Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001491: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
1 => 1
01 => 1
10 => 1
11 => 2
001 => 1
010 => 1
011 => 1
100 => 1
101 => 2
110 => 1
111 => 3
0001 => 1
0010 => 1
0011 => 1
0100 => 1
0101 => 0
0110 => 2
0111 => 2
1000 => 1
1001 => 2
1010 => 0
1011 => 2
1100 => 1
1101 => 2
1110 => 2
1111 => 4
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Mp00224: Binary words runsortBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 80%
Values
1 => 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
01 => 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
10 => 01 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
11 => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
001 => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
010 => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
011 => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
100 => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
101 => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
110 => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
111 => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
0001 => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
0010 => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
0011 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
0100 => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
0101 => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
0110 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
0111 => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1000 => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
1001 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1010 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
1011 => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1100 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1101 => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1110 => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1111 => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000264
Mp00178: Binary words to compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000264: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 20%
Values
1 => [1,1] => [2] => ([],2)
=> ? = 1 + 1
01 => [2,1] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
10 => [1,2] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
11 => [1,1,1] => [3] => ([],3)
=> ? = 2 + 1
001 => [3,1] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
010 => [2,2] => [2] => ([],2)
=> ? = 1 + 1
011 => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
100 => [1,3] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
101 => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
110 => [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 1
111 => [1,1,1,1] => [4] => ([],4)
=> ? = 3 + 1
0001 => [4,1] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
0010 => [3,2] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
0011 => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
0100 => [2,3] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
0101 => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0 + 1
0110 => [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
0111 => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? = 2 + 1
1000 => [1,4] => [1,1] => ([(0,1)],2)
=> ? = 1 + 1
1001 => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
1010 => [1,2,2] => [1,2] => ([(1,2)],3)
=> ? = 0 + 1
1011 => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
1100 => [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 1
1101 => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
1110 => [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
1111 => [1,1,1,1,1] => [5] => ([],5)
=> ? = 4 + 1
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Matching statistic: St000454
Mp00262: Binary words poset of factorsPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000454: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 80%
Values
1 => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(2,5),(3,4),(3,7),(4,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(2,7),(3,6),(4,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001207
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001207: Permutations ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 40%
Values
1 => [1,1] => [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
10 => [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ? = 1 + 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ? = 1 + 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ? = 1 + 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? = 1 + 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ? = 2 + 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? = 1 + 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? = 3 + 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ? = 1 + 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ? = 1 + 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ? = 1 + 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ? = 1 + 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ? = 0 + 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ? = 2 + 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ? = 2 + 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 1 + 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ? = 2 + 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ? = 0 + 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ? = 2 + 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 1 + 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ? = 2 + 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 2 + 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? = 4 + 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St001645
Mp00269: Binary words flag zeros to zerosBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001645: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 80%
Values
1 => 1 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
01 => 10 => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
10 => 00 => [3] => ([],3)
=> ? = 1 + 1
11 => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
001 => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
010 => 000 => [4] => ([],4)
=> ? = 1 + 1
011 => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
100 => 010 => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 1
101 => 100 => [1,3] => ([(2,3)],4)
=> ? = 2 + 1
110 => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 1
111 => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
0001 => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
0010 => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
0011 => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
0100 => 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 1
0101 => 1000 => [1,4] => ([(3,4)],5)
=> ? = 0 + 1
0110 => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
0111 => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1000 => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1001 => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1010 => 0000 => [5] => ([],5)
=> ? = 0 + 1
1011 => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1100 => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1101 => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1110 => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1111 => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
Description
The pebbling number of a connected graph.
Matching statistic: St001879
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St001879: Posets ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 60%
Values
1 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? = 1
01 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? = 1
10 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? = 1
11 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 2
001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
010 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 1
011 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
100 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 1
101 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2
110 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 1
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
0001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1
0010 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 1
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1
0100 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 1
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 2
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2
1000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 1
1001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 2
1010 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? = 0
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 2
1100 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? = 1
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 2
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 2
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
Mp00178: Binary words to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00185: Skew partitions cell posetPosets
St001880: Posets ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 60%
Values
1 => [1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ? = 1 + 1
01 => [2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
10 => [1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? = 1 + 1
11 => [1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
001 => [3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
010 => [2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 1 + 1
011 => [2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
100 => [1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 1 + 1
101 => [1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ? = 2 + 1
110 => [1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? = 1 + 1
111 => [1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
0001 => [4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
0010 => [3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 1 + 1
0011 => [3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
0100 => [2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 1 + 1
0101 => [2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 1
0110 => [2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 2 + 1
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
1000 => [1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 1 + 1
1001 => [1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ? = 2 + 1
1010 => [1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ? = 0 + 1
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? = 2 + 1
1100 => [1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? = 1 + 1
1101 => [1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? = 2 + 1
1110 => [1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? = 2 + 1
1111 => [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000455
Mp00262: Binary words poset of factorsPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000455: Graphs ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 40%
Values
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> -1 = 1 - 2
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> -1 = 1 - 2
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 1 - 2
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ? = 1 - 2
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 1 - 2
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 1 - 2
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ? = 2 - 2
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> ? = 1 - 2
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 - 2
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 1 - 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 - 2
0011 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,8),(4,5),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 - 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 - 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? = 0 - 2
0110 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ([(0,4),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,7),(6,7),(7,8)],9)
=> ? = 2 - 2
0111 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 2
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 1 - 2
1001 => ([(0,2),(0,3),(1,5),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,6),(8,5)],9)
=> ([(0,5),(0,6),(1,7),(1,8),(2,5),(2,6),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8)],9)
=> ([(0,4),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,7),(6,7),(7,8)],9)
=> ? = 2 - 2
1010 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ? = 0 - 2
1011 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2 - 2
1100 => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,8),(4,5),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 - 2
1101 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,4),(3,7),(3,8),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2 - 2
1110 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 2 - 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 2
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.