1,2,4,3] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,1,4,2] => [1,3,2,4] => 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,3,2,1] => [1,2,3,4] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [4,5,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [3,5,4,2,1] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,4,3] => [3,4,5,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [4,5,2,3,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [5,2,4,3,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [2,5,4,3,1] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,4,2,3] => [2,4,5,3,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,3,2,5] => [5,2,3,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,2,4] => [2,3,5,4,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,5,3] => [2,4,3,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,4,3,2] => [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [5,3,4,1,2] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [3,5,4,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => [3,4,5,1,2] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [5,4,1,3,2] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [4,5,1,3,2] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [5,1,4,3,2] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,5,4,3,2] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => [1,4,5,3,2] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,3,1,2,5] => [5,1,3,4,2] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => [1,3,5,4,2] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,1,2,5,3] => [1,4,3,5,2] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => [1,3,4,5,2] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => [5,4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => [5,7,6,4,3,2,1] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => [5,6,7,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [6,7,4,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => [7,4,6,5,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => [4,7,6,5,3,2,1] => ? = 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,4,6] => [1,2,3,7,6,4,5] => [4,6,7,5,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [7,4,5,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,4,7,5] => [1,2,3,7,5,4,6] => [4,5,7,6,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => [1,2,3,6,4,7,5] => [4,6,5,7,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,7,6,5,4] => [4,5,6,7,3,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [7,6,5,3,4,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [6,7,5,3,4,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [7,5,6,3,4,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => [5,7,6,3,4,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => [5,6,7,3,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => [7,6,3,5,4,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => [6,7,3,5,4,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => [7,3,6,5,4,2,1] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => [3,7,6,5,4,2,1] => ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,3,6] => [1,2,7,6,3,4,5] => [3,6,7,5,4,2,1] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,3,5,7] => [1,2,6,5,3,4,7] => [7,3,5,6,4,2,1] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [1,2,7,5,3,4,6] => [3,5,7,6,4,2,1] => ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [1,2,6,3,4,7,5] => [3,6,5,7,4,2,1] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,3,5,6] => [1,2,7,6,5,3,4] => [3,5,6,7,4,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [6,7,3,4,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4,7] => [1,2,6,4,3,5,7] => [7,3,4,6,5,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => [1,2,7,4,3,5,6] => [3,4,7,6,5,2,1] => ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => [1,2,7,6,4,3,5] => [3,4,6,7,5,2,1] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => [1,2,5,3,6,4,7] => [7,3,5,4,6,2,1] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [1,2,5,3,7,4,6] => [3,5,4,7,6,2,1] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [1,2,7,4,6,3,5] => [4,7,3,6,5,2,1] => ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => [1,2,5,3,7,6,4] => [3,5,4,6,7,2,1] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => [1,2,6,5,4,3,7] => [7,3,4,5,6,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => [1,2,7,5,4,3,6] => [3,4,5,7,6,2,1] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [1,2,6,4,3,7,5] => [3,4,6,5,7,2,1] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [1,2,7,5,3,6,4] => [3,5,7,4,6,2,1] => ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [1,2,7,6,5,4,3] => [3,4,5,6,7,2,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [7,6,5,4,2,3,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [6,7,5,4,2,3,1] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [7,5,6,4,2,3,1] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,5,6] => [5,7,6,4,2,3,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,5,6] => [1,3,2,4,7,6,5] => [5,6,7,4,2,3,1] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [7,6,4,5,2,3,1] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [6,7,4,5,2,3,1] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,4,5,7] => [7,4,6,5,2,3,1] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [1,3,2,7,4,5,6] => [4,7,6,5,2,3,1] => ? = 3
Description
The maximal size of a rise in a permutation.
This is $\max_i \sigma_{i+1}-\sigma_i$, except for the permutations without rises, where it is $0$.
Matching statistic: St000141
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 100%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => ? = 2
Description
The maximum drop size of a permutation.
The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St000028
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [3,1,4,2] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,4,2,5,3] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,4,1,5] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [2,3,5,4,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [2,4,1,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [2,4,5,3,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [2,5,4,3,1] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [3,2,1,4,5] => 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => [1,2,3,4,6,7,5] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,5,6] => [1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,2,3,5,6,4,7] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => [1,2,3,5,6,7,4] => ? = 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,4,6] => [1,2,3,7,5,4,6] => [1,2,3,5,7,6,4] => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,4,5,7] => [1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,4,5] => [1,2,3,7,4,6,5] => [1,2,3,6,7,5,4] => ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,4,5,6] => [1,2,3,7,4,5,6] => [1,2,3,7,6,5,4] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => [1,2,4,3,6,7,5] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,5,6] => [1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,2,4,5,3,6,7] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,2,4,5,3,7,6] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,2,4,5,6,3,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,4,5,6,3] => [1,2,4,5,6,7,3] => ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,3,6] => [1,2,7,4,5,3,6] => [1,2,4,5,7,6,3] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,3,5,7] => [1,2,6,4,3,5,7] => [1,2,4,6,5,3,7] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,3,7,5] => [1,2,6,4,7,3,5] => [1,2,4,6,3,7,5] => ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,3,5] => [1,2,7,4,3,6,5] => [1,2,4,6,7,5,3] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,3,5,6] => [1,2,7,4,3,5,6] => [1,2,4,7,6,5,3] => ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,3,4,6,7] => [1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,3,4,7,6] => [1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4,7] => [1,2,5,6,3,4,7] => [1,2,5,3,6,4,7] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,3,6,7,4] => [1,2,5,7,3,6,4] => [1,2,5,3,6,7,4] => ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => [1,2,5,7,3,4,6] => [1,2,5,3,7,6,4] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,3,4,7] => [1,2,6,3,5,4,7] => [1,2,5,6,4,3,7] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,3,7,4] => [1,2,6,7,5,3,4] => [1,2,5,6,3,7,4] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,3,4] => [1,2,7,3,5,6,4] => [1,2,5,6,7,4,3] => ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => [1,2,7,3,5,4,6] => [1,2,5,7,6,4,3] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,3,4,5,7] => [1,2,6,3,4,5,7] => [1,2,6,5,4,3,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,3,4,7,5] => [1,2,6,3,7,4,5] => [1,2,6,4,3,7,5] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [1,2,6,7,4,3,5] => [1,2,6,3,7,5,4] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [1,2,7,3,4,6,5] => [1,2,6,7,5,4,3] => ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [1,2,7,3,4,5,6] => [1,2,7,6,5,4,3] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,6,5] => [1,3,2,4,6,7,5] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,5,6] => [1,3,2,4,7,5,6] => [1,3,2,4,7,6,5] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,5,4,7] => [1,3,2,5,6,4,7] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [1,3,2,7,5,6,4] => [1,3,2,5,6,7,4] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,4,6] => [1,3,2,7,5,4,6] => [1,3,2,5,7,6,4] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,4,5,7] => [1,3,2,6,4,5,7] => [1,3,2,6,5,4,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,4,7,5] => [1,3,2,6,7,4,5] => [1,3,2,6,4,7,5] => ? = 2
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,6,7,4,5] => [1,3,2,7,4,6,5] => [1,3,2,6,7,5,4] => ? = 2
Description
The number of stack-sorts needed to sort a permutation.
A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series.
Let $W_t(n,k)$ be the number of permutations of size $n$
with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$
are symmetric and unimodal.
We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted.
Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Matching statistic: St001046
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St001046: Perfect matchings ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 86%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St001046: Perfect matchings ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14)]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,14),(12,13)]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11),(13,14)]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,13),(11,12)]
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12),(13,14)]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,14),(12,13)]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10),(13,14)]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,13),(9,12),(10,11)]
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,11),(9,10),(12,13)]
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11),(13,14)]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,13),(11,12)]
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,13),(9,10),(11,12)]
=> ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12),(13,14)]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,14),(12,13)]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11),(13,14)]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,14),(10,13),(11,12)]
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,14),(10,11),(12,13)]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12),(13,14)]
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,14),(12,13)]
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9),(13,14)]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,11),(7,10),(8,9),(12,13)]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11),(13,14)]
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,9),(7,8),(10,13),(11,12)]
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,10),(8,9),(11,12)]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,9),(7,8),(10,11),(12,13)]
=> ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12),(13,14)]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,14),(12,13)]
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10),(13,14)]
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,13),(9,12),(10,11)]
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,11),(9,10),(12,13)]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10),(13,14)]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,8),(9,12),(10,11)]
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,12),(8,9),(10,11)]
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,11),(7,8),(9,10),(12,13)]
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11),(13,14)]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,13),(11,12)]
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,13),(9,10),(11,12)]
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,8),(9,10),(11,12)]
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12),(13,14)]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,14),(12,13)]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11),(13,14)]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,14),(10,13),(11,12)]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,14),(10,11),(12,13)]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12),(13,14)]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,14),(12,13)]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10),(13,14)]
=> ? = 2
Description
The maximal number of arcs nesting a given arc of a perfect matching.
This is also the largest weight of a down step in the histoire d'Hermite corresponding to the perfect matching.
Matching statistic: St000720
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000720: Perfect matchings ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 86%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
St000720: Perfect matchings ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14)]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,14),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,13),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,14),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10),(13,14)]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,13),(9,12),(10,11)]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,11),(9,10),(12,13)]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,13),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,13),(9,10),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,14),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,14),(10,13),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,14),(10,11),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12),(13,14)]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,14),(12,13)]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9),(13,14)]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,12),(8,11),(9,10)]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,11),(7,10),(8,9),(12,13)]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11),(13,14)]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,9),(7,8),(10,13),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,10),(8,9),(11,12)]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,9),(7,8),(10,11),(12,13)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,14),(12,13)]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10),(13,14)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,13),(9,12),(10,11)]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,11),(9,10),(12,13)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10),(13,14)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,8),(9,12),(10,11)]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,12),(8,9),(10,11)]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,11),(7,8),(9,10),(12,13)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11),(13,14)]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,13),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,13),(9,10),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,14),(6,13),(7,8),(9,10),(11,12)]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12),(13,14)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,14),(12,13)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11),(13,14)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,14),(10,13),(11,12)]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,14),(10,11),(12,13)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12),(13,14)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,14),(12,13)]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10),(13,14)]
=> ? = 2 + 1
Description
The size of the largest partition in the oscillating tableau corresponding to the perfect matching.
Equivalently, this is the maximal number of crosses in the corresponding triangular rook filling that can be covered by a rectangle.
Matching statistic: St000062
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000062: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000062: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 3 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 2 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 3 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,2,1] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,2,1] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,5,6,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 3 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,2,3,1] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,2,3,1] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,3,1] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,2,3,1] => ? = 2 + 1
Description
The length of the longest increasing subsequence of the permutation.
Matching statistic: St000166
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000166: Ordered trees ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000166: Ordered trees ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [[],[]]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [[[]]]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[],[],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[],[[]]]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[[]],[]]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[[[]]]]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[[],[]]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[]]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[[[]],[]],[]]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[[[]],[[]]]]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[[[]],[],[]]]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[],[]],[],[]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[],[[]]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[],[],[],[],[[]],[]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[],[],[],[],[[[]]]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[],[[],[]]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[],[],[],[[]],[],[]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[],[],[],[[]],[[]]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [[],[],[],[[[]]],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[],[],[],[[[[]]]]]
=> ? = 3 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [[],[],[],[[[]],[]]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [[],[],[],[[],[]],[]]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[],[],[],[[],[[]]]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[],[],[],[[[],[]]]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[],[],[],[[],[],[]]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[],[],[[]],[],[],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[],[],[[]],[],[[]]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[],[],[[]],[[]],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[],[],[[]],[[[]]]]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[],[],[[]],[[],[]]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [[],[],[[[]]],[],[]]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [[],[],[[[]]],[[]]]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [[],[],[[[[]]]],[]]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[],[],[[[[[]]]]]]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [[],[],[[[[]]],[]]]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [[],[],[[[]],[]],[]]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [[],[],[[[]],[[]]]]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [[],[],[[[[]],[]]]]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[],[],[[[]],[],[]]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[],[],[[],[]],[],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [[],[],[[],[]],[[]]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [[],[],[[],[[]]],[]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [[],[],[[],[[[]]]]]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [[],[],[[],[[]],[]]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [[],[],[[[],[]]],[]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [[],[],[[[],[[]]]]]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [[],[],[[[[],[]]]]]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [[],[],[[[],[]],[]]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [[],[],[[],[],[]],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [[],[],[[],[],[[]]]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [[],[],[[],[[],[]]]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [[],[],[[[],[],[]]]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[],[],[[],[],[],[]]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[],[[]],[],[],[],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [[],[[]],[],[],[[]]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [[],[[]],[],[[]],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [[],[[]],[],[[[]]]]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [[],[[]],[],[[],[]]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[[]],[],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]],[[]]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [[],[[]],[[[]]],[]]
=> ? = 2 + 1
Description
The depth minus 1 of an ordered tree.
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to [[St000013]].
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000442The maximal area to the right of an up step of a Dyck path. St000094The depth of an ordered tree. St001330The hat guessing number of a graph. St001589The nesting number of a perfect matching. St000455The second largest eigenvalue of a graph if it is integral. St001864The number of excedances of a signed permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001905The number of preferred parking spots in a parking function less than the index of the car. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!