searching the database
Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001541
St001541: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 0
[2]
=> 1
[1,1]
=> 0
[3]
=> 3
[2,1]
=> 2
[1,1,1]
=> 0
[4]
=> 6
[3,1]
=> 5
[2,2]
=> 4
[2,1,1]
=> 3
[1,1,1,1]
=> 0
[5]
=> 10
[4,1]
=> 9
[3,2]
=> 8
[3,1,1]
=> 7
[2,2,1]
=> 6
[2,1,1,1]
=> 4
[1,1,1,1,1]
=> 0
[6]
=> 15
[5,1]
=> 14
[4,2]
=> 13
[4,1,1]
=> 12
[3,3]
=> 12
[3,2,1]
=> 11
[3,1,1,1]
=> 9
[2,2,2]
=> 9
[2,2,1,1]
=> 8
[2,1,1,1,1]
=> 5
[1,1,1,1,1,1]
=> 0
[7]
=> 21
[6,1]
=> 20
[5,2]
=> 19
[5,1,1]
=> 18
[4,3]
=> 18
[4,2,1]
=> 17
[4,1,1,1]
=> 15
[3,3,1]
=> 16
[3,2,2]
=> 15
[3,2,1,1]
=> 14
[3,1,1,1,1]
=> 11
[2,2,2,1]
=> 12
[2,2,1,1,1]
=> 10
[2,1,1,1,1,1]
=> 6
[1,1,1,1,1,1,1]
=> 0
[8]
=> 28
[7,1]
=> 27
[6,2]
=> 26
[6,1,1]
=> 25
[5,3]
=> 25
[5,2,1]
=> 24
Description
The Gini index of an integer partition.
As discussed in [1], this statistic is equal to [[St000567]] applied to the conjugate partition.
Matching statistic: St000567
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000567: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 49%
St000567: Integer partitions ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 49%
Values
[1]
=> [1]
=> ? = 0
[2]
=> [1,1]
=> 1
[1,1]
=> [2]
=> 0
[3]
=> [1,1,1]
=> 3
[2,1]
=> [2,1]
=> 2
[1,1,1]
=> [3]
=> 0
[4]
=> [1,1,1,1]
=> 6
[3,1]
=> [2,1,1]
=> 5
[2,2]
=> [2,2]
=> 4
[2,1,1]
=> [3,1]
=> 3
[1,1,1,1]
=> [4]
=> 0
[5]
=> [1,1,1,1,1]
=> 10
[4,1]
=> [2,1,1,1]
=> 9
[3,2]
=> [2,2,1]
=> 8
[3,1,1]
=> [3,1,1]
=> 7
[2,2,1]
=> [3,2]
=> 6
[2,1,1,1]
=> [4,1]
=> 4
[1,1,1,1,1]
=> [5]
=> 0
[6]
=> [1,1,1,1,1,1]
=> 15
[5,1]
=> [2,1,1,1,1]
=> 14
[4,2]
=> [2,2,1,1]
=> 13
[4,1,1]
=> [3,1,1,1]
=> 12
[3,3]
=> [2,2,2]
=> 12
[3,2,1]
=> [3,2,1]
=> 11
[3,1,1,1]
=> [4,1,1]
=> 9
[2,2,2]
=> [3,3]
=> 9
[2,2,1,1]
=> [4,2]
=> 8
[2,1,1,1,1]
=> [5,1]
=> 5
[1,1,1,1,1,1]
=> [6]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> 20
[5,2]
=> [2,2,1,1,1]
=> 19
[5,1,1]
=> [3,1,1,1,1]
=> 18
[4,3]
=> [2,2,2,1]
=> 18
[4,2,1]
=> [3,2,1,1]
=> 17
[4,1,1,1]
=> [4,1,1,1]
=> 15
[3,3,1]
=> [3,2,2]
=> 16
[3,2,2]
=> [3,3,1]
=> 15
[3,2,1,1]
=> [4,2,1]
=> 14
[3,1,1,1,1]
=> [5,1,1]
=> 11
[2,2,2,1]
=> [4,3]
=> 12
[2,2,1,1,1]
=> [5,2]
=> 10
[2,1,1,1,1,1]
=> [6,1]
=> 6
[1,1,1,1,1,1,1]
=> [7]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> 27
[6,2]
=> [2,2,1,1,1,1]
=> 26
[6,1,1]
=> [3,1,1,1,1,1]
=> 25
[5,3]
=> [2,2,2,1,1]
=> 25
[5,2,1]
=> [3,2,1,1,1]
=> 24
[5,1,1,1]
=> [4,1,1,1,1]
=> 22
[13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 78
[12,1]
=> [2,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 77
[11,2]
=> [2,2,1,1,1,1,1,1,1,1,1]
=> ? = 76
[11,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1]
=> ? = 75
[10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> ? = 75
[10,2,1]
=> [3,2,1,1,1,1,1,1,1,1]
=> ? = 74
[10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> ? = 72
[9,4]
=> [2,2,2,2,1,1,1,1,1]
=> ? = 74
[9,3,1]
=> [3,2,2,1,1,1,1,1,1]
=> ? = 73
[9,2,2]
=> [3,3,1,1,1,1,1,1,1]
=> ? = 72
[9,2,1,1]
=> [4,2,1,1,1,1,1,1,1]
=> ? = 71
[9,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1]
=> ? = 68
[8,5]
=> [2,2,2,2,2,1,1,1]
=> ? = 73
[8,4,1]
=> [3,2,2,2,1,1,1,1]
=> ? = 72
[8,3,2]
=> [3,3,2,1,1,1,1,1]
=> ? = 71
[8,3,1,1]
=> [4,2,2,1,1,1,1,1]
=> ? = 70
[8,2,2,1]
=> [4,3,1,1,1,1,1,1]
=> ? = 69
[8,2,1,1,1]
=> [5,2,1,1,1,1,1,1]
=> ? = 67
[8,1,1,1,1,1]
=> [6,1,1,1,1,1,1,1]
=> ? = 63
[7,6]
=> [2,2,2,2,2,2,1]
=> ? = 72
[7,5,1]
=> [3,2,2,2,2,1,1]
=> ? = 71
[7,4,2]
=> [3,3,2,2,1,1,1]
=> ? = 70
[7,4,1,1]
=> [4,2,2,2,1,1,1]
=> ? = 69
[7,3,3]
=> [3,3,3,1,1,1,1]
=> ? = 69
[7,3,2,1]
=> [4,3,2,1,1,1,1]
=> ? = 68
[7,3,1,1,1]
=> [5,2,2,1,1,1,1]
=> ? = 66
[7,2,2,2]
=> [4,4,1,1,1,1,1]
=> ? = 66
[7,2,2,1,1]
=> [5,3,1,1,1,1,1]
=> ? = 65
[7,2,1,1,1,1]
=> [6,2,1,1,1,1,1]
=> ? = 62
[7,1,1,1,1,1,1]
=> [7,1,1,1,1,1,1]
=> ? = 57
[6,6,1]
=> [3,2,2,2,2,2]
=> ? = 70
[6,5,2]
=> [3,3,2,2,2,1]
=> ? = 69
[6,5,1,1]
=> [4,2,2,2,2,1]
=> ? = 68
[6,4,3]
=> [3,3,3,2,1,1]
=> ? = 68
[6,4,2,1]
=> [4,3,2,2,1,1]
=> ? = 67
[6,4,1,1,1]
=> [5,2,2,2,1,1]
=> ? = 65
[6,3,3,1]
=> [4,3,3,1,1,1]
=> ? = 66
[6,3,2,2]
=> [4,4,2,1,1,1]
=> ? = 65
[6,3,2,1,1]
=> [5,3,2,1,1,1]
=> ? = 64
[6,3,1,1,1,1]
=> [6,2,2,1,1,1]
=> ? = 61
[6,2,2,2,1]
=> [5,4,1,1,1,1]
=> ? = 62
[6,2,2,1,1,1]
=> [6,3,1,1,1,1]
=> ? = 60
[6,2,1,1,1,1,1]
=> [7,2,1,1,1,1]
=> ? = 56
[6,1,1,1,1,1,1,1]
=> [8,1,1,1,1,1]
=> ? = 50
[5,5,3]
=> [3,3,3,2,2]
=> ? = 67
[5,5,2,1]
=> [4,3,2,2,2]
=> ? = 66
[5,5,1,1,1]
=> [5,2,2,2,2]
=> ? = 64
[5,4,4]
=> [3,3,3,3,1]
=> ? = 66
[5,4,3,1]
=> [4,3,3,2,1]
=> ? = 65
Description
The sum of the products of all pairs of parts.
This is the evaluation of the second elementary symmetric polynomial which is equal to
$$e_2(\lambda) = \binom{n+1}{2} - \sum_{i=1}^\ell\binom{\lambda_i+1}{2}$$
for a partition $\lambda = (\lambda_1,\dots,\lambda_\ell) \vdash n$, see [1].
This is the maximal number of inversions a permutation with the given shape can have, see [2, cor.2.4].
Matching statistic: St000009
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 52%
St000009: Standard tableaux ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 52%
Values
[1]
=> [[1]]
=> 0
[2]
=> [[1,2]]
=> 1
[1,1]
=> [[1],[2]]
=> 0
[3]
=> [[1,2,3]]
=> 3
[2,1]
=> [[1,2],[3]]
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> 0
[4]
=> [[1,2,3,4]]
=> 6
[3,1]
=> [[1,2,3],[4]]
=> 5
[2,2]
=> [[1,2],[3,4]]
=> 4
[2,1,1]
=> [[1,2],[3],[4]]
=> 3
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[5]
=> [[1,2,3,4,5]]
=> 10
[4,1]
=> [[1,2,3,4],[5]]
=> 9
[3,2]
=> [[1,2,3],[4,5]]
=> 8
[3,1,1]
=> [[1,2,3],[4],[5]]
=> 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> 6
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> 14
[4,2]
=> [[1,2,3,4],[5,6]]
=> 13
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 12
[3,3]
=> [[1,2,3],[4,5,6]]
=> 12
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 9
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 9
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 8
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 5
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> 20
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> 19
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 18
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> 18
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 17
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 16
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 15
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 14
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 11
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 12
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 10
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 6
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> 27
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 26
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> 25
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 25
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> 24
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 55
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 54
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? = 53
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 52
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 52
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? = 51
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 49
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? = 51
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? = 50
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? = 49
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? = 48
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? = 45
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 50
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 49
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? = 48
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? = 47
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? = 46
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? = 44
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 40
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? = 48
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 39
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 34
[4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 38
[4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 37
[4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 33
[4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 27
[3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? = 36
[3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? = 32
[3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 35
[3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 34
[3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? = 31
[3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 26
[3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 19
[2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 30
[2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 28
[2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 24
[2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 18
[2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 10
[1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 0
[11,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12]]
=> ? = 65
[10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? = 64
[10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? = 63
[9,3]
=> [[1,2,3,4,5,6,7,8,9],[10,11,12]]
=> ? = 63
[9,2,1]
=> [[1,2,3,4,5,6,7,8,9],[10,11],[12]]
=> ? = 62
[9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> ? = 60
[8,4]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12]]
=> ? = 62
[8,3,1]
=> [[1,2,3,4,5,6,7,8],[9,10,11],[12]]
=> ? = 61
[8,2,2]
=> [[1,2,3,4,5,6,7,8],[9,10],[11,12]]
=> ? = 60
[8,2,1,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11],[12]]
=> ? = 59
[8,1,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11],[12]]
=> ? = 56
Description
The charge of a standard tableau.
Matching statistic: St000059
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 51%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000059: Standard tableaux ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 51%
Values
[1]
=> [1]
=> [[1]]
=> 0
[2]
=> [1,1]
=> [[1],[2]]
=> 1
[1,1]
=> [2]
=> [[1,2]]
=> 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2
[1,1,1]
=> [3]
=> [[1,2,3]]
=> 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 5
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 4
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> 3
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 9
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 8
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 7
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 6
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> 14
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 13
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 12
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 12
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 11
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 9
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 9
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 8
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 5
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 20
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> 19
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> 18
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 18
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 17
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 15
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 16
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 15
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 14
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> 11
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 12
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 10
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 6
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 27
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> 26
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> 25
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> 25
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> 24
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 54
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 53
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 52
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 52
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 51
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 49
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 51
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? = 50
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? = 49
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? = 48
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? = 45
[6,5]
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 50
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? = 49
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? = 48
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? = 47
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? = 46
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? = 44
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? = 40
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? = 48
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? = 39
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? = 34
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? = 38
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? = 37
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? = 33
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? = 27
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? = 36
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? = 32
[3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? = 35
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? = 34
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? = 31
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? = 26
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 19
[2,2,2,2,2,1]
=> [6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> ? = 30
[2,2,2,2,1,1,1]
=> [7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ? = 28
[2,2,2,1,1,1,1,1]
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? = 24
[2,2,1,1,1,1,1,1,1]
=> [9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? = 18
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 10
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 0
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 66
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 65
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 64
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 63
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 63
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 62
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 60
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11],[12]]
=> ? = 62
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11],[12]]
=> ? = 61
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 60
[8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11],[12]]
=> ? = 59
Description
The inversion number of a standard tableau as defined by Haglund and Stevens.
Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Matching statistic: St000169
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Values
[1]
=> [[1]]
=> [[1]]
=> 0
[2]
=> [[1,2]]
=> [[1],[2]]
=> 1
[1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
[3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [[1,2],[3]]
=> [[1,3],[2]]
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
[4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [[1,2,3],[4]]
=> [[1,4],[2],[3]]
=> 5
[2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 3
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
[5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [[1,2,3,4],[5]]
=> [[1,5],[2],[3],[4]]
=> 9
[3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 8
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 6
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 4
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> [[1,6],[2],[3],[4],[5]]
=> 14
[4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 13
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 12
[3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 12
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 9
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 9
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 8
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 5
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 20
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 19
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 18
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [[1,5],[2,6],[3,7],[4]]
=> 18
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 17
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 16
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [[1,4,6],[2,5,7],[3]]
=> 15
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 14
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 11
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [[1,3,5,7],[2,4,6]]
=> 12
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 10
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 6
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> 27
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [[1,7],[2,8],[3],[4],[5],[6]]
=> 26
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> 25
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [[1,6],[2,7],[3,8],[4],[5]]
=> 25
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [[1,6,8],[2,7],[3],[4],[5]]
=> 24
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11]]
=> [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 54
[9,2]
=> [[1,2,3,4,5,6,7,8,9],[10,11]]
=> [[1,10],[2,11],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 53
[9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 52
[8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> [[1,9],[2,10],[3,11],[4],[5],[6],[7],[8]]
=> ? = 52
[8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> [[1,9,11],[2,10],[3],[4],[5],[6],[7],[8]]
=> ? = 51
[8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 49
[7,4]
=> [[1,2,3,4,5,6,7],[8,9,10,11]]
=> ?
=> ? = 51
[7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> [[1,8,11],[2,9],[3,10],[4],[5],[6],[7]]
=> ? = 50
[7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> [[1,8,10],[2,9,11],[3],[4],[5],[6],[7]]
=> ? = 49
[7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> [[1,8,10,11],[2,9],[3],[4],[5],[6],[7]]
=> ? = 48
[7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 45
[6,5]
=> [[1,2,3,4,5,6],[7,8,9,10,11]]
=> [[1,7],[2,8],[3,9],[4,10],[5,11],[6]]
=> ? = 50
[6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ?
=> ? = 49
[6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> [[1,7,10],[2,8,11],[3,9],[4],[5],[6]]
=> ? = 48
[6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> [[1,7,10,11],[2,8],[3,9],[4],[5],[6]]
=> ? = 47
[6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> [[1,7,9,11],[2,8,10],[3],[4],[5],[6]]
=> ? = 46
[6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> [[1,7,9,10,11],[2,8],[3],[4],[5],[6]]
=> ? = 44
[6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 40
[5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> [[1,6,11],[2,7],[3,8],[4,9],[5,10]]
=> ? = 48
[5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [[1,6,10],[2,7,11],[3,8],[4,9],[5]]
=> ? = 47
[5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [[1,6,10,11],[2,7],[3,8],[4,9],[5]]
=> ? = 46
[5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [[1,6,9],[2,7,10],[3,8,11],[4],[5]]
=> ? = 46
[5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [[1,6,9,11],[2,7,10],[3,8],[4],[5]]
=> ? = 45
[5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [[1,6,9,10,11],[2,7],[3,8],[4],[5]]
=> ? = 43
[5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [[1,6,8,10],[2,7,9,11],[3],[4],[5]]
=> ? = 43
[5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [[1,6,8,10,11],[2,7,9],[3],[4],[5]]
=> ? = 42
[5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> [[1,6,8,9,10,11],[2,7],[3],[4],[5]]
=> ? = 39
[5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 34
[4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [[1,5,9],[2,6,10],[3,7,11],[4,8]]
=> ? = 45
[4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [[1,5,9,11],[2,6,10],[3,7],[4,8]]
=> ? = 44
[4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [[1,5,9,10,11],[2,6],[3,7],[4,8]]
=> ? = 42
[4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [[1,5,8,11],[2,6,9],[3,7,10],[4]]
=> ? = 43
[4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [[1,5,8,10],[2,6,9,11],[3,7],[4]]
=> ? = 42
[4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [[1,5,8,10,11],[2,6,9],[3,7],[4]]
=> ? = 41
[4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ?
=> ? = 38
[4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [[1,5,7,9,11],[2,6,8,10],[3],[4]]
=> ? = 39
[4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 37
[4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 33
[4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 27
[3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9]]
=> ? = 40
[3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [[1,4,7,10,11],[2,5,8],[3,6,9]]
=> ? = 39
[3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [[1,4,7,9,11],[2,5,8,10],[3,6]]
=> ? = 38
[3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ?
=> ? = 36
[3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> [[1,4,7,8,9,10,11],[2,5],[3,6]]
=> ? = 32
[3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> [[1,4,6,8,10],[2,5,7,9,11],[3]]
=> ? = 35
[3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ?
=> ? = 34
[3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ?
=> ? = 31
[3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 26
[3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 19
Description
The cocharge of a standard tableau.
The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm:
1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$.
2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling.
3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000330
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Values
[1]
=> [[1]]
=> [[1]]
=> 0
[2]
=> [[1,2]]
=> [[1],[2]]
=> 1
[1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0
[3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
[2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 0
[4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 6
[3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> 5
[2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 4
[2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 3
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 0
[5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 10
[4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> 9
[3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 8
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 7
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 6
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 4
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0
[6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 15
[5,1]
=> [[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> 14
[4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 13
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 12
[3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 12
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 11
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 9
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 9
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 8
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 5
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 21
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 20
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 19
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 18
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7]]
=> 18
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7]]
=> 17
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 15
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> 16
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 15
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7]]
=> 14
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 11
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7]]
=> 12
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7]]
=> 10
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> 6
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 28
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 27
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8]]
=> 26
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> 25
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8]]
=> 25
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7],[8]]
=> 24
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 55
[10,1]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 54
[9,2]
=> [[1,2,5,6,7,8,9,10,11],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 53
[9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ?
=> ? = 52
[8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8],[9],[10],[11]]
=> ? = 52
[8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ?
=> ? = 51
[8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 49
[7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ?
=> ? = 51
[7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ?
=> ? = 50
[7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9],[10],[11]]
=> ? = 49
[7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ?
=> ? = 48
[7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ?
=> ? = 45
[6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> [[1,6],[2,7],[3,8],[4,9],[5,10],[11]]
=> ? = 50
[6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ?
=> ? = 49
[6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ?
=> ? = 48
[6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ?
=> ? = 47
[6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ?
=> ? = 46
[6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7],[8],[9],[10],[11]]
=> ? = 44
[6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ?
=> ? = 40
[5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> [[1,2,7],[3,8],[4,9],[5,10],[6,11]]
=> ? = 48
[5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11]]
=> ? = 47
[5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> ? = 46
[5,3,3]
=> [[1,2,3,10,11],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10],[11]]
=> ? = 46
[5,3,2,1]
=> [[1,3,6,10,11],[2,5,9],[4,8],[7]]
=> [[1,2,4,7],[3,5,8],[6,9],[10],[11]]
=> ? = 45
[5,3,1,1,1]
=> [[1,5,6,10,11],[2,8,9],[3],[4],[7]]
=> [[1,2,3,4,7],[5,8],[6,9],[10],[11]]
=> ? = 43
[5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> ? = 43
[5,2,2,1,1]
=> [[1,4,9,10,11],[2,6],[3,8],[5],[7]]
=> [[1,2,3,5,7],[4,6,8],[9],[10],[11]]
=> ? = 42
[5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> [[1,2,3,4,5,7],[6,8],[9],[10],[11]]
=> ? = 39
[5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ?
=> ? = 34
[4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> [[1,4,8],[2,5,9],[3,6,10],[7,11]]
=> ? = 45
[4,4,2,1]
=> [[1,3,6,7],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11]]
=> ? = 44
[4,4,1,1,1]
=> [[1,5,6,7],[2,9,10,11],[3],[4],[8]]
=> [[1,2,3,4,8],[5,9],[6,10],[7,11]]
=> ? = 42
[4,3,3,1]
=> [[1,3,4,11],[2,6,7],[5,9,10],[8]]
=> [[1,2,5,8],[3,6,9],[4,7,10],[11]]
=> ? = 43
[4,3,2,2]
=> [[1,2,7,11],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10],[11]]
=> ? = 42
[4,3,2,1,1]
=> [[1,4,7,11],[2,6,10],[3,9],[5],[8]]
=> [[1,2,3,5,8],[4,6,9],[7,10],[11]]
=> ? = 41
[4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ?
=> ? = 38
[4,2,2,2,1]
=> [[1,3,10,11],[2,5],[4,7],[6,9],[8]]
=> [[1,2,4,6,8],[3,5,7,9],[10],[11]]
=> ? = 39
[4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ?
=> ? = 37
[4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ?
=> ? = 33
[4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ?
=> ? = 27
[3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11]]
=> ? = 40
[3,3,3,1,1]
=> [[1,4,5],[2,7,8],[3,10,11],[6],[9]]
=> [[1,2,3,6,9],[4,7,10],[5,8,11]]
=> ? = 39
[3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11]]
=> ? = 38
[3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 36
[3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> [[1,2,3,4,5,6,9],[7,10],[8,11]]
=> ? = 32
[3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10],[11]]
=> ? = 35
[3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ?
=> ? = 34
[3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ?
=> ? = 31
[3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ?
=> ? = 26
[3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ?
=> ? = 19
Description
The (standard) major index of a standard tableau.
A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
Matching statistic: St000018
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Values
[1]
=> [1]
=> [[1]]
=> [1] => 0
[2]
=> [1,1]
=> [[1],[2]]
=> [2,1] => 1
[1,1]
=> [2]
=> [[1,2]]
=> [1,2] => 0
[3]
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 3
[2,1]
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 2
[1,1,1]
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 0
[4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 6
[3,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 5
[2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 4
[2,1,1]
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 3
[1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 0
[5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 10
[4,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 9
[3,2]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 8
[3,1,1]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 7
[2,2,1]
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 6
[2,1,1,1]
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 4
[1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 0
[6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 15
[5,1]
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 14
[4,2]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 13
[4,1,1]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 12
[3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 12
[3,2,1]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 11
[3,1,1,1]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 9
[2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 9
[2,2,1,1]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 8
[2,1,1,1,1]
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 5
[1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 0
[7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 21
[6,1]
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 20
[5,2]
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => 19
[5,1,1]
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 18
[4,3]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => 18
[4,2,1]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => 17
[4,1,1,1]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 15
[3,3,1]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => 16
[3,2,2]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => 15
[3,2,1,1]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => 14
[3,1,1,1,1]
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 11
[2,2,2,1]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => 12
[2,2,1,1,1]
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => 10
[2,1,1,1,1,1]
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => 6
[1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => 0
[8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => 28
[7,1]
=> [2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => 27
[6,2]
=> [2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => 26
[6,1,1]
=> [3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => 25
[5,3]
=> [2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => 25
[5,2,1]
=> [3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => 24
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 55
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 54
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 53
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 52
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 52
[8,2,1]
=> [3,2,1,1,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 51
[8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 49
[7,4]
=> [2,2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7,8],[9],[10],[11]]
=> ? => ? = 51
[7,3,1]
=> [3,2,2,1,1,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? = 50
[7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 49
[7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 48
[7,1,1,1,1]
=> [5,1,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 45
[6,5]
=> [2,2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11]]
=> ? => ? = 50
[6,4,1]
=> [3,2,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10],[11]]
=> ? => ? = 49
[6,3,2]
=> [3,3,2,1,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10],[11]]
=> ? => ? = 48
[6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10],[11]]
=> ? => ? = 47
[6,2,2,1]
=> [4,3,1,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10],[11]]
=> ? => ? = 46
[6,2,1,1,1]
=> [5,2,1,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10],[11]]
=> ? => ? = 44
[6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 40
[5,5,1]
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? => ? = 48
[5,4,2]
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,4,5,6,1,2,3] => ? = 47
[5,4,1,1]
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> [11,9,10,7,8,5,6,1,2,3,4] => ? = 46
[5,3,3]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> [11,10,7,8,9,4,5,6,1,2,3] => ? = 46
[5,3,2,1]
=> [4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> [11,10,8,9,5,6,7,1,2,3,4] => ? = 45
[5,3,1,1,1]
=> [5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> [11,10,8,9,6,7,1,2,3,4,5] => ? = 43
[5,2,2,2]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> [11,10,9,5,6,7,8,1,2,3,4] => ? = 43
[5,2,2,1,1]
=> [5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> [11,10,9,6,7,8,1,2,3,4,5] => ? = 42
[5,2,1,1,1,1]
=> [6,2,1,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10],[11]]
=> ? => ? = 39
[5,1,1,1,1,1,1]
=> [7,1,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10],[11]]
=> ? => ? = 34
[4,4,3]
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> [10,11,7,8,9,4,5,6,1,2,3] => ? = 45
[4,4,2,1]
=> [4,3,2,2]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11]]
=> [10,11,8,9,5,6,7,1,2,3,4] => ? = 44
[4,4,1,1,1]
=> [5,2,2,2]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11]]
=> [10,11,8,9,6,7,1,2,3,4,5] => ? = 42
[4,3,3,1]
=> [4,3,3,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11]]
=> [11,8,9,10,5,6,7,1,2,3,4] => ? = 43
[4,3,2,2]
=> [4,4,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11]]
=> [11,9,10,5,6,7,8,1,2,3,4] => ? = 42
[4,3,2,1,1]
=> [5,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11]]
=> [11,9,10,6,7,8,1,2,3,4,5] => ? = 41
[4,3,1,1,1,1]
=> [6,2,2,1]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11]]
=> ? => ? = 38
[4,2,2,2,1]
=> [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [11,10,6,7,8,9,1,2,3,4,5] => ? = 39
[4,2,2,1,1,1]
=> [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? = 37
[4,2,1,1,1,1,1]
=> [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? = 33
[4,1,1,1,1,1,1,1]
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 27
[3,3,3,2]
=> [4,4,3]
=> [[1,2,3,4],[5,6,7,8],[9,10,11]]
=> [9,10,11,5,6,7,8,1,2,3,4] => ? = 40
[3,3,3,1,1]
=> [5,3,3]
=> [[1,2,3,4,5],[6,7,8],[9,10,11]]
=> [9,10,11,6,7,8,1,2,3,4,5] => ? = 39
[3,3,2,2,1]
=> [5,4,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11]]
=> [10,11,6,7,8,9,1,2,3,4,5] => ? = 38
[3,3,2,1,1,1]
=> [6,3,2]
=> [[1,2,3,4,5,6],[7,8,9],[10,11]]
=> ? => ? = 36
[3,3,1,1,1,1,1]
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? => ? = 32
[3,2,2,2,2]
=> [5,5,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11]]
=> ? => ? = 35
[3,2,2,2,1,1]
=> [6,4,1]
=> [[1,2,3,4,5,6],[7,8,9,10],[11]]
=> ? => ? = 34
[3,2,2,1,1,1,1]
=> [7,3,1]
=> [[1,2,3,4,5,6,7],[8,9,10],[11]]
=> ? => ? = 31
[3,2,1,1,1,1,1,1]
=> [8,2,1]
=> [[1,2,3,4,5,6,7,8],[9,10],[11]]
=> ? => ? = 26
[3,1,1,1,1,1,1,1,1]
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 19
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000391
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
Mp00134: Standard tableaux —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
Mp00134: Standard tableaux —descent word⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 34%
Values
[1]
=> [[1]]
=> [[1]]
=> => ? = 0
[2]
=> [[1,2]]
=> [[1],[2]]
=> 1 => 1
[1,1]
=> [[1],[2]]
=> [[1,2]]
=> 0 => 0
[3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 11 => 3
[2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> 01 => 2
[1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 00 => 0
[4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 111 => 6
[3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> 011 => 5
[2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 101 => 4
[2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 001 => 3
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 000 => 0
[5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 1111 => 10
[4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> 0111 => 9
[3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 1011 => 8
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 0011 => 7
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 0101 => 6
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 0001 => 4
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 0000 => 0
[6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 11111 => 15
[5,1]
=> [[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> 01111 => 14
[4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 10111 => 13
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 00111 => 12
[3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 11011 => 12
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 01011 => 11
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 00011 => 9
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 10101 => 9
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 00101 => 8
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 00001 => 5
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 00000 => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 111111 => 21
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [[1,2],[3],[4],[5],[6],[7]]
=> 011111 => 20
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 101111 => 19
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 001111 => 18
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7]]
=> 110111 => 18
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7]]
=> 010111 => 17
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 000111 => 15
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> 011011 => 16
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 101011 => 15
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7]]
=> 001011 => 14
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 000011 => 11
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7]]
=> 010101 => 12
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7]]
=> 000101 => 10
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> 000001 => 6
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 000000 => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 1111111 => 28
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> 0111111 => 27
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8]]
=> 1011111 => 26
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> 0011111 => 25
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8]]
=> 1101111 => 25
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7],[8]]
=> 0101111 => 24
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> 0001111 => 22
[11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 55
[10,1]
=> [[1,3,4,5,6,7,8,9,10,11],[2]]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 54
[9,2]
=> [[1,2,5,6,7,8,9,10,11],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8],[9],[10],[11]]
=> ? => ? = 53
[9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ?
=> ? => ? = 52
[8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8],[9],[10],[11]]
=> ? => ? = 52
[8,2,1]
=> [[1,3,6,7,8,9,10,11],[2,5],[4]]
=> ?
=> ? => ? = 51
[8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? => ? = 49
[7,4]
=> [[1,2,3,4,9,10,11],[5,6,7,8]]
=> ?
=> ? => ? = 51
[7,3,1]
=> [[1,3,4,8,9,10,11],[2,6,7],[5]]
=> ?
=> ? => ? = 50
[7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9],[10],[11]]
=> ? => ? = 49
[7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ?
=> ? => ? = 48
[7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2],[3],[4],[5]]
=> ?
=> ? => ? = 45
[6,5]
=> [[1,2,3,4,5,11],[6,7,8,9,10]]
=> [[1,6],[2,7],[3,8],[4,9],[5,10],[11]]
=> ? => ? = 50
[6,4,1]
=> [[1,3,4,5,10,11],[2,7,8,9],[6]]
=> ?
=> ? => ? = 49
[6,3,2]
=> [[1,2,5,9,10,11],[3,4,8],[6,7]]
=> ?
=> ? => ? = 48
[6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ?
=> ? => ? = 47
[6,2,2,1]
=> [[1,3,8,9,10,11],[2,5],[4,7],[6]]
=> ?
=> ? => ? = 46
[6,2,1,1,1]
=> [[1,5,8,9,10,11],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7],[8],[9],[10],[11]]
=> ? => ? = 44
[6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ?
=> ? => ? = 40
[5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> [[1,2,7],[3,8],[4,9],[5,10],[6,11]]
=> ? => ? = 48
[5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11]]
=> 1011101111 => ? = 47
[5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> 0011101111 => ? = 46
[5,3,3]
=> [[1,2,3,10,11],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10],[11]]
=> 1101101111 => ? = 46
[5,3,2,1]
=> [[1,3,6,10,11],[2,5,9],[4,8],[7]]
=> [[1,2,4,7],[3,5,8],[6,9],[10],[11]]
=> 0101101111 => ? = 45
[5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> 1010101111 => ? = 43
[5,2,1,1,1,1]
=> [[1,6,9,10,11],[2,8],[3],[4],[5],[7]]
=> [[1,2,3,4,5,7],[6,8],[9],[10],[11]]
=> ? => ? = 39
[5,1,1,1,1,1,1]
=> [[1,8,9,10,11],[2],[3],[4],[5],[6],[7]]
=> ?
=> ? => ? = 34
[4,4,3]
=> [[1,2,3,7],[4,5,6,11],[8,9,10]]
=> [[1,4,8],[2,5,9],[3,6,10],[7,11]]
=> 1101110111 => ? = 45
[4,4,2,1]
=> [[1,3,6,7],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11]]
=> 0101110111 => ? = 44
[4,3,3,1]
=> [[1,3,4,11],[2,6,7],[5,9,10],[8]]
=> [[1,2,5,8],[3,6,9],[4,7,10],[11]]
=> 0110110111 => ? = 43
[4,3,2,2]
=> [[1,2,7,11],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10],[11]]
=> 1010110111 => ? = 42
[4,3,2,1,1]
=> [[1,4,7,11],[2,6,10],[3,9],[5],[8]]
=> [[1,2,3,5,8],[4,6,9],[7,10],[11]]
=> 0010110111 => ? = 41
[4,3,1,1,1,1]
=> [[1,6,7,11],[2,9,10],[3],[4],[5],[8]]
=> ?
=> ? => ? = 38
[4,2,2,2,1]
=> [[1,3,10,11],[2,5],[4,7],[6,9],[8]]
=> [[1,2,4,6,8],[3,5,7,9],[10],[11]]
=> 0101010111 => ? = 39
[4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ?
=> ? => ? = 37
[4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ?
=> ? => ? = 33
[4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ?
=> ? => ? = 27
[3,3,3,2]
=> [[1,2,5],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11]]
=> 1011011011 => ? = 40
[3,3,3,1,1]
=> [[1,4,5],[2,7,8],[3,10,11],[6],[9]]
=> [[1,2,3,6,9],[4,7,10],[5,8,11]]
=> 0011011011 => ? = 39
[3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7],[6,10],[9]]
=> [[1,2,4,6,9],[3,5,7,10],[8,11]]
=> 0101011011 => ? = 38
[3,3,2,1,1,1]
=> [[1,5,8],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? => ? = 36
[3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> [[1,2,3,4,5,6,9],[7,10],[8,11]]
=> ? => ? = 32
[3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10],[11]]
=> ? => ? = 35
[3,2,2,2,1,1]
=> [[1,4,11],[2,6],[3,8],[5,10],[7],[9]]
=> ?
=> ? => ? = 34
[3,2,2,1,1,1,1]
=> [[1,6,11],[2,8],[3,10],[4],[5],[7],[9]]
=> ?
=> ? => ? = 31
[3,2,1,1,1,1,1,1]
=> [[1,8,11],[2,10],[3],[4],[5],[6],[7],[9]]
=> ?
=> ? => ? = 26
[3,1,1,1,1,1,1,1,1]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ?
=> ? => ? = 19
[2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11]]
=> ? => ? = 30
[2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ?
=> ? => ? = 28
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St000008
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 28%
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 28%
Values
[1]
=> [[1]]
=> [1] => [1] => 0
[2]
=> [[1,2]]
=> [2] => [1,1] => 1
[1,1]
=> [[1],[2]]
=> [1,1] => [2] => 0
[3]
=> [[1,2,3]]
=> [3] => [1,1,1] => 3
[2,1]
=> [[1,2],[3]]
=> [2,1] => [2,1] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => [3] => 0
[4]
=> [[1,2,3,4]]
=> [4] => [1,1,1,1] => 6
[3,1]
=> [[1,2,3],[4]]
=> [3,1] => [2,1,1] => 5
[2,2]
=> [[1,2],[3,4]]
=> [2,2] => [1,2,1] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => [3,1] => 3
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => [4] => 0
[5]
=> [[1,2,3,4,5]]
=> [5] => [1,1,1,1,1] => 10
[4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => [2,1,1,1] => 9
[3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => [1,2,1,1] => 8
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => [3,1,1] => 7
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => [2,2,1] => 6
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => [4,1] => 4
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [5] => 0
[6]
=> [[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1] => 15
[5,1]
=> [[1,2,3,4,5],[6]]
=> [5,1] => [2,1,1,1,1] => 14
[4,2]
=> [[1,2,3,4],[5,6]]
=> [4,2] => [1,2,1,1,1] => 13
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1] => [3,1,1,1] => 12
[3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => [1,1,2,1,1] => 12
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [3,2,1] => [2,2,1,1] => 11
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => [4,1,1] => 9
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => [1,2,2,1] => 9
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => [3,2,1] => 8
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => [5,1] => 5
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [6] => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [7] => [1,1,1,1,1,1,1] => 21
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => [2,1,1,1,1,1] => 20
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [5,2] => [1,2,1,1,1,1] => 19
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [5,1,1] => [3,1,1,1,1] => 18
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [4,3] => [1,1,2,1,1,1] => 18
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [4,2,1] => [2,2,1,1,1] => 17
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [4,1,1,1] => [4,1,1,1] => 15
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [3,3,1] => [2,1,2,1,1] => 16
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [3,2,2] => [1,2,2,1,1] => 15
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [3,2,1,1] => [3,2,1,1] => 14
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [3,1,1,1,1] => [5,1,1] => 11
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [2,2,2,1] => [2,2,2,1] => 12
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [2,2,1,1,1] => [4,2,1] => 10
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1] => [6,1] => 6
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => [7] => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [8] => [1,1,1,1,1,1,1,1] => 28
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [7,1] => [2,1,1,1,1,1,1] => 27
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [6,2] => [1,2,1,1,1,1,1] => 26
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [6,1,1] => [3,1,1,1,1,1] => 25
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [5,3] => [1,1,2,1,1,1,1] => 25
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [5,2,1] => [2,2,1,1,1,1] => 24
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [9] => [1,1,1,1,1,1,1,1,1] => ? = 36
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [8,1] => [2,1,1,1,1,1,1,1] => ? = 35
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [7,2] => [1,2,1,1,1,1,1,1] => ? = 34
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [7,1,1] => [3,1,1,1,1,1,1] => ? = 33
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [6,3] => [1,1,2,1,1,1,1,1] => ? = 33
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [6,2,1] => [2,2,1,1,1,1,1] => ? = 32
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [6,1,1,1] => [4,1,1,1,1,1] => ? = 30
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [5,4] => [1,1,1,2,1,1,1,1] => ? = 32
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [5,3,1] => [2,1,2,1,1,1,1] => ? = 31
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [5,2,2] => [1,2,2,1,1,1,1] => ? = 30
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [5,2,1,1] => [3,2,1,1,1,1] => ? = 29
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [5,1,1,1,1] => [5,1,1,1,1] => ? = 26
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [4,4,1] => [2,1,1,2,1,1,1] => ? = 30
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [4,3,2] => [1,2,1,2,1,1,1] => ? = 29
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [4,3,1,1] => [3,1,2,1,1,1] => ? = 28
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [4,2,2,1] => [2,2,2,1,1,1] => ? = 27
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [4,2,1,1,1] => [4,2,1,1,1] => ? = 25
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [4,1,1,1,1,1] => [6,1,1,1] => ? = 21
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [3,3,3] => [1,1,2,1,2,1,1] => ? = 27
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [3,3,2,1] => [2,2,1,2,1,1] => ? = 26
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [3,3,1,1,1] => [4,1,2,1,1] => ? = 24
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [3,2,2,2] => [1,2,2,2,1,1] => ? = 24
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [3,2,2,1,1] => [3,2,2,1,1] => ? = 23
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [3,2,1,1,1,1] => [5,2,1,1] => ? = 20
[2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [2,2,2,2,1] => [2,2,2,2,1] => ? = 20
[2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [2,2,2,1,1,1] => [4,2,2,1] => ? = 18
[1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [1,1,1,1,1,1,1,1,1] => [9] => ? = 0
[9,1]
=> [[1,2,3,4,5,6,7,8,9],[10]]
=> [9,1] => [2,1,1,1,1,1,1,1,1] => ? = 44
[8,2]
=> [[1,2,3,4,5,6,7,8],[9,10]]
=> [8,2] => [1,2,1,1,1,1,1,1,1] => ? = 43
[8,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10]]
=> [8,1,1] => [3,1,1,1,1,1,1,1] => ? = 42
[7,3]
=> [[1,2,3,4,5,6,7],[8,9,10]]
=> [7,3] => [1,1,2,1,1,1,1,1,1] => ? = 42
[7,1,1,1]
=> [[1,2,3,4,5,6,7],[8],[9],[10]]
=> [7,1,1,1] => [4,1,1,1,1,1,1] => ? = 39
[6,4]
=> [[1,2,3,4,5,6],[7,8,9,10]]
=> [6,4] => [1,1,1,2,1,1,1,1,1] => ? = 41
[6,3,1]
=> [[1,2,3,4,5,6],[7,8,9],[10]]
=> [6,3,1] => [2,1,2,1,1,1,1,1] => ? = 40
[6,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10]]
=> [6,2,2] => [1,2,2,1,1,1,1,1] => ? = 39
[6,2,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10]]
=> [6,2,1,1] => [3,2,1,1,1,1,1] => ? = 38
[6,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10]]
=> [6,1,1,1,1] => [5,1,1,1,1,1] => ? = 35
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> [5,5] => [1,1,1,1,2,1,1,1,1] => ? = 40
[5,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10]]
=> [5,3,2] => [1,2,1,2,1,1,1,1] => ? = 38
[5,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10]]
=> [5,3,1,1] => [3,1,2,1,1,1,1] => ? = 37
[5,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10]]
=> [5,2,2,1] => [2,2,2,1,1,1,1] => ? = 36
[5,2,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10]]
=> [5,2,1,1,1] => [4,2,1,1,1,1] => ? = 34
[5,1,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10]]
=> [5,1,1,1,1,1] => [6,1,1,1,1] => ? = 30
[4,4,2]
=> [[1,2,3,4],[5,6,7,8],[9,10]]
=> [4,4,2] => [1,2,1,1,2,1,1,1] => ? = 37
[4,4,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10]]
=> [4,4,1,1] => [3,1,1,2,1,1,1] => ? = 36
[4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> [4,3,3] => [1,1,2,1,2,1,1,1] => ? = 36
[4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> [4,3,2,1] => [2,2,1,2,1,1,1] => ? = 35
[4,3,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10]]
=> [4,3,1,1,1] => [4,1,2,1,1,1] => ? = 33
[4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> [4,2,2,2] => [1,2,2,2,1,1,1] => ? = 33
[4,2,2,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10]]
=> [4,2,2,1,1] => [3,2,2,1,1,1] => ? = 32
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000246
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 26%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00073: Permutations —major-index to inversion-number bijection⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 26%
Values
[1]
=> [[1]]
=> [1] => [1] => 0
[2]
=> [[1,2]]
=> [1,2] => [1,2] => 1
[1,1]
=> [[1],[2]]
=> [2,1] => [2,1] => 0
[3]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 3
[2,1]
=> [[1,3],[2]]
=> [2,1,3] => [2,1,3] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 0
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 6
[3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => 5
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [1,4,2,3] => 4
[2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => 3
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => 0
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 10
[4,1]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => 9
[3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,4,2,3,5] => 8
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => 7
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,4,5,2,3] => 6
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => 4
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 15
[5,1]
=> [[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 14
[4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [1,4,2,3,5,6] => 13
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => 12
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [1,2,6,3,4,5] => 12
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,4,5,2,3,6] => 11
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => 9
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [1,6,2,5,3,4] => 9
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,5,4,6,2,3] => 8
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => 5
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 0
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 21
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => 20
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => [1,4,2,3,5,6,7] => ? = 19
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => 18
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => [1,2,6,3,4,5,7] => ? = 18
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => [1,4,5,2,3,6,7] => ? = 17
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => 15
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => [1,4,2,7,3,5,6] => ? = 16
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => [1,6,2,5,3,4,7] => ? = 15
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => [1,5,4,6,2,3,7] => ? = 14
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => [5,4,3,2,1,6,7] => 11
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [1,3,7,5,6,2,4] => ? = 12
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [1,6,5,4,7,2,3] => ? = 10
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => 6
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => 0
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => 28
[7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> [2,1,3,4,5,6,7,8] => [2,1,3,4,5,6,7,8] => 27
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [3,4,1,2,5,6,7,8] => [1,4,2,3,5,6,7,8] => 26
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> [3,2,1,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => 25
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [4,5,6,1,2,3,7,8] => [1,2,6,3,4,5,7,8] => ? = 25
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [4,2,5,1,3,6,7,8] => [1,4,5,2,3,6,7,8] => ? = 24
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> [4,3,2,1,5,6,7,8] => [4,3,2,1,5,6,7,8] => 22
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [1,2,3,8,4,5,6,7] => 24
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8] => [1,4,2,7,3,5,6,8] => 23
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8] => [1,6,2,5,3,4,7,8] => 22
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8] => [1,5,4,6,2,3,7,8] => ? = 21
[4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => 18
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5] => [1,2,4,7,8,3,5,6] => ? = 21
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5] => [1,5,4,2,8,3,6,7] => 20
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8] => [1,3,7,5,6,2,4,8] => ? = 19
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8] => [1,6,5,4,7,2,3,8] => ? = 17
[3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7,8] => [6,5,4,3,2,1,7,8] => 13
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [1,8,2,7,3,6,4,5] => 16
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => [1,3,7,8,5,6,2,4] => ? = 15
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => [1,7,6,5,4,8,2,3] => 12
[2,1,1,1,1,1,1]
=> [[1,8],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1,8] => [7,6,5,4,3,2,1,8] => 7
[7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> [3,4,1,2,5,6,7,8,9] => [1,4,2,3,5,6,7,8,9] => ? = 34
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> [4,5,6,1,2,3,7,8,9] => [1,2,6,3,4,5,7,8,9] => ? = 33
[6,2,1]
=> [[1,3,6,7,8,9],[2,5],[4]]
=> [4,2,5,1,3,6,7,8,9] => [1,4,5,2,3,6,7,8,9] => ? = 32
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4,9] => [1,2,3,8,4,5,6,7,9] => ? = 32
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8,9] => [1,4,2,7,3,5,6,8,9] => ? = 31
[5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8,9] => [1,6,2,5,3,4,7,8,9] => ? = 30
[5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8,9] => [1,5,4,6,2,3,7,8,9] => ? = 29
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> [6,2,7,8,9,1,3,4,5] => [1,4,2,3,9,5,6,7,8] => ? = 30
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5,9] => [1,2,4,7,8,3,5,6,9] => ? = 29
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5,9] => [1,5,4,2,8,3,6,7,9] => ? = 28
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8,9] => [1,3,7,5,6,2,4,8,9] => ? = 27
[4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8,9] => [1,6,5,4,7,2,3,8,9] => ? = 25
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [1,2,9,3,4,8,5,6,7] => ? = 27
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> [7,4,8,2,5,9,1,3,6] => [1,3,2,7,8,9,4,5,6] => ? = 26
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> [7,4,3,2,8,9,1,5,6] => [1,6,5,4,2,9,3,7,8] => ? = 24
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2,9] => [1,8,2,7,3,6,4,5,9] => ? = 24
[3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4,9] => [1,3,7,8,5,6,2,4,9] => ? = 23
[3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6,9] => [1,7,6,5,4,8,2,3,9] => ? = 20
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> [8,6,9,4,7,2,5,1,3] => [1,3,9,4,8,6,7,2,5] => ? = 20
[2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [8,6,4,3,9,2,7,1,5] => [1,3,8,7,9,5,6,2,4] => ? = 18
[2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> [8,6,5,4,3,2,9,1,7] => [1,8,7,6,5,4,9,2,3] => ? = 14
[8,2]
=> [[1,2,5,6,7,8,9,10],[3,4]]
=> [3,4,1,2,5,6,7,8,9,10] => [1,4,2,3,5,6,7,8,9,10] => ? = 43
[7,3]
=> [[1,2,3,7,8,9,10],[4,5,6]]
=> [4,5,6,1,2,3,7,8,9,10] => [1,2,6,3,4,5,7,8,9,10] => ? = 42
[7,2,1]
=> [[1,3,6,7,8,9,10],[2,5],[4]]
=> [4,2,5,1,3,6,7,8,9,10] => [1,4,5,2,3,6,7,8,9,10] => ? = 41
[6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4,9,10] => [1,2,3,8,4,5,6,7,9,10] => ? = 41
[6,3,1]
=> [[1,3,4,8,9,10],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8,9,10] => [1,4,2,7,3,5,6,8,9,10] => ? = 40
[6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8,9,10] => [1,6,2,5,3,4,7,8,9,10] => ? = 39
[6,2,1,1]
=> [[1,4,7,8,9,10],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8,9,10] => [1,5,4,6,2,3,7,8,9,10] => ? = 38
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> [6,7,8,9,10,1,2,3,4,5] => [1,2,3,4,10,5,6,7,8,9] => ? = 40
[5,4,1]
=> [[1,3,4,5,10],[2,7,8,9],[6]]
=> [6,2,7,8,9,1,3,4,5,10] => [1,4,2,3,9,5,6,7,8,10] => ? = 39
[5,3,2]
=> [[1,2,5,9,10],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5,9,10] => [1,2,4,7,8,3,5,6,9,10] => ? = 38
[5,3,1,1]
=> [[1,4,5,9,10],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5,9,10] => [1,5,4,2,8,3,6,7,9,10] => ? = 37
[5,2,2,1]
=> [[1,3,8,9,10],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8,9,10] => [1,3,7,5,6,2,4,8,9,10] => ? = 36
[5,2,1,1,1]
=> [[1,5,8,9,10],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8,9,10] => [1,6,5,4,7,2,3,8,9,10] => ? = 34
[4,4,2]
=> [[1,2,5,6],[3,4,9,10],[7,8]]
=> [7,8,3,4,9,10,1,2,5,6] => [1,2,4,7,3,10,5,6,8,9] => ? = 37
Description
The number of non-inversions of a permutation.
For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001094The depth index of a set partition. St000564The number of occurrences of the pattern {{1},{2}} in a set partition. St000492The rob statistic of a set partition. St000499The rcb statistic of a set partition. St001759The Rajchgot index of a permutation. St000794The mak of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St000446The disorder of a permutation. St000304The load of a permutation. St000004The major index of a permutation. St000154The sum of the descent bottoms of a permutation. St000305The inverse major index of a permutation. St000472The sum of the ascent bottoms of a permutation. St000833The comajor index of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!