searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001437
Mp00278: Binary words —rowmotion⟶ Binary words
St001437: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001437: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 1
1 => 1 => 1
00 => 00 => 2
01 => 10 => 2
10 => 01 => 1
11 => 11 => 2
000 => 000 => 3
001 => 010 => 2
010 => 100 => 3
011 => 101 => 2
100 => 001 => 1
101 => 110 => 3
110 => 011 => 1
111 => 111 => 3
0000 => 0000 => 4
0001 => 0010 => 2
0010 => 0100 => 3
0011 => 0101 => 2
0100 => 1000 => 4
0101 => 1010 => 4
0110 => 1001 => 3
0111 => 1011 => 2
1000 => 0001 => 1
1001 => 0110 => 2
1010 => 1100 => 4
1011 => 1101 => 3
1100 => 0011 => 1
1101 => 1110 => 4
1110 => 0111 => 1
1111 => 1111 => 4
00000 => 00000 => 5
00001 => 00010 => 2
00010 => 00100 => 3
00011 => 00101 => 1
00100 => 01000 => 4
00101 => 01010 => 3
00110 => 01001 => 2
00111 => 01011 => 1
01000 => 10000 => 5
01001 => 10010 => 4
01010 => 10100 => 5
01011 => 10101 => 3
01100 => 10001 => 4
01101 => 10110 => 4
01110 => 10011 => 3
01111 => 10111 => 2
10000 => 00001 => 1
10001 => 00110 => 2
10010 => 01100 => 3
10011 => 01101 => 2
Description
The flex of a binary word.
This is the product of the lex statistic ([[St001436]], augmented by 1) and its frequency ([[St000627]]), see [1, §8].
Matching statistic: St001880
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 38%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 38%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? = 1
1 => [1] => [[1],[]]
=> ([],1)
=> ? = 1
00 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? = 2
01 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? = 2
10 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? = 1
11 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? = 2
000 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
001 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? = 2
010 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
011 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? = 2
100 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? = 1
101 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
110 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? = 1
111 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
0000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
0001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
0011 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2
0100 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 4
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 3
0111 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 2
1000 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 1
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
1011 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 3
1100 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 1
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4
1110 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
1111 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
00000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
00001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3
00011 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 1
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 4
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
00111 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 1
01000 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? = 5
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 4
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 3
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? = 4
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 4
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 3
01111 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 2
10000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 1
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 2
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 3
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? = 2
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 5
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 4
10111 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? = 3
11000 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 1
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
11010 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5
11011 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 4
11100 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 1
11101 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5
11110 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1
11111 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
000000 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
010101 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
101010 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
111111 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
0000000 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
0101010 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
1010101 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
1111111 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 38%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 38%
Values
0 => [1] => [[1],[]]
=> ([],1)
=> ? = 1 - 1
1 => [1] => [[1],[]]
=> ([],1)
=> ? = 1 - 1
00 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? = 2 - 1
01 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? = 2 - 1
10 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? = 1 - 1
11 => [2] => [[2],[]]
=> ([(0,1)],2)
=> ? = 2 - 1
000 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
001 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
010 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
011 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? = 2 - 1
100 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? = 1 - 1
101 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
110 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
111 => [3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
0000 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
0001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
0010 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 1
0011 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2 - 1
0100 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 4 - 1
0101 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
0110 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 3 - 1
0111 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 2 - 1
1000 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 1 - 1
1001 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2 - 1
1010 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
1011 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 3 - 1
1100 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 1 - 1
1101 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
1110 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
1111 => [4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
00000 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
00001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 - 1
00010 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 - 1
00011 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 1 - 1
00100 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 4 - 1
00101 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 - 1
00110 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 - 1
00111 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 1 - 1
01000 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? = 5 - 1
01001 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 4 - 1
01010 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
01011 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 3 - 1
01100 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? = 4 - 1
01101 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 4 - 1
01110 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 3 - 1
01111 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 2 - 1
10000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 1 - 1
10001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 2 - 1
10010 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 3 - 1
10011 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? = 2 - 1
10100 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 5 - 1
10101 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
10110 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 4 - 1
10111 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? = 3 - 1
11000 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 1 - 1
11001 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 - 1
11010 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
11011 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 4 - 1
11100 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 1 - 1
11101 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
11110 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 - 1
11111 => [5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
000000 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
010101 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
101010 => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
111111 => [6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
0000000 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
0101010 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
1010101 => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
1111111 => [7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!