Processing math: 20%

Your data matches 247 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001604
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001604: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [3,2,1]
=> [2,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [3,2,1]
=> [2,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [2,2,2]
=> [2,2]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [3,2,1]
=> [2,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00111: Graphs complementGraphs
Mp00266: Graphs connected vertex partitionsLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001846: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,24),(1,26),(2,8),(2,9),(2,24),(2,25),(3,16),(3,17),(3,18),(3,19),(3,24),(4,9),(4,14),(4,15),(4,17),(4,26),(5,8),(5,12),(5,13),(5,16),(5,26),(6,11),(6,13),(6,15),(6,19),(6,25),(7,10),(7,12),(7,14),(7,18),(7,25),(8,27),(8,31),(9,28),(9,31),(10,29),(10,32),(11,30),(11,32),(12,20),(12,27),(12,29),(13,21),(13,27),(13,30),(14,22),(14,28),(14,29),(15,23),(15,28),(15,30),(16,20),(16,21),(16,31),(17,22),(17,23),(17,31),(18,20),(18,22),(18,32),(19,21),(19,23),(19,32),(20,33),(21,33),(22,33),(23,33),(24,31),(24,32),(25,27),(25,28),(25,32),(26,29),(26,30),(26,31),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ?
=> ? = 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,10),(1,28),(1,29),(2,12),(2,16),(2,20),(2,22),(2,29),(3,11),(3,15),(3,20),(3,21),(3,28),(4,13),(4,17),(4,19),(4,21),(4,29),(5,14),(5,18),(5,19),(5,22),(5,28),(6,8),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,9),(7,11),(7,12),(7,13),(7,14),(8,27),(8,34),(8,35),(9,27),(9,30),(9,31),(10,27),(10,32),(10,33),(11,23),(11,30),(11,34),(12,24),(12,31),(12,34),(13,23),(13,31),(13,35),(14,24),(14,30),(14,35),(15,25),(15,32),(15,34),(16,26),(16,33),(16,34),(17,25),(17,33),(17,35),(18,26),(18,32),(18,35),(19,35),(19,36),(20,34),(20,36),(21,23),(21,25),(21,36),(22,24),(22,26),(22,36),(23,37),(24,37),(25,37),(26,37),(27,37),(28,30),(28,32),(28,36),(29,31),(29,33),(29,36),(30,37),(31,37),(32,37),(33,37),(34,37),(35,37),(36,37)],38)
=> ?
=> ? = 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ?
=> ? = 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ?
=> ? = 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ?
=> ? = 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ?
=> ? = 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ?
=> ? = 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ?
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ?
=> ? = 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ?
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ?
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,20),(1,29),(1,31),(1,36),(1,40),(1,42),(1,44),(1,81),(1,86),(2,19),(2,28),(2,30),(2,35),(2,39),(2,41),(2,43),(2,81),(2,85),(3,17),(3,26),(3,32),(3,35),(3,37),(3,42),(3,45),(3,82),(3,84),(4,18),(4,27),(4,33),(4,36),(4,38),(4,41),(4,46),(4,82),(4,83),(5,25),(5,37),(5,38),(5,39),(5,40),(5,47),(5,48),(5,79),(5,80),(6,15),(6,16),(6,24),(6,32),(6,33),(6,34),(6,48),(6,85),(6,86),(7,13),(7,14),(7,23),(7,30),(7,31),(7,34),(7,47),(7,83),(7,84),(8,13),(8,17),(8,22),(8,27),(8,43),(8,49),(8,79),(8,86),(9,14),(9,18),(9,21),(9,26),(9,44),(9,49),(9,80),(9,85),(10,15),(10,19),(10,21),(10,29),(10,45),(10,50),(10,79),(10,83),(11,16),(11,20),(11,22),(11,28),(11,46),(11,50),(11,80),(11,84),(12,23),(12,24),(12,25),(12,49),(12,50),(12,81),(12,82),(13,63),(13,91),(13,103),(13,108),(13,127),(14,64),(14,90),(14,102),(14,108),(14,128),(15,65),(15,92),(15,104),(15,109),(15,130),(16,66),(16,93),(16,105),(16,109),(16,129),(17,59),(17,96),(17,101),(17,103),(17,131),(18,60),(18,97),(18,100),(18,102),(18,131),(19,61),(19,94),(19,98),(19,104),(19,132),(20,62),(20,95),(20,99),(20,105),(20,132),(21,73),(21,74),(21,102),(21,104),(21,138),(22,72),(22,75),(22,103),(22,105),(22,138),(23,76),(23,78),(23,108),(23,110),(23,139),(24,77),(24,78),(24,109),(24,111),(24,140),(25,76),(25,77),(25,106),(25,107),(25,138),(26,69),(26,74),(26,114),(26,128),(26,131),(27,68),(27,75),(27,115),(27,127),(27,131),(28,70),(28,72),(28,112),(28,129),(28,132),(29,71),(29,73),(29,113),(29,130),(29,132),(30,53),(30,63),(30,90),(30,98),(30,110),(30,112),(31,54),(31,64),(31,91),(31,99),(31,110),(31,113),(32,56),(32,65),(32,93),(32,101),(32,111),(32,114),(33,55),(33,66),(33,92),(33,100),(33,111),(33,115),(34,67),(34,78),(34,90),(34,91),(34,92),(34,93),(35,51),(35,59),(35,61),(35,112),(35,114),(35,124),(36,52),(36,60),(36,62),(36,113),(36,115),(36,124),(37,51),(37,56),(37,58),(37,96),(37,106),(37,128),(38,52),(38,55),(38,57),(38,97),(38,106),(38,127),(39,51),(39,53),(39,57),(39,94),(39,107),(39,129),(40,52),(40,54),(40,58),(40,95),(40,107),(40,130),(41,57),(41,68),(41,70),(41,98),(41,100),(41,124),(42,58),(42,69),(42,71),(42,99),(42,101),(42,124),(43,59),(43,63),(43,68),(43,72),(43,94),(43,140),(44,60),(44,64),(44,69),(44,73),(44,95),(44,140),(45,61),(45,65),(45,71),(45,74),(45,96),(45,139),(46,62),(46,66),(46,70),(46,75),(46,97),(46,139),(47,53),(47,54),(47,67),(47,76),(47,127),(47,128),(48,55),(48,56),(48,67),(48,77),(48,129),(48,130),(49,108),(49,131),(49,138),(49,140),(50,109),(50,132),(50,138),(50,139),(51,122),(51,133),(51,143),(52,123),(52,133),(52,144),(53,116),(53,134),(53,143),(54,116),(54,135),(54,144),(55,117),(55,136),(55,144),(56,117),(56,137),(56,143),(57,133),(57,134),(57,136),(58,133),(58,135),(58,137),(59,118),(59,122),(59,146),(60,119),(60,123),(60,146),(61,120),(61,122),(61,145),(62,121),(62,123),(62,145),(63,118),(63,134),(63,141),(64,119),(64,135),(64,141),(65,120),(65,137),(65,142),(66,121),(66,136),(66,142),(67,87),(67,143),(67,144),(68,88),(68,134),(68,146),(69,89),(69,135),(69,146),(70,88),(70,136),(70,145),(71,89),(71,137),(71,145),(72,88),(72,118),(72,148),(73,89),(73,119),(73,148),(74,89),(74,120),(74,147),(75,88),(75,121),(75,147),(76,87),(76,116),(76,147),(77,87),(77,117),(77,148),(78,87),(78,141),(78,142),(79,94),(79,96),(79,127),(79,130),(79,138),(80,95),(80,97),(80,128),(80,129),(80,138),(81,107),(81,110),(81,124),(81,132),(81,140),(82,106),(82,111),(82,124),(82,131),(82,139),(83,92),(83,98),(83,102),(83,113),(83,127),(83,139),(84,93),(84,99),(84,103),(84,112),(84,128),(84,139),(85,90),(85,100),(85,104),(85,114),(85,129),(85,140),(86,91),(86,101),(86,105),(86,115),(86,130),(86,140),(87,149),(88,149),(89,149),(90,125),(90,141),(90,143),(91,126),(91,141),(91,144),(92,125),(92,142),(92,144),(93,126),(93,142),(93,143),(94,122),(94,134),(94,148),(95,123),(95,135),(95,148),(96,122),(96,137),(96,147),(97,123),(97,136),(97,147),(98,125),(98,134),(98,145),(99,126),(99,135),(99,145),(100,125),(100,136),(100,146),(101,126),(101,137),(101,146),(102,119),(102,125),(102,147),(103,118),(103,126),(103,147),(104,120),(104,125),(104,148),(105,121),(105,126),(105,148),(106,117),(106,133),(106,147),(107,116),(107,133),(107,148),(108,141),(108,147),(109,142),(109,148),(110,116),(110,141),(110,145),(111,117),(111,142),(111,146),(112,118),(112,143),(112,145),(113,119),(113,144),(113,145),(114,120),(114,143),(114,146),(115,121),(115,144),(115,146),(116,149),(117,149),(118,149),(119,149),(120,149),(121,149),(122,149),(123,149),(124,133),(124,145),(124,146),(125,149),(126,149),(127,134),(127,144),(127,147),(128,135),(128,143),(128,147),(129,136),(129,143),(129,148),(130,137),(130,144),(130,148),(131,146),(131,147),(132,145),(132,148),(133,149),(134,149),(135,149),(136,149),(137,149),(138,147),(138,148),(139,142),(139,145),(139,147),(140,141),(140,146),(140,148),(141,149),(142,149),(143,149),(144,149),(145,149),(146,149),(147,149),(148,149)],150)
=> ?
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,22),(1,27),(1,28),(1,32),(1,35),(1,36),(1,37),(1,40),(1,41),(1,90),(2,21),(2,25),(2,26),(2,31),(2,33),(2,34),(2,37),(2,38),(2,39),(2,89),(3,16),(3,26),(3,30),(3,41),(3,43),(3,45),(3,49),(3,86),(3,92),(4,15),(4,25),(4,29),(4,40),(4,42),(4,44),(4,48),(4,85),(4,92),(5,17),(5,27),(5,29),(5,39),(5,43),(5,46),(5,50),(5,88),(5,91),(6,18),(6,28),(6,30),(6,38),(6,42),(6,47),(6,51),(6,87),(6,91),(7,13),(7,23),(7,24),(7,44),(7,45),(7,46),(7,47),(7,89),(7,90),(8,13),(8,19),(8,20),(8,21),(8,22),(8,59),(8,91),(8,92),(9,14),(9,17),(9,18),(9,19),(9,31),(9,85),(9,86),(9,90),(10,14),(10,15),(10,16),(10,20),(10,32),(10,87),(10,88),(10,89),(11,24),(11,33),(11,35),(11,48),(11,50),(11,59),(11,86),(11,87),(12,23),(12,34),(12,36),(12,49),(12,51),(12,59),(12,85),(12,88),(13,97),(13,98),(13,99),(13,100),(13,103),(14,52),(14,127),(14,128),(14,138),(15,77),(15,96),(15,106),(15,112),(15,127),(16,78),(16,96),(16,107),(16,113),(16,128),(17,75),(17,95),(17,108),(17,111),(17,127),(18,76),(18,95),(18,109),(18,110),(18,128),(19,52),(19,69),(19,95),(19,100),(19,139),(20,52),(20,70),(20,96),(20,99),(20,140),(21,68),(21,69),(21,99),(21,101),(21,104),(21,114),(22,68),(22,70),(22,100),(22,102),(22,105),(22,115),(23,65),(23,67),(23,103),(23,134),(23,136),(24,64),(24,66),(24,103),(24,135),(24,137),(25,55),(25,71),(25,104),(25,106),(25,116),(25,132),(26,56),(26,72),(26,104),(26,107),(26,117),(26,133),(27,58),(27,73),(27,105),(27,108),(27,119),(27,132),(28,57),(28,74),(28,105),(28,109),(28,118),(28,133),(29,60),(29,62),(29,127),(29,129),(29,132),(30,61),(30,63),(30,128),(30,129),(30,133),(31,69),(31,75),(31,76),(31,116),(31,117),(31,138),(32,70),(32,77),(32,78),(32,118),(32,119),(32,138),(33,71),(33,80),(33,84),(33,114),(33,117),(33,135),(34,72),(34,79),(34,83),(34,114),(34,116),(34,134),(35,73),(35,81),(35,84),(35,115),(35,118),(35,137),(36,74),(36,82),(36,83),(36,115),(36,119),(36,136),(37,68),(37,83),(37,84),(37,132),(37,133),(37,138),(38,55),(38,76),(38,79),(38,101),(38,133),(38,135),(39,56),(39,75),(39,80),(39,101),(39,132),(39,134),(40,57),(40,77),(40,81),(40,102),(40,132),(40,136),(41,58),(41,78),(41,82),(41,102),(41,133),(41,137),(42,53),(42,55),(42,57),(42,110),(42,112),(42,129),(43,54),(43,56),(43,58),(43,111),(43,113),(43,129),(44,53),(44,62),(44,66),(44,97),(44,106),(44,136),(45,54),(45,63),(45,67),(45,97),(45,107),(45,137),(46,54),(46,62),(46,64),(46,98),(46,108),(46,134),(47,53),(47,63),(47,65),(47,98),(47,109),(47,135),(48,60),(48,66),(48,71),(48,81),(48,112),(48,139),(49,61),(49,67),(49,72),(49,82),(49,113),(49,139),(50,60),(50,64),(50,73),(50,80),(50,111),(50,140),(51,61),(51,65),(51,74),(51,79),(51,110),(51,140),(52,144),(52,156),(53,143),(53,145),(53,147),(54,143),(54,146),(54,148),(55,121),(55,145),(55,151),(56,122),(56,146),(56,151),(57,123),(57,147),(57,151),(58,124),(58,148),(58,151),(59,103),(59,114),(59,115),(59,139),(59,140),(60,93),(60,141),(60,156),(61,94),(61,142),(61,156),(62,93),(62,143),(62,154),(63,94),(63,143),(63,155),(64,93),(64,148),(64,152),(65,94),(65,147),(65,152),(66,93),(66,145),(66,153),(67,94),(67,146),(67,153),(68,120),(68,144),(68,151),(69,125),(69,144),(69,149),(70,126),(70,144),(70,150),(71,141),(71,145),(71,149),(72,142),(72,146),(72,149),(73,141),(73,148),(73,150),(74,142),(74,147),(74,150),(75,122),(75,125),(75,154),(76,121),(76,125),(76,155),(77,123),(77,126),(77,154),(78,124),(78,126),(78,155),(79,121),(79,142),(79,152),(80,122),(80,141),(80,152),(81,123),(81,141),(81,153),(82,124),(82,142),(82,153),(83,120),(83,142),(83,154),(84,120),(84,141),(84,155),(85,110),(85,116),(85,127),(85,136),(85,139),(86,111),(86,117),(86,128),(86,137),(86,139),(87,112),(87,118),(87,128),(87,135),(87,140),(88,113),(88,119),(88,127),(88,134),(88,140),(89,99),(89,106),(89,107),(89,134),(89,135),(89,138),(90,100),(90,108),(90,109),(90,136),(90,137),(90,138),(91,95),(91,98),(91,101),(91,105),(91,129),(91,140),(92,96),(92,97),(92,102),(92,104),(92,129),(92,139),(93,157),(94,157),(95,125),(95,131),(95,156),(96,126),(96,130),(96,156),(97,130),(97,143),(97,153),(98,131),(98,143),(98,152),(99,130),(99,144),(99,152),(100,131),(100,144),(100,153),(101,125),(101,151),(101,152),(102,126),(102,151),(102,153),(103,152),(103,153),(104,130),(104,149),(104,151),(105,131),(105,150),(105,151),(106,130),(106,145),(106,154),(107,130),(107,146),(107,155),(108,131),(108,148),(108,154),(109,131),(109,147),(109,155),(110,121),(110,147),(110,156),(111,122),(111,148),(111,156),(112,123),(112,145),(112,156),(113,124),(113,146),(113,156),(114,120),(114,149),(114,152),(115,120),(115,150),(115,153),(116,121),(116,149),(116,154),(117,122),(117,149),(117,155),(118,123),(118,150),(118,155),(119,124),(119,150),(119,154),(120,157),(121,157),(122,157),(123,157),(124,157),(125,157),(126,157),(127,154),(127,156),(128,155),(128,156),(129,143),(129,151),(129,156),(130,157),(131,157),(132,141),(132,151),(132,154),(133,142),(133,151),(133,155),(134,146),(134,152),(134,154),(135,145),(135,152),(135,155),(136,147),(136,153),(136,154),(137,148),(137,153),(137,155),(138,144),(138,154),(138,155),(139,149),(139,153),(139,156),(140,150),(140,152),(140,156),(141,157),(142,157),(143,157),(144,157),(145,157),(146,157),(147,157),(148,157),(149,157),(150,157),(151,157),(152,157),(153,157),(154,157),(155,157),(156,157)],158)
=> ?
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,20),(1,21),(1,32),(1,35),(1,36),(1,41),(1,42),(1,43),(2,15),(2,18),(2,19),(2,31),(2,33),(2,34),(2,39),(2,40),(2,43),(3,23),(3,25),(3,28),(3,38),(3,40),(3,42),(3,71),(3,75),(4,22),(4,24),(4,27),(4,37),(4,39),(4,41),(4,70),(4,75),(5,17),(5,22),(5,23),(5,26),(5,31),(5,32),(5,72),(5,73),(6,13),(6,24),(6,29),(6,33),(6,35),(6,38),(6,72),(6,74),(7,12),(7,25),(7,30),(7,34),(7,36),(7,37),(7,73),(7,74),(8,12),(8,13),(8,14),(8,17),(8,43),(8,70),(8,71),(9,14),(9,15),(9,16),(9,26),(9,44),(9,74),(9,75),(10,18),(10,20),(10,27),(10,30),(10,44),(10,71),(10,72),(11,19),(11,21),(11,28),(11,29),(11,44),(11,70),(11,73),(12,80),(12,88),(12,94),(12,108),(13,80),(13,87),(13,95),(13,109),(14,45),(14,80),(14,83),(14,117),(15,62),(15,81),(15,83),(15,84),(15,92),(16,63),(16,82),(16,83),(16,85),(16,93),(17,45),(17,91),(17,108),(17,109),(18,58),(18,65),(18,84),(18,96),(18,111),(19,59),(19,64),(19,84),(19,97),(19,110),(20,60),(20,67),(20,85),(20,99),(20,111),(21,61),(21,66),(21,85),(21,98),(21,110),(22,46),(22,48),(22,86),(22,89),(22,108),(23,47),(23,49),(23,86),(23,90),(23,109),(24,50),(24,52),(24,87),(24,89),(24,107),(25,51),(25,53),(25,88),(25,90),(25,107),(26,45),(26,62),(26,63),(26,86),(26,118),(27,58),(27,60),(27,68),(27,89),(27,117),(28,59),(28,61),(28,69),(28,90),(28,117),(29,64),(29,66),(29,69),(29,87),(29,118),(30,65),(30,67),(30,68),(30,88),(30,118),(31,46),(31,47),(31,62),(31,91),(31,96),(31,97),(32,48),(32,49),(32,63),(32,91),(32,98),(32,99),(33,50),(33,55),(33,64),(33,92),(33,95),(33,96),(34,51),(34,54),(34,65),(34,92),(34,94),(34,97),(35,52),(35,57),(35,66),(35,93),(35,95),(35,99),(36,53),(36,56),(36,67),(36,93),(36,94),(36,98),(37,54),(37,56),(37,68),(37,107),(37,108),(38,55),(38,57),(38,69),(38,107),(38,109),(39,46),(39,50),(39,54),(39,58),(39,81),(39,110),(40,47),(40,51),(40,55),(40,59),(40,81),(40,111),(41,48),(41,52),(41,56),(41,60),(41,82),(41,110),(42,49),(42,53),(42,57),(42,61),(42,82),(42,111),(43,83),(43,91),(43,94),(43,95),(43,110),(43,111),(44,84),(44,85),(44,117),(44,118),(45,106),(45,124),(46,100),(46,104),(46,121),(47,101),(47,104),(47,122),(48,102),(48,105),(48,121),(49,103),(49,105),(49,122),(50,100),(50,113),(50,115),(51,101),(51,114),(51,115),(52,102),(52,113),(52,116),(53,103),(53,114),(53,116),(54,76),(54,115),(54,121),(55,77),(55,115),(55,122),(56,78),(56,116),(56,121),(57,79),(57,116),(57,122),(58,76),(58,100),(58,123),(59,77),(59,101),(59,123),(60,78),(60,102),(60,123),(61,79),(61,103),(61,123),(62,104),(62,106),(62,119),(63,105),(63,106),(63,120),(64,77),(64,113),(64,119),(65,76),(65,114),(65,119),(66,79),(66,113),(66,120),(67,78),(67,114),(67,120),(68,76),(68,78),(68,124),(69,77),(69,79),(69,124),(70,87),(70,108),(70,110),(70,117),(71,88),(71,109),(71,111),(71,117),(72,89),(72,96),(72,99),(72,109),(72,118),(73,90),(73,97),(73,98),(73,108),(73,118),(74,80),(74,92),(74,93),(74,107),(74,118),(75,81),(75,82),(75,86),(75,107),(75,117),(76,125),(77,125),(78,125),(79,125),(80,112),(80,124),(81,104),(81,115),(81,123),(82,105),(82,116),(82,123),(83,106),(83,112),(83,123),(84,119),(84,123),(85,120),(85,123),(86,104),(86,105),(86,124),(87,113),(87,124),(88,114),(88,124),(89,100),(89,102),(89,124),(90,101),(90,103),(90,124),(91,106),(91,121),(91,122),(92,112),(92,115),(92,119),(93,112),(93,116),(93,120),(94,112),(94,114),(94,121),(95,112),(95,113),(95,122),(96,100),(96,119),(96,122),(97,101),(97,119),(97,121),(98,103),(98,120),(98,121),(99,102),(99,120),(99,122),(100,125),(101,125),(102,125),(103,125),(104,125),(105,125),(106,125),(107,115),(107,116),(107,124),(108,121),(108,124),(109,122),(109,124),(110,113),(110,121),(110,123),(111,114),(111,122),(111,123),(112,125),(113,125),(114,125),(115,125),(116,125),(117,123),(117,124),(118,119),(118,120),(118,124),(119,125),(120,125),(121,125),(122,125),(123,125),(124,125)],126)
=> ?
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,21),(1,25),(1,26),(1,27),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(2,21),(2,22),(2,23),(2,24),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(3,14),(3,19),(3,20),(3,30),(3,36),(3,42),(3,78),(3,79),(4,13),(4,16),(4,18),(4,29),(4,35),(4,41),(4,77),(4,79),(5,12),(5,15),(5,17),(5,28),(5,34),(5,40),(5,77),(5,78),(6,12),(6,18),(6,19),(6,31),(6,37),(6,43),(6,80),(6,82),(7,13),(7,17),(7,20),(7,32),(7,38),(7,44),(7,81),(7,82),(8,14),(8,15),(8,16),(8,33),(8,39),(8,45),(8,80),(8,81),(9,22),(9,25),(9,28),(9,31),(9,46),(9,79),(9,81),(10,23),(10,26),(10,29),(10,32),(10,46),(10,78),(10,80),(11,24),(11,27),(11,30),(11,33),(11,46),(11,77),(11,82),(12,50),(12,116),(12,117),(12,119),(13,51),(13,116),(13,118),(13,120),(14,52),(14,117),(14,118),(14,121),(15,65),(15,71),(15,85),(15,88),(15,117),(16,66),(16,72),(16,86),(16,88),(16,118),(17,67),(17,73),(17,85),(17,89),(17,116),(18,68),(18,74),(18,86),(18,90),(18,116),(19,69),(19,75),(19,87),(19,90),(19,117),(20,70),(20,76),(20,87),(20,89),(20,118),(21,47),(21,48),(21,49),(21,119),(21,120),(21,121),(22,47),(22,53),(22,56),(22,83),(22,93),(22,95),(23,48),(23,54),(23,57),(23,83),(23,92),(23,94),(24,49),(24,55),(24,58),(24,83),(24,91),(24,96),(25,47),(25,59),(25,62),(25,84),(25,99),(25,101),(26,48),(26,60),(26,63),(26,84),(26,98),(26,100),(27,49),(27,61),(27,64),(27,84),(27,97),(27,102),(28,50),(28,53),(28,59),(28,85),(28,126),(29,51),(29,54),(29,60),(29,86),(29,126),(30,52),(30,55),(30,61),(30,87),(30,126),(31,50),(31,56),(31,62),(31,90),(31,125),(32,51),(32,57),(32,63),(32,89),(32,125),(33,52),(33,58),(33,64),(33,88),(33,125),(34,53),(34,65),(34,67),(34,91),(34,92),(34,119),(35,54),(35,66),(35,68),(35,91),(35,93),(35,120),(36,55),(36,69),(36,70),(36,92),(36,93),(36,121),(37,56),(37,68),(37,69),(37,94),(37,96),(37,119),(38,57),(38,67),(38,70),(38,95),(38,96),(38,120),(39,58),(39,65),(39,66),(39,94),(39,95),(39,121),(40,59),(40,71),(40,73),(40,97),(40,98),(40,119),(41,60),(41,72),(41,74),(41,97),(41,99),(41,120),(42,61),(42,75),(42,76),(42,98),(42,99),(42,121),(43,62),(43,74),(43,75),(43,100),(43,102),(43,119),(44,63),(44,73),(44,76),(44,101),(44,102),(44,120),(45,64),(45,71),(45,72),(45,100),(45,101),(45,121),(46,83),(46,84),(46,125),(46,126),(47,103),(47,122),(47,132),(48,103),(48,123),(48,131),(49,103),(49,124),(49,133),(50,122),(50,134),(51,123),(51,134),(52,124),(52,134),(53,104),(53,122),(53,127),(54,105),(54,123),(54,127),(55,106),(55,124),(55,127),(56,109),(56,122),(56,128),(57,108),(57,123),(57,128),(58,107),(58,124),(58,128),(59,110),(59,122),(59,129),(60,111),(60,123),(60,129),(61,112),(61,124),(61,129),(62,115),(62,122),(62,130),(63,114),(63,123),(63,130),(64,113),(64,124),(64,130),(65,104),(65,107),(65,131),(66,105),(66,107),(66,132),(67,104),(67,108),(67,133),(68,105),(68,109),(68,133),(69,106),(69,109),(69,131),(70,106),(70,108),(70,132),(71,110),(71,113),(71,131),(72,111),(72,113),(72,132),(73,110),(73,114),(73,133),(74,111),(74,115),(74,133),(75,112),(75,115),(75,131),(76,112),(76,114),(76,132),(77,88),(77,91),(77,97),(77,116),(77,126),(78,89),(78,92),(78,98),(78,117),(78,126),(79,90),(79,93),(79,99),(79,118),(79,126),(80,86),(80,94),(80,100),(80,117),(80,125),(81,85),(81,95),(81,101),(81,118),(81,125),(82,87),(82,96),(82,102),(82,116),(82,125),(83,103),(83,127),(83,128),(84,103),(84,129),(84,130),(85,104),(85,110),(85,134),(86,105),(86,111),(86,134),(87,106),(87,112),(87,134),(88,107),(88,113),(88,134),(89,108),(89,114),(89,134),(90,109),(90,115),(90,134),(91,107),(91,127),(91,133),(92,108),(92,127),(92,131),(93,109),(93,127),(93,132),(94,105),(94,128),(94,131),(95,104),(95,128),(95,132),(96,106),(96,128),(96,133),(97,113),(97,129),(97,133),(98,114),(98,129),(98,131),(99,115),(99,129),(99,132),(100,111),(100,130),(100,131),(101,110),(101,130),(101,132),(102,112),(102,130),(102,133),(103,135),(104,135),(105,135),(106,135),(107,135),(108,135),(109,135),(110,135),(111,135),(112,135),(113,135),(114,135),(115,135),(116,133),(116,134),(117,131),(117,134),(118,132),(118,134),(119,122),(119,131),(119,133),(120,123),(120,132),(120,133),(121,124),(121,131),(121,132),(122,135),(123,135),(124,135),(125,128),(125,130),(125,134),(126,127),(126,129),(126,134),(127,135),(128,135),(129,135),(130,135),(131,135),(132,135),(133,135),(134,135)],136)
=> ?
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ?
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ?
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ?
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ?
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,12),(1,13),(1,64),(1,65),(1,66),(1,67),(2,15),(2,24),(2,28),(2,32),(2,36),(2,42),(2,65),(2,71),(3,14),(3,23),(3,27),(3,31),(3,35),(3,42),(3,64),(3,70),(4,17),(4,26),(4,30),(4,33),(4,37),(4,41),(4,64),(4,71),(5,16),(5,25),(5,29),(5,34),(5,38),(5,41),(5,65),(5,70),(6,19),(6,27),(6,28),(6,29),(6,30),(6,40),(6,67),(6,69),(7,18),(7,23),(7,24),(7,25),(7,26),(7,40),(7,66),(7,68),(8,21),(8,35),(8,36),(8,37),(8,38),(8,39),(8,66),(8,69),(9,20),(9,31),(9,32),(9,33),(9,34),(9,39),(9,67),(9,68),(10,13),(10,18),(10,19),(10,20),(10,21),(10,22),(10,70),(10,71),(11,12),(11,14),(11,15),(11,16),(11,17),(11,22),(11,68),(11,69),(12,43),(12,76),(12,77),(12,116),(13,43),(13,78),(13,79),(13,117),(14,60),(14,72),(14,76),(14,80),(14,84),(15,60),(15,73),(15,77),(15,81),(15,85),(16,61),(16,72),(16,77),(16,82),(16,86),(17,61),(17,73),(17,76),(17,83),(17,87),(18,62),(18,74),(18,78),(18,88),(18,89),(19,62),(19,75),(19,79),(19,90),(19,91),(20,63),(20,74),(20,79),(20,92),(20,93),(21,63),(21,75),(21,78),(21,94),(21,95),(22,43),(22,72),(22,73),(22,74),(22,75),(23,44),(23,52),(23,80),(23,88),(23,108),(24,45),(24,52),(24,81),(24,89),(24,109),(25,47),(25,53),(25,82),(25,88),(25,109),(26,46),(26,53),(26,83),(26,89),(26,108),(27,44),(27,54),(27,84),(27,90),(27,110),(28,45),(28,54),(28,85),(28,91),(28,111),(29,47),(29,55),(29,86),(29,90),(29,111),(30,46),(30,55),(30,87),(30,91),(30,110),(31,48),(31,58),(31,80),(31,92),(31,110),(32,49),(32,58),(32,81),(32,93),(32,111),(33,50),(33,59),(33,83),(33,93),(33,110),(34,51),(34,59),(34,82),(34,92),(34,111),(35,48),(35,56),(35,84),(35,94),(35,108),(36,49),(36,56),(36,85),(36,95),(36,109),(37,50),(37,57),(37,87),(37,95),(37,108),(38,51),(38,57),(38,86),(38,94),(38,109),(39,48),(39,49),(39,50),(39,51),(39,63),(39,116),(40,44),(40,45),(40,46),(40,47),(40,62),(40,116),(41,53),(41,55),(41,57),(41,59),(41,61),(41,117),(42,52),(42,54),(42,56),(42,58),(42,60),(42,117),(43,118),(43,119),(44,96),(44,104),(44,120),(45,96),(45,105),(45,121),(46,97),(46,105),(46,120),(47,97),(47,104),(47,121),(48,98),(48,106),(48,120),(49,98),(49,107),(49,121),(50,99),(50,107),(50,120),(51,99),(51,106),(51,121),(52,96),(52,100),(52,122),(53,97),(53,101),(53,122),(54,96),(54,102),(54,123),(55,97),(55,103),(55,123),(56,98),(56,102),(56,122),(57,99),(57,103),(57,122),(58,98),(58,100),(58,123),(59,99),(59,101),(59,123),(60,100),(60,102),(60,118),(61,101),(61,103),(61,118),(62,104),(62,105),(62,119),(63,106),(63,107),(63,119),(64,76),(64,108),(64,110),(64,117),(65,77),(65,109),(65,111),(65,117),(66,78),(66,108),(66,109),(66,116),(67,79),(67,110),(67,111),(67,116),(68,74),(68,80),(68,81),(68,82),(68,83),(68,116),(69,75),(69,84),(69,85),(69,86),(69,87),(69,116),(70,72),(70,88),(70,90),(70,92),(70,94),(70,117),(71,73),(71,89),(71,91),(71,93),(71,95),(71,117),(72,112),(72,114),(72,118),(73,113),(73,115),(73,118),(74,112),(74,113),(74,119),(75,114),(75,115),(75,119),(76,118),(76,120),(77,118),(77,121),(78,119),(78,122),(79,119),(79,123),(80,100),(80,112),(80,120),(81,100),(81,113),(81,121),(82,101),(82,112),(82,121),(83,101),(83,113),(83,120),(84,102),(84,114),(84,120),(85,102),(85,115),(85,121),(86,103),(86,114),(86,121),(87,103),(87,115),(87,120),(88,104),(88,112),(88,122),(89,105),(89,113),(89,122),(90,104),(90,114),(90,123),(91,105),(91,115),(91,123),(92,106),(92,112),(92,123),(93,107),(93,113),(93,123),(94,106),(94,114),(94,122),(95,107),(95,115),(95,122),(96,124),(97,124),(98,124),(99,124),(100,124),(101,124),(102,124),(103,124),(104,124),(105,124),(106,124),(107,124),(108,120),(108,122),(109,121),(109,122),(110,120),(110,123),(111,121),(111,123),(112,124),(113,124),(114,124),(115,124),(116,119),(116,120),(116,121),(117,118),(117,122),(117,123),(118,124),(119,124),(120,124),(121,124),(122,124),(123,124)],125)
=> ?
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,25),(1,26),(1,27),(1,28),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,14),(2,19),(2,20),(2,32),(2,37),(2,38),(2,41),(2,42),(2,89),(3,13),(3,17),(3,18),(3,31),(3,35),(3,36),(3,39),(3,40),(3,89),(4,16),(4,22),(4,24),(4,34),(4,36),(4,38),(4,44),(4,46),(4,88),(5,15),(5,21),(5,23),(5,33),(5,35),(5,37),(5,43),(5,45),(5,88),(6,17),(6,21),(6,27),(6,41),(6,44),(6,47),(6,69),(6,71),(7,18),(7,22),(7,28),(7,42),(7,43),(7,48),(7,69),(7,72),(8,19),(8,23),(8,29),(8,39),(8,46),(8,48),(8,70),(8,71),(9,20),(9,24),(9,30),(9,40),(9,45),(9,47),(9,70),(9,72),(10,12),(10,15),(10,16),(10,26),(10,71),(10,72),(10,89),(11,12),(11,13),(11,14),(11,25),(11,69),(11,70),(11,88),(12,87),(12,106),(12,107),(12,133),(13,81),(13,94),(13,98),(13,102),(13,106),(14,82),(14,95),(14,99),(14,103),(14,106),(15,83),(15,96),(15,100),(15,104),(15,107),(16,84),(16,97),(16,101),(16,105),(16,107),(17,54),(17,61),(17,98),(17,122),(17,125),(18,53),(18,62),(18,98),(18,123),(18,126),(19,56),(19,64),(19,99),(19,122),(19,127),(20,55),(20,63),(20,99),(20,123),(20,128),(21,59),(21,67),(21,100),(21,120),(21,125),(22,60),(22,68),(22,101),(22,120),(22,126),(23,57),(23,65),(23,100),(23,121),(23,127),(24,58),(24,66),(24,101),(24,121),(24,128),(25,81),(25,82),(25,87),(25,108),(25,110),(25,111),(26,83),(26,84),(26,87),(26,109),(26,112),(26,113),(27,75),(27,78),(27,85),(27,111),(27,113),(27,125),(28,76),(28,77),(28,86),(28,111),(28,112),(28,126),(29,73),(29,80),(29,86),(29,110),(29,113),(29,127),(30,74),(30,79),(30,85),(30,110),(30,112),(30,128),(31,73),(31,74),(31,81),(31,109),(31,125),(31,126),(32,75),(32,76),(32,82),(32,109),(32,127),(32,128),(33,77),(33,79),(33,83),(33,108),(33,125),(33,127),(34,78),(34,80),(34,84),(34,108),(34,126),(34,128),(35,49),(35,53),(35,57),(35,94),(35,96),(35,125),(36,50),(36,54),(36,58),(36,94),(36,97),(36,126),(37,51),(37,55),(37,59),(37,95),(37,96),(37,127),(38,52),(38,56),(38,60),(38,95),(38,97),(38,128),(39,50),(39,57),(39,62),(39,73),(39,102),(39,122),(40,49),(40,58),(40,61),(40,74),(40,102),(40,123),(41,52),(41,59),(41,63),(41,75),(41,103),(41,122),(42,51),(42,60),(42,64),(42,76),(42,103),(42,123),(43,51),(43,53),(43,65),(43,77),(43,104),(43,120),(44,52),(44,54),(44,66),(44,78),(44,105),(44,120),(45,49),(45,55),(45,67),(45,79),(45,104),(45,121),(46,50),(46,56),(46,68),(46,80),(46,105),(46,121),(47,61),(47,63),(47,66),(47,67),(47,85),(47,133),(48,62),(48,64),(48,65),(48,68),(48,86),(48,133),(49,129),(49,134),(49,136),(50,130),(50,134),(50,137),(51,131),(51,135),(51,136),(52,132),(52,135),(52,137),(53,90),(53,136),(53,139),(54,91),(54,137),(54,139),(55,92),(55,136),(55,140),(56,93),(56,137),(56,140),(57,90),(57,134),(57,141),(58,91),(58,134),(58,142),(59,92),(59,135),(59,141),(60,93),(60,135),(60,142),(61,91),(61,129),(61,143),(62,90),(62,130),(62,143),(63,92),(63,132),(63,143),(64,93),(64,131),(64,143),(65,90),(65,131),(65,144),(66,91),(66,132),(66,144),(67,92),(67,129),(67,144),(68,93),(68,130),(68,144),(69,98),(69,103),(69,111),(69,120),(69,133),(70,99),(70,102),(70,110),(70,121),(70,133),(71,100),(71,105),(71,113),(71,122),(71,133),(72,101),(72,104),(72,112),(72,123),(72,133),(73,116),(73,130),(73,141),(74,116),(74,129),(74,142),(75,117),(75,132),(75,141),(76,117),(76,131),(76,142),(77,118),(77,131),(77,139),(78,119),(78,132),(78,139),(79,118),(79,129),(79,140),(80,119),(80,130),(80,140),(81,114),(81,116),(81,139),(82,114),(82,117),(82,140),(83,115),(83,118),(83,141),(84,115),(84,119),(84,142),(85,129),(85,132),(85,138),(86,130),(86,131),(86,138),(87,114),(87,115),(87,138),(88,94),(88,95),(88,107),(88,108),(88,120),(88,121),(89,96),(89,97),(89,106),(89,109),(89,122),(89,123),(90,145),(91,145),(92,145),(93,145),(94,124),(94,134),(94,139),(95,124),(95,135),(95,140),(96,124),(96,136),(96,141),(97,124),(97,137),(97,142),(98,139),(98,143),(99,140),(99,143),(100,141),(100,144),(101,142),(101,144),(102,116),(102,134),(102,143),(103,117),(103,135),(103,143),(104,118),(104,136),(104,144),(105,119),(105,137),(105,144),(106,114),(106,124),(106,143),(107,115),(107,124),(107,144),(108,115),(108,139),(108,140),(109,114),(109,141),(109,142),(110,116),(110,138),(110,140),(111,117),(111,138),(111,139),(112,118),(112,138),(112,142),(113,119),(113,138),(113,141),(114,145),(115,145),(116,145),(117,145),(118,145),(119,145),(120,135),(120,139),(120,144),(121,134),(121,140),(121,144),(122,137),(122,141),(122,143),(123,136),(123,142),(123,143),(124,145),(125,129),(125,139),(125,141),(126,130),(126,139),(126,142),(127,131),(127,140),(127,141),(128,132),(128,140),(128,142),(129,145),(130,145),(131,145),(132,145),(133,138),(133,143),(133,144),(134,145),(135,145),(136,145),(137,145),(138,145),(139,145),(140,145),(141,145),(142,145),(143,145),(144,145)],146)
=> ?
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,11),(1,12),(1,15),(1,58),(1,60),(1,61),(2,15),(2,24),(2,25),(2,26),(2,31),(2,62),(2,63),(3,17),(3,21),(3,28),(3,33),(3,37),(3,61),(3,63),(4,16),(4,20),(4,27),(4,32),(4,37),(4,60),(4,62),(5,18),(5,22),(5,30),(5,34),(5,36),(5,60),(5,63),(6,19),(6,23),(6,29),(6,35),(6,36),(6,61),(6,62),(7,31),(7,32),(7,33),(7,34),(7,35),(7,58),(7,59),(8,13),(8,14),(8,26),(8,27),(8,28),(8,29),(8,30),(8,58),(9,12),(9,14),(9,20),(9,21),(9,22),(9,23),(9,25),(9,59),(10,11),(10,13),(10,16),(10,17),(10,18),(10,19),(10,24),(10,59),(11,40),(11,68),(11,69),(11,94),(12,41),(12,70),(12,71),(12,94),(13,44),(13,45),(13,46),(13,47),(13,56),(13,94),(14,48),(14,49),(14,50),(14,51),(14,57),(14,94),(15,40),(15,41),(15,65),(15,97),(16,44),(16,52),(16,68),(16,72),(16,76),(17,45),(17,52),(17,69),(17,73),(17,77),(18,47),(18,53),(18,68),(18,74),(18,77),(19,46),(19,53),(19,69),(19,75),(19,76),(20,48),(20,54),(20,70),(20,72),(20,78),(21,49),(21,54),(21,71),(21,73),(21,79),(22,50),(22,55),(22,70),(22,74),(22,79),(23,51),(23,55),(23,71),(23,75),(23,78),(24,40),(24,56),(24,64),(24,76),(24,77),(25,41),(25,57),(25,64),(25,78),(25,79),(26,56),(26,57),(26,65),(26,80),(26,81),(27,38),(27,44),(27,48),(27,80),(27,92),(28,38),(28,45),(28,49),(28,81),(28,93),(29,39),(29,46),(29,51),(29,80),(29,93),(30,39),(30,47),(30,50),(30,81),(30,92),(31,64),(31,65),(31,66),(31,67),(32,42),(32,66),(32,72),(32,92),(33,42),(33,67),(33,73),(33,93),(34,43),(34,67),(34,74),(34,92),(35,43),(35,66),(35,75),(35,93),(36,39),(36,43),(36,53),(36,55),(36,97),(37,38),(37,42),(37,52),(37,54),(37,97),(38,82),(38,84),(38,103),(39,83),(39,85),(39,103),(40,98),(40,99),(41,98),(41,100),(42,86),(42,103),(43,87),(43,103),(44,82),(44,88),(44,101),(45,82),(45,89),(45,102),(46,83),(46,88),(46,102),(47,83),(47,89),(47,101),(48,84),(48,90),(48,101),(49,84),(49,91),(49,102),(50,85),(50,91),(50,101),(51,85),(51,90),(51,102),(52,82),(52,86),(52,99),(53,83),(53,87),(53,99),(54,84),(54,86),(54,100),(55,85),(55,87),(55,100),(56,88),(56,89),(56,98),(57,90),(57,91),(57,98),(58,65),(58,92),(58,93),(58,94),(59,64),(59,72),(59,73),(59,74),(59,75),(59,94),(60,68),(60,70),(60,92),(60,97),(61,69),(61,71),(61,93),(61,97),(62,66),(62,76),(62,78),(62,80),(62,97),(63,67),(63,77),(63,79),(63,81),(63,97),(64,95),(64,96),(64,98),(65,98),(65,103),(66,95),(66,103),(67,96),(67,103),(68,99),(68,101),(69,99),(69,102),(70,100),(70,101),(71,100),(71,102),(72,86),(72,95),(72,101),(73,86),(73,96),(73,102),(74,87),(74,96),(74,101),(75,87),(75,95),(75,102),(76,88),(76,95),(76,99),(77,89),(77,96),(77,99),(78,90),(78,95),(78,100),(79,91),(79,96),(79,100),(80,88),(80,90),(80,103),(81,89),(81,91),(81,103),(82,104),(83,104),(84,104),(85,104),(86,104),(87,104),(88,104),(89,104),(90,104),(91,104),(92,101),(92,103),(93,102),(93,103),(94,98),(94,101),(94,102),(95,104),(96,104),(97,99),(97,100),(97,103),(98,104),(99,104),(100,104),(101,104),(102,104),(103,104)],105)
=> ?
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,14),(1,18),(1,19),(1,28),(1,31),(1,32),(1,34),(1,37),(1,38),(2,13),(2,16),(2,17),(2,28),(2,29),(2,30),(2,33),(2,35),(2,36),(3,12),(3,21),(3,23),(3,25),(3,27),(3,30),(3,32),(3,50),(4,11),(4,20),(4,22),(4,24),(4,26),(4,29),(4,31),(4,50),(5,11),(5,16),(5,18),(5,27),(5,39),(5,73),(5,74),(6,12),(6,17),(6,19),(6,26),(6,40),(6,73),(6,75),(7,15),(7,20),(7,21),(7,33),(7,34),(7,74),(7,75),(8,22),(8,25),(8,35),(8,37),(8,40),(8,72),(8,74),(9,23),(9,24),(9,36),(9,38),(9,39),(9,72),(9,75),(10,13),(10,14),(10,15),(10,50),(10,72),(10,73),(11,41),(11,84),(11,104),(11,105),(12,42),(12,85),(12,104),(12,106),(13,43),(13,63),(13,82),(13,86),(13,90),(14,43),(14,64),(14,83),(14,87),(14,91),(15,63),(15,64),(15,76),(15,107),(16,45),(16,65),(16,86),(16,92),(16,105),(17,44),(17,66),(17,86),(17,93),(17,106),(18,47),(18,67),(18,87),(18,94),(18,105),(19,46),(19,68),(19,87),(19,95),(19,106),(20,51),(20,53),(20,76),(20,84),(20,88),(21,52),(21,54),(21,76),(21,85),(21,89),(22,48),(22,59),(22,61),(22,84),(22,103),(23,49),(23,60),(23,62),(23,85),(23,103),(24,41),(24,55),(24,57),(24,88),(24,103),(25,42),(25,56),(25,58),(25,89),(25,103),(26,44),(26,46),(26,48),(26,88),(26,104),(27,45),(27,47),(27,49),(27,89),(27,104),(28,43),(28,69),(28,70),(28,71),(28,105),(28,106),(29,44),(29,51),(29,55),(29,59),(29,82),(29,105),(30,45),(30,52),(30,56),(30,60),(30,82),(30,106),(31,46),(31,53),(31,57),(31,61),(31,83),(31,105),(32,47),(32,54),(32,58),(32,62),(32,83),(32,106),(33,51),(33,52),(33,63),(33,71),(33,92),(33,93),(34,53),(34,54),(34,64),(34,71),(34,94),(34,95),(35,56),(35,59),(35,66),(35,70),(35,90),(35,92),(36,55),(36,60),(36,65),(36,69),(36,90),(36,93),(37,58),(37,61),(37,68),(37,70),(37,91),(37,94),(38,57),(38,62),(38,67),(38,69),(38,91),(38,95),(39,41),(39,49),(39,65),(39,67),(39,107),(40,42),(40,48),(40,66),(40,68),(40,107),(41,108),(41,117),(42,109),(42,117),(43,77),(43,96),(43,116),(44,78),(44,97),(44,116),(45,79),(45,98),(45,116),(46,80),(46,99),(46,116),(47,81),(47,100),(47,116),(48,78),(48,80),(48,117),(49,79),(49,81),(49,117),(50,76),(50,82),(50,83),(50,103),(50,104),(51,97),(51,101),(51,114),(52,98),(52,101),(52,115),(53,99),(53,102),(53,114),(54,100),(54,102),(54,115),(55,97),(55,108),(55,110),(56,98),(56,109),(56,110),(57,99),(57,108),(57,111),(58,100),(58,109),(58,111),(59,78),(59,110),(59,114),(60,79),(60,110),(60,115),(61,80),(61,111),(61,114),(62,81),(62,111),(62,115),(63,77),(63,101),(63,112),(64,77),(64,102),(64,113),(65,79),(65,108),(65,112),(66,78),(66,109),(66,112),(67,81),(67,108),(67,113),(68,80),(68,109),(68,113),(69,96),(69,108),(69,115),(70,96),(70,109),(70,114),(71,77),(71,114),(71,115),(72,90),(72,91),(72,103),(72,107),(73,86),(73,87),(73,104),(73,107),(74,84),(74,89),(74,92),(74,94),(74,107),(75,85),(75,88),(75,93),(75,95),(75,107),(76,101),(76,102),(76,117),(77,118),(78,118),(79,118),(80,118),(81,118),(82,101),(82,110),(82,116),(83,102),(83,111),(83,116),(84,114),(84,117),(85,115),(85,117),(86,112),(86,116),(87,113),(87,116),(88,97),(88,99),(88,117),(89,98),(89,100),(89,117),(90,96),(90,110),(90,112),(91,96),(91,111),(91,113),(92,98),(92,112),(92,114),(93,97),(93,112),(93,115),(94,100),(94,113),(94,114),(95,99),(95,113),(95,115),(96,118),(97,118),(98,118),(99,118),(100,118),(101,118),(102,118),(103,110),(103,111),(103,117),(104,116),(104,117),(105,108),(105,114),(105,116),(106,109),(106,115),(106,116),(107,112),(107,113),(107,117),(108,118),(109,118),(110,118),(111,118),(112,118),(113,118),(114,118),(115,118),(116,118),(117,118)],119)
=> ?
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ?
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,14),(1,18),(1,22),(1,28),(1,30),(1,36),(1,37),(1,66),(2,13),(2,17),(2,21),(2,27),(2,29),(2,34),(2,35),(2,66),(3,12),(3,20),(3,24),(3,26),(3,32),(3,35),(3,37),(3,67),(4,11),(4,19),(4,23),(4,25),(4,31),(4,34),(4,36),(4,67),(5,16),(5,19),(5,20),(5,27),(5,28),(5,39),(5,40),(6,15),(6,17),(6,18),(6,25),(6,26),(6,38),(6,40),(7,29),(7,30),(7,31),(7,32),(7,33),(7,40),(7,41),(8,21),(8,22),(8,23),(8,24),(8,33),(8,38),(8,39),(9,11),(9,12),(9,15),(9,39),(9,41),(9,66),(10,13),(10,14),(10,16),(10,38),(10,41),(10,67),(11,42),(11,74),(11,80),(11,94),(12,43),(12,75),(12,81),(12,94),(13,44),(13,76),(13,78),(13,95),(14,45),(14,77),(14,79),(14,95),(15,42),(15,43),(15,72),(15,98),(16,44),(16,45),(16,73),(16,98),(17,46),(17,47),(17,72),(17,78),(17,82),(18,48),(18,49),(18,72),(18,79),(18,83),(19,50),(19,52),(19,73),(19,80),(19,84),(20,51),(20,53),(20,73),(20,81),(20,85),(21,54),(21,55),(21,64),(21,78),(21,97),(22,56),(22,57),(22,65),(22,79),(22,97),(23,54),(23,56),(23,62),(23,80),(23,96),(24,55),(24,57),(24,63),(24,81),(24,96),(25,42),(25,46),(25,48),(25,84),(25,96),(26,43),(26,47),(26,49),(26,85),(26,96),(27,44),(27,50),(27,51),(27,82),(27,97),(28,45),(28,52),(28,53),(28,83),(28,97),(29,58),(29,59),(29,64),(29,82),(29,95),(30,60),(30,61),(30,65),(30,83),(30,95),(31,58),(31,60),(31,62),(31,84),(31,94),(32,59),(32,61),(32,63),(32,85),(32,94),(33,62),(33,63),(33,64),(33,65),(33,98),(34,46),(34,50),(34,54),(34,58),(34,74),(34,76),(35,47),(35,51),(35,55),(35,59),(35,75),(35,76),(36,48),(36,52),(36,56),(36,60),(36,74),(36,77),(37,49),(37,53),(37,57),(37,61),(37,75),(37,77),(38,78),(38,79),(38,96),(38,98),(39,80),(39,81),(39,97),(39,98),(40,82),(40,83),(40,84),(40,85),(40,98),(41,94),(41,95),(41,98),(42,90),(42,104),(43,91),(43,104),(44,92),(44,105),(45,93),(45,105),(46,86),(46,90),(46,99),(47,87),(47,91),(47,99),(48,88),(48,90),(48,100),(49,89),(49,91),(49,100),(50,86),(50,92),(50,101),(51,87),(51,92),(51,102),(52,88),(52,93),(52,101),(53,89),(53,93),(53,102),(54,68),(54,99),(54,101),(55,69),(55,99),(55,102),(56,70),(56,100),(56,101),(57,71),(57,100),(57,102),(58,68),(58,86),(58,103),(59,69),(59,87),(59,103),(60,70),(60,88),(60,103),(61,71),(61,89),(61,103),(62,68),(62,70),(62,104),(63,69),(63,71),(63,104),(64,68),(64,69),(64,105),(65,70),(65,71),(65,105),(66,72),(66,74),(66,75),(66,95),(66,97),(67,73),(67,76),(67,77),(67,94),(67,96),(68,106),(69,106),(70,106),(71,106),(72,90),(72,91),(72,105),(73,92),(73,93),(73,104),(74,90),(74,101),(74,103),(75,91),(75,102),(75,103),(76,92),(76,99),(76,103),(77,93),(77,100),(77,103),(78,99),(78,105),(79,100),(79,105),(80,101),(80,104),(81,102),(81,104),(82,86),(82,87),(82,105),(83,88),(83,89),(83,105),(84,86),(84,88),(84,104),(85,87),(85,89),(85,104),(86,106),(87,106),(88,106),(89,106),(90,106),(91,106),(92,106),(93,106),(94,103),(94,104),(95,103),(95,105),(96,99),(96,100),(96,104),(97,101),(97,102),(97,105),(98,104),(98,105),(99,106),(100,106),(101,106),(102,106),(103,106),(104,106),(105,106)],107)
=> ?
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,20),(1,21),(1,22),(1,23),(1,36),(1,37),(1,67),(2,12),(2,16),(2,17),(2,18),(2,19),(2,34),(2,35),(2,67),(3,15),(3,28),(3,29),(3,30),(3,31),(3,35),(3,37),(3,66),(4,14),(4,24),(4,25),(4,26),(4,27),(4,34),(4,36),(4,66),(5,17),(5,21),(5,25),(5,29),(5,33),(5,39),(5,41),(6,16),(6,20),(6,24),(6,28),(6,33),(6,38),(6,40),(7,18),(7,23),(7,27),(7,30),(7,32),(7,38),(7,41),(8,19),(8,22),(8,26),(8,31),(8,32),(8,39),(8,40),(9,11),(9,14),(9,15),(9,40),(9,41),(9,67),(10,11),(10,12),(10,13),(10,38),(10,39),(10,66),(11,76),(11,77),(11,95),(12,76),(12,78),(12,82),(12,83),(13,76),(13,79),(13,84),(13,85),(14,77),(14,80),(14,86),(14,87),(15,77),(15,81),(15,88),(15,89),(16,42),(16,46),(16,58),(16,82),(16,93),(17,43),(17,47),(17,58),(17,83),(17,94),(18,44),(18,48),(18,59),(18,82),(18,94),(19,45),(19,49),(19,59),(19,83),(19,93),(20,50),(20,54),(20,60),(20,84),(20,93),(21,51),(21,55),(21,60),(21,85),(21,94),(22,52),(22,56),(22,61),(22,85),(22,93),(23,53),(23,57),(23,61),(23,84),(23,94),(24,42),(24,50),(24,62),(24,86),(24,91),(25,43),(25,51),(25,62),(25,87),(25,92),(26,45),(26,52),(26,63),(26,86),(26,92),(27,44),(27,53),(27,63),(27,87),(27,91),(28,46),(28,54),(28,64),(28,88),(28,91),(29,47),(29,55),(29,64),(29,89),(29,92),(30,48),(30,57),(30,65),(30,89),(30,91),(31,49),(31,56),(31,65),(31,88),(31,92),(32,59),(32,61),(32,63),(32,65),(32,95),(33,58),(33,60),(33,62),(33,64),(33,95),(34,42),(34,43),(34,44),(34,45),(34,78),(34,80),(35,46),(35,47),(35,48),(35,49),(35,78),(35,81),(36,50),(36,51),(36,52),(36,53),(36,79),(36,80),(37,54),(37,55),(37,56),(37,57),(37,79),(37,81),(38,82),(38,84),(38,91),(38,95),(39,83),(39,85),(39,92),(39,95),(40,86),(40,88),(40,93),(40,95),(41,87),(41,89),(41,94),(41,95),(42,68),(42,96),(42,100),(43,68),(43,97),(43,101),(44,69),(44,96),(44,101),(45,69),(45,97),(45,100),(46,70),(46,96),(46,102),(47,70),(47,97),(47,103),(48,71),(48,96),(48,103),(49,71),(49,97),(49,102),(50,72),(50,98),(50,100),(51,72),(51,99),(51,101),(52,73),(52,99),(52,100),(53,73),(53,98),(53,101),(54,74),(54,98),(54,102),(55,74),(55,99),(55,103),(56,75),(56,99),(56,102),(57,75),(57,98),(57,103),(58,68),(58,70),(58,104),(59,69),(59,71),(59,104),(60,72),(60,74),(60,104),(61,73),(61,75),(61,104),(62,68),(62,72),(62,105),(63,69),(63,73),(63,105),(64,70),(64,74),(64,105),(65,71),(65,75),(65,105),(66,77),(66,78),(66,79),(66,91),(66,92),(67,76),(67,80),(67,81),(67,93),(67,94),(68,106),(69,106),(70,106),(71,106),(72,106),(73,106),(74,106),(75,106),(76,90),(76,104),(77,90),(77,105),(78,90),(78,96),(78,97),(79,90),(79,98),(79,99),(80,90),(80,100),(80,101),(81,90),(81,102),(81,103),(82,96),(82,104),(83,97),(83,104),(84,98),(84,104),(85,99),(85,104),(86,100),(86,105),(87,101),(87,105),(88,102),(88,105),(89,103),(89,105),(90,106),(91,96),(91,98),(91,105),(92,97),(92,99),(92,105),(93,100),(93,102),(93,104),(94,101),(94,103),(94,104),(95,104),(95,105),(96,106),(97,106),(98,106),(99,106),(100,106),(101,106),(102,106),(103,106),(104,106),(105,106)],107)
=> ?
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ?
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,17),(1,23),(1,30),(1,42),(1,44),(2,10),(2,16),(2,22),(2,30),(2,41),(2,43),(3,12),(3,18),(3,24),(3,29),(3,41),(3,44),(4,13),(4,19),(4,25),(4,29),(4,42),(4,43),(5,15),(5,21),(5,27),(5,28),(5,43),(5,44),(6,14),(6,20),(6,26),(6,28),(6,41),(6,42),(7,22),(7,23),(7,24),(7,25),(7,26),(7,27),(7,31),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,31),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,31),(10,32),(10,45),(10,47),(10,57),(11,32),(11,46),(11,48),(11,58),(12,33),(12,45),(12,48),(12,59),(13,33),(13,46),(13,47),(13,60),(14,34),(14,45),(14,46),(14,61),(15,34),(15,47),(15,48),(15,62),(16,35),(16,49),(16,51),(16,57),(17,35),(17,50),(17,52),(17,58),(18,36),(18,49),(18,52),(18,59),(19,36),(19,50),(19,51),(19,60),(20,37),(20,49),(20,50),(20,61),(21,37),(21,51),(21,52),(21,62),(22,38),(22,53),(22,55),(22,57),(23,38),(23,54),(23,56),(23,58),(24,39),(24,53),(24,56),(24,59),(25,39),(25,54),(25,55),(25,60),(26,40),(26,53),(26,54),(26,61),(27,40),(27,55),(27,56),(27,62),(28,34),(28,37),(28,40),(28,70),(29,33),(29,36),(29,39),(29,70),(30,32),(30,35),(30,38),(30,70),(31,57),(31,58),(31,59),(31,60),(31,61),(31,62),(32,63),(32,71),(33,64),(33,71),(34,65),(34,71),(35,63),(35,72),(36,64),(36,72),(37,65),(37,72),(38,63),(38,73),(39,64),(39,73),(40,65),(40,73),(41,45),(41,49),(41,53),(41,70),(42,46),(42,50),(42,54),(42,70),(43,47),(43,51),(43,55),(43,70),(44,48),(44,52),(44,56),(44,70),(45,66),(45,71),(46,67),(46,71),(47,68),(47,71),(48,69),(48,71),(49,66),(49,72),(50,67),(50,72),(51,68),(51,72),(52,69),(52,72),(53,66),(53,73),(54,67),(54,73),(55,68),(55,73),(56,69),(56,73),(57,63),(57,66),(57,68),(58,63),(58,67),(58,69),(59,64),(59,66),(59,69),(60,64),(60,67),(60,68),(61,65),(61,66),(61,67),(62,65),(62,68),(62,69),(63,74),(64,74),(65,74),(66,74),(67,74),(68,74),(69,74),(70,71),(70,72),(70,73),(71,74),(72,74),(73,74)],75)
=> ?
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,18),(1,21),(1,24),(1,27),(1,32),(1,33),(2,11),(2,14),(2,17),(2,20),(2,23),(2,26),(2,31),(2,33),(3,10),(3,13),(3,16),(3,19),(3,22),(3,25),(3,31),(3,32),(4,10),(4,11),(4,12),(4,30),(4,60),(4,61),(5,16),(5,17),(5,18),(5,29),(5,59),(5,61),(6,13),(6,14),(6,15),(6,29),(6,58),(6,60),(7,22),(7,23),(7,24),(7,28),(7,58),(7,61),(8,19),(8,20),(8,21),(8,28),(8,59),(8,60),(9,25),(9,26),(9,27),(9,30),(9,58),(9,59),(10,34),(10,68),(10,71),(10,86),(11,35),(11,69),(11,72),(11,86),(12,36),(12,70),(12,73),(12,86),(13,40),(13,41),(13,52),(13,68),(13,74),(14,40),(14,42),(14,53),(14,69),(14,75),(15,41),(15,42),(15,54),(15,70),(15,76),(16,43),(16,44),(16,52),(16,71),(16,77),(17,43),(17,45),(17,53),(17,72),(17,78),(18,44),(18,45),(18,54),(18,73),(18,79),(19,49),(19,50),(19,55),(19,68),(19,77),(20,49),(20,51),(20,56),(20,69),(20,78),(21,50),(21,51),(21,57),(21,70),(21,79),(22,46),(22,47),(22,55),(22,71),(22,74),(23,46),(23,48),(23,56),(23,72),(23,75),(24,47),(24,48),(24,57),(24,73),(24,76),(25,34),(25,37),(25,38),(25,74),(25,77),(26,35),(26,37),(26,39),(26,75),(26,78),(27,36),(27,38),(27,39),(27,76),(27,79),(28,55),(28,56),(28,57),(28,87),(29,52),(29,53),(29,54),(29,87),(30,34),(30,35),(30,36),(30,87),(31,37),(31,40),(31,43),(31,46),(31,49),(31,86),(32,38),(32,41),(32,44),(32,47),(32,50),(32,86),(33,39),(33,42),(33,45),(33,48),(33,51),(33,86),(34,88),(34,89),(35,88),(35,90),(36,88),(36,91),(37,82),(37,85),(37,88),(38,80),(38,83),(38,88),(39,81),(39,84),(39,88),(40,64),(40,82),(40,92),(41,62),(41,80),(41,92),(42,63),(42,81),(42,92),(43,64),(43,85),(43,93),(44,62),(44,83),(44,93),(45,63),(45,84),(45,93),(46,67),(46,82),(46,93),(47,65),(47,80),(47,93),(48,66),(48,81),(48,93),(49,67),(49,85),(49,92),(50,65),(50,83),(50,92),(51,66),(51,84),(51,92),(52,62),(52,64),(52,89),(53,63),(53,64),(53,90),(54,62),(54,63),(54,91),(55,65),(55,67),(55,89),(56,66),(56,67),(56,90),(57,65),(57,66),(57,91),(58,74),(58,75),(58,76),(58,87),(59,77),(59,78),(59,79),(59,87),(60,68),(60,69),(60,70),(60,87),(61,71),(61,72),(61,73),(61,87),(62,94),(63,94),(64,94),(65,94),(66,94),(67,94),(68,89),(68,92),(69,90),(69,92),(70,91),(70,92),(71,89),(71,93),(72,90),(72,93),(73,91),(73,93),(74,80),(74,82),(74,89),(75,81),(75,82),(75,90),(76,80),(76,81),(76,91),(77,83),(77,85),(77,89),(78,84),(78,85),(78,90),(79,83),(79,84),(79,91),(80,94),(81,94),(82,94),(83,94),(84,94),(85,94),(86,88),(86,92),(86,93),(87,89),(87,90),(87,91),(88,94),(89,94),(90,94),(91,94),(92,94),(93,94)],95)
=> ?
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([],1)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,14),(1,22),(1,23),(1,32),(1,36),(1,40),(1,48),(1,90),(1,94),(2,13),(2,21),(2,23),(2,31),(2,35),(2,39),(2,47),(2,89),(2,93),(3,16),(3,19),(3,24),(3,34),(3,35),(3,41),(3,49),(3,90),(3,91),(4,15),(4,20),(4,24),(4,33),(4,36),(4,42),(4,50),(4,89),(4,92),(5,15),(5,19),(5,25),(5,31),(5,38),(5,43),(5,51),(5,87),(5,94),(6,16),(6,20),(6,25),(6,32),(6,37),(6,44),(6,52),(6,88),(6,93),(7,13),(7,22),(7,26),(7,33),(7,37),(7,45),(7,53),(7,87),(7,91),(8,14),(8,21),(8,26),(8,34),(8,38),(8,46),(8,54),(8,88),(8,92),(9,18),(9,29),(9,30),(9,43),(9,44),(9,45),(9,46),(9,89),(9,90),(10,18),(10,27),(10,28),(10,39),(10,40),(10,41),(10,42),(10,87),(10,88),(11,17),(11,28),(11,30),(11,49),(11,50),(11,53),(11,54),(11,93),(11,94),(12,17),(12,27),(12,29),(12,47),(12,48),(12,51),(12,52),(12,91),(12,92),(13,95),(13,101),(13,103),(13,109),(13,127),(14,96),(14,102),(14,104),(14,110),(14,127),(15,97),(15,99),(15,106),(15,108),(15,126),(16,98),(16,100),(16,105),(16,107),(16,126),(17,115),(17,116),(17,117),(17,118),(17,125),(18,111),(18,112),(18,113),(18,114),(18,125),(19,63),(19,68),(19,126),(19,132),(19,139),(20,64),(20,67),(20,126),(20,133),(20,138),(21,65),(21,69),(21,127),(21,134),(21,136),(22,66),(22,70),(22,127),(22,135),(22,137),(23,55),(23,59),(23,127),(23,129),(23,131),(24,56),(24,60),(24,126),(24,129),(24,130),(25,57),(25,61),(25,126),(25,128),(25,131),(26,58),(26,62),(26,127),(26,128),(26,130),(27,71),(27,72),(27,125),(27,132),(27,133),(28,73),(28,74),(28,125),(28,134),(28,135),(29,75),(29,76),(29,125),(29,136),(29,137),(30,77),(30,78),(30,125),(30,138),(30,139),(31,63),(31,69),(31,83),(31,95),(31,99),(31,131),(32,64),(32,70),(32,84),(32,96),(32,100),(32,131),(33,66),(33,67),(33,85),(33,97),(33,101),(33,130),(34,65),(34,68),(34,86),(34,98),(34,102),(34,130),(35,63),(35,65),(35,79),(35,103),(35,105),(35,129),(36,64),(36,66),(36,80),(36,104),(36,106),(36,129),(37,67),(37,70),(37,81),(37,107),(37,109),(37,128),(38,68),(38,69),(38,82),(38,108),(38,110),(38,128),(39,55),(39,71),(39,79),(39,95),(39,111),(39,134),(40,55),(40,72),(40,80),(40,96),(40,112),(40,135),(41,56),(41,73),(41,79),(41,98),(41,112),(41,132),(42,56),(42,74),(42,80),(42,97),(42,111),(42,133),(43,57),(43,75),(43,82),(43,99),(43,113),(43,139),(44,57),(44,76),(44,81),(44,100),(44,114),(44,138),(45,58),(45,77),(45,81),(45,101),(45,113),(45,137),(46,58),(46,78),(46,82),(46,102),(46,114),(46,136),(47,59),(47,71),(47,83),(47,103),(47,115),(47,136),(48,59),(48,72),(48,84),(48,104),(48,116),(48,137),(49,60),(49,73),(49,86),(49,105),(49,117),(49,139),(50,60),(50,74),(50,85),(50,106),(50,118),(50,138),(51,61),(51,75),(51,83),(51,108),(51,116),(51,132),(52,61),(52,76),(52,84),(52,107),(52,115),(52,133),(53,62),(53,77),(53,85),(53,109),(53,117),(53,135),(54,62),(54,78),(54,86),(54,110),(54,118),(54,134),(55,121),(55,144),(55,157),(56,122),(56,144),(56,156),(57,123),(57,145),(57,159),(58,124),(58,145),(58,158),(59,121),(59,146),(59,158),(60,122),(60,147),(60,159),(61,123),(61,146),(61,156),(62,124),(62,147),(62,157),(63,119),(63,148),(63,159),(64,120),(64,149),(64,159),(65,119),(65,150),(65,158),(66,120),(66,151),(66,158),(67,120),(67,154),(67,156),(68,119),(68,155),(68,156),(69,119),(69,152),(69,157),(70,120),(70,153),(70,157),(71,121),(71,148),(71,160),(72,121),(72,149),(72,161),(73,122),(73,150),(73,161),(74,122),(74,151),(74,160),(75,123),(75,152),(75,161),(76,123),(76,153),(76,160),(77,124),(77,154),(77,161),(78,124),(78,155),(78,160),(79,144),(79,148),(79,150),(80,144),(80,149),(80,151),(81,145),(81,153),(81,154),(82,145),(82,152),(82,155),(83,146),(83,148),(83,152),(84,146),(84,149),(84,153),(85,147),(85,151),(85,154),(86,147),(86,150),(86,155),(87,95),(87,97),(87,113),(87,128),(87,132),(87,135),(88,96),(88,98),(88,114),(88,128),(88,133),(88,134),(89,99),(89,101),(89,111),(89,129),(89,136),(89,138),(90,100),(90,102),(90,112),(90,129),(90,137),(90,139),(91,103),(91,107),(91,117),(91,130),(91,132),(91,137),(92,104),(92,108),(92,118),(92,130),(92,133),(92,136),(93,105),(93,109),(93,115),(93,131),(93,134),(93,138),(94,106),(94,110),(94,116),(94,131),(94,135),(94,139),(95,140),(95,148),(95,157),(96,141),(96,149),(96,157),(97,140),(97,151),(97,156),(98,141),(98,150),(98,156),(99,140),(99,152),(99,159),(100,141),(100,153),(100,159),(101,140),(101,154),(101,158),(102,141),(102,155),(102,158),(103,142),(103,148),(103,158),(104,143),(104,149),(104,158),(105,142),(105,150),(105,159),(106,143),(106,151),(106,159),(107,142),(107,153),(107,156),(108,143),(108,152),(108,156),(109,142),(109,154),(109,157),(110,143),(110,155),(110,157),(111,140),(111,144),(111,160),(112,141),(112,144),(112,161),(113,140),(113,145),(113,161),(114,141),(114,145),(114,160),(115,142),(115,146),(115,160),(116,143),(116,146),(116,161),(117,142),(117,147),(117,161),(118,143),(118,147),(118,160),(119,162),(120,162),(121,162),(122,162),(123,162),(124,162),(125,160),(125,161),(126,156),(126,159),(127,157),(127,158),(128,145),(128,156),(128,157),(129,144),(129,158),(129,159),(130,147),(130,156),(130,158),(131,146),(131,157),(131,159),(132,148),(132,156),(132,161),(133,149),(133,156),(133,160),(134,150),(134,157),(134,160),(135,151),(135,157),(135,161),(136,152),(136,158),(136,160),(137,153),(137,158),(137,161),(138,154),(138,159),(138,160),(139,155),(139,159),(139,161),(140,162),(141,162),(142,162),(143,162),(144,162),(145,162),(146,162),(147,162),(148,162),(149,162),(150,162),(151,162),(152,162),(153,162),(154,162),(155,162),(156,162),(157,162),(158,162),(159,162),(160,162),(161,162)],163)
=> ?
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,18),(1,22),(1,29),(1,36),(1,38),(1,40),(1,42),(1,44),(1,78),(2,17),(2,21),(2,29),(2,35),(2,37),(2,39),(2,41),(2,43),(2,77),(3,14),(3,19),(3,20),(3,32),(3,33),(3,34),(3,37),(3,38),(3,79),(4,15),(4,27),(4,31),(4,33),(4,35),(4,40),(4,80),(4,82),(5,16),(5,28),(5,30),(5,34),(5,36),(5,39),(5,81),(5,82),(6,14),(6,21),(6,22),(6,25),(6,26),(6,45),(6,76),(6,82),(7,23),(7,24),(7,32),(7,41),(7,42),(7,45),(7,80),(7,81),(8,13),(8,16),(8,24),(8,26),(8,27),(8,43),(8,78),(8,79),(9,12),(9,15),(9,23),(9,25),(9,28),(9,44),(9,77),(9,79),(10,12),(10,17),(10,19),(10,30),(10,76),(10,78),(10,80),(11,13),(11,18),(11,20),(11,31),(11,76),(11,77),(11,81),(12,68),(12,101),(12,116),(12,118),(13,69),(13,102),(13,115),(13,119),(14,47),(14,89),(14,90),(14,103),(14,114),(15,53),(15,93),(15,99),(15,101),(15,104),(16,52),(16,94),(16,100),(16,102),(16,105),(17,62),(17,64),(17,91),(17,95),(17,118),(18,63),(18,65),(18,92),(18,96),(18,119),(19,60),(19,62),(19,90),(19,97),(19,116),(20,61),(20,63),(20,90),(20,98),(20,115),(21,56),(21,70),(21,87),(21,114),(21,118),(22,57),(22,71),(22,88),(22,114),(22,119),(23,73),(23,74),(23,101),(23,106),(23,120),(24,72),(24,75),(24,102),(24,106),(24,121),(25,71),(25,74),(25,103),(25,104),(25,118),(26,70),(26,75),(26,103),(26,105),(26,119),(27,66),(27,69),(27,99),(27,105),(27,121),(28,67),(28,68),(28,100),(28,104),(28,120),(29,46),(29,48),(29,49),(29,91),(29,92),(29,114),(30,60),(30,64),(30,68),(30,94),(30,122),(31,61),(31,65),(31,69),(31,93),(31,122),(32,47),(32,54),(32,55),(32,97),(32,98),(32,106),(33,50),(33,59),(33,61),(33,89),(33,97),(33,99),(34,51),(34,58),(34,60),(34,89),(34,98),(34,100),(35,48),(35,50),(35,66),(35,87),(35,93),(35,95),(36,49),(36,51),(36,67),(36,88),(36,94),(36,96),(37,50),(37,54),(37,58),(37,62),(37,114),(37,115),(38,51),(38,55),(38,59),(38,63),(38,114),(38,116),(39,49),(39,52),(39,58),(39,64),(39,87),(39,120),(40,48),(40,53),(40,59),(40,65),(40,88),(40,121),(41,46),(41,54),(41,56),(41,72),(41,95),(41,120),(42,46),(42,55),(42,57),(42,73),(42,96),(42,121),(43,52),(43,66),(43,70),(43,72),(43,91),(43,115),(44,53),(44,67),(44,71),(44,73),(44,92),(44,116),(45,47),(45,56),(45,57),(45,74),(45,75),(45,122),(46,123),(46,126),(46,127),(47,107),(47,123),(47,128),(48,111),(48,126),(48,131),(49,110),(49,127),(49,131),(50,112),(50,124),(50,131),(51,113),(51,125),(51,131),(52,108),(52,110),(52,129),(53,109),(53,111),(53,130),(54,112),(54,123),(54,129),(55,113),(55,123),(55,130),(56,85),(56,123),(56,132),(57,86),(57,123),(57,133),(58,83),(58,129),(58,131),(59,84),(59,130),(59,131),(60,83),(60,125),(60,128),(61,84),(61,124),(61,128),(62,83),(62,112),(62,134),(63,84),(63,113),(63,134),(64,83),(64,110),(64,132),(65,84),(65,111),(65,133),(66,108),(66,124),(66,126),(67,109),(67,125),(67,127),(68,125),(68,132),(69,124),(69,133),(70,85),(70,108),(70,134),(71,86),(71,109),(71,134),(72,85),(72,126),(72,129),(73,86),(73,127),(73,130),(74,86),(74,107),(74,132),(75,85),(75,107),(75,133),(76,90),(76,118),(76,119),(76,122),(77,92),(77,93),(77,115),(77,118),(77,120),(78,91),(78,94),(78,116),(78,119),(78,121),(79,99),(79,100),(79,103),(79,106),(79,115),(79,116),(80,95),(80,97),(80,101),(80,121),(80,122),(81,96),(81,98),(81,102),(81,120),(81,122),(82,87),(82,88),(82,89),(82,104),(82,105),(82,122),(83,135),(84,135),(85,135),(86,135),(87,108),(87,131),(87,132),(88,109),(88,131),(88,133),(89,117),(89,128),(89,131),(90,128),(90,134),(91,110),(91,126),(91,134),(92,111),(92,127),(92,134),(93,111),(93,124),(93,132),(94,110),(94,125),(94,133),(95,112),(95,126),(95,132),(96,113),(96,127),(96,133),(97,112),(97,128),(97,130),(98,113),(98,128),(98,129),(99,117),(99,124),(99,130),(100,117),(100,125),(100,129),(101,130),(101,132),(102,129),(102,133),(103,107),(103,117),(103,134),(104,109),(104,117),(104,132),(105,108),(105,117),(105,133),(106,107),(106,129),(106,130),(107,135),(108,135),(109,135),(110,135),(111,135),(112,135),(113,135),(114,123),(114,131),(114,134),(115,124),(115,129),(115,134),(116,125),(116,130),(116,134),(117,135),(118,132),(118,134),(119,133),(119,134),(120,127),(120,129),(120,132),(121,126),(121,130),(121,133),(122,128),(122,132),(122,133),(123,135),(124,135),(125,135),(126,135),(127,135),(128,135),(129,135),(130,135),(131,135),(132,135),(133,135),(134,135)],136)
=> ?
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,30),(1,31),(1,32),(1,33),(1,47),(1,48),(1,84),(1,85),(2,21),(2,25),(2,35),(2,38),(2,42),(2,46),(2,83),(2,85),(3,20),(3,24),(3,34),(3,38),(3,41),(3,45),(3,82),(3,84),(4,19),(4,22),(4,37),(4,39),(4,43),(4,45),(4,80),(4,85),(5,18),(5,23),(5,36),(5,39),(5,44),(5,46),(5,81),(5,84),(6,28),(6,29),(6,40),(6,43),(6,44),(6,48),(6,82),(6,83),(7,26),(7,27),(7,40),(7,41),(7,42),(7,47),(7,80),(7,81),(8,12),(8,15),(8,16),(8,18),(8,22),(8,26),(8,30),(8,34),(8,83),(9,12),(9,14),(9,17),(9,19),(9,23),(9,27),(9,31),(9,35),(9,82),(10,13),(10,14),(10,16),(10,20),(10,25),(10,28),(10,32),(10,36),(10,80),(11,13),(11,15),(11,17),(11,21),(11,24),(11,29),(11,33),(11,37),(11,81),(12,49),(12,54),(12,117),(12,119),(12,121),(13,50),(13,55),(13,118),(13,119),(13,120),(14,56),(14,59),(14,64),(14,86),(14,88),(14,119),(15,57),(15,58),(15,65),(15,87),(15,89),(15,119),(16,70),(16,76),(16,78),(16,98),(16,101),(16,119),(17,71),(17,77),(17,79),(17,99),(17,100),(17,119),(18,76),(18,87),(18,97),(18,102),(18,117),(19,77),(19,86),(19,96),(19,103),(19,117),(20,78),(20,88),(20,94),(20,104),(20,118),(21,79),(21,89),(21,95),(21,105),(21,118),(22,57),(22,66),(22,98),(22,117),(22,125),(23,56),(23,67),(23,99),(23,117),(23,124),(24,58),(24,68),(24,100),(24,118),(24,122),(25,59),(25,69),(25,101),(25,118),(25,123),(26,54),(26,60),(26,72),(26,87),(26,91),(26,98),(27,54),(27,61),(27,73),(27,86),(27,90),(27,99),(28,55),(28,62),(28,74),(28,88),(28,92),(28,101),(29,55),(29,63),(29,75),(29,89),(29,93),(29,100),(30,49),(30,60),(30,65),(30,70),(30,102),(30,125),(31,49),(31,61),(31,64),(31,71),(31,103),(31,124),(32,50),(32,62),(32,64),(32,70),(32,104),(32,123),(33,50),(33,63),(33,65),(33,71),(33,105),(33,122),(34,58),(34,66),(34,72),(34,78),(34,102),(34,121),(35,59),(35,67),(35,73),(35,79),(35,103),(35,121),(36,56),(36,69),(36,74),(36,76),(36,104),(36,120),(37,57),(37,68),(37,75),(37,77),(37,105),(37,120),(38,52),(38,116),(38,118),(38,121),(39,53),(39,116),(39,117),(39,120),(40,51),(40,90),(40,91),(40,92),(40,93),(41,52),(41,72),(41,90),(41,94),(41,122),(42,52),(42,73),(42,91),(42,95),(42,123),(43,53),(43,75),(43,92),(43,96),(43,125),(44,53),(44,74),(44,93),(44,97),(44,124),(45,66),(45,68),(45,94),(45,96),(45,116),(46,67),(46,69),(46,95),(46,97),(46,116),(47,51),(47,60),(47,61),(47,122),(47,123),(48,51),(48,62),(48,63),(48,124),(48,125),(49,106),(49,134),(49,140),(50,107),(50,134),(50,139),(51,135),(51,136),(52,128),(52,139),(53,129),(53,140),(54,106),(54,128),(54,137),(55,107),(55,129),(55,138),(56,109),(56,132),(56,137),(57,108),(57,133),(57,137),(58,108),(58,130),(58,138),(59,109),(59,131),(59,138),(60,106),(60,130),(60,136),(61,106),(61,131),(61,135),(62,107),(62,132),(62,136),(63,107),(63,133),(63,135),(64,131),(64,132),(64,134),(65,130),(65,133),(65,134),(66,108),(66,112),(66,140),(67,109),(67,113),(67,140),(68,108),(68,114),(68,139),(69,109),(69,115),(69,139),(70,110),(70,134),(70,136),(71,111),(71,134),(71,135),(72,112),(72,128),(72,130),(73,113),(73,128),(73,131),(74,115),(74,129),(74,132),(75,114),(75,129),(75,133),(76,110),(76,115),(76,137),(77,111),(77,114),(77,137),(78,110),(78,112),(78,138),(79,111),(79,113),(79,138),(80,86),(80,92),(80,94),(80,98),(80,120),(80,123),(81,87),(81,93),(81,95),(81,99),(81,120),(81,122),(82,88),(82,90),(82,96),(82,100),(82,121),(82,124),(83,89),(83,91),(83,97),(83,101),(83,121),(83,125),(84,102),(84,104),(84,116),(84,122),(84,124),(85,103),(85,105),(85,116),(85,123),(85,125),(86,126),(86,131),(86,137),(87,127),(87,130),(87,137),(88,126),(88,132),(88,138),(89,127),(89,133),(89,138),(90,126),(90,128),(90,135),(91,127),(91,128),(91,136),(92,126),(92,129),(92,136),(93,127),(93,129),(93,135),(94,112),(94,126),(94,139),(95,113),(95,127),(95,139),(96,114),(96,126),(96,140),(97,115),(97,127),(97,140),(98,112),(98,136),(98,137),(99,113),(99,135),(99,137),(100,114),(100,135),(100,138),(101,115),(101,136),(101,138),(102,110),(102,130),(102,140),(103,111),(103,131),(103,140),(104,110),(104,132),(104,139),(105,111),(105,133),(105,139),(106,141),(107,141),(108,141),(109,141),(110,141),(111,141),(112,141),(113,141),(114,141),(115,141),(116,139),(116,140),(117,137),(117,140),(118,138),(118,139),(119,134),(119,137),(119,138),(120,129),(120,137),(120,139),(121,128),(121,138),(121,140),(122,130),(122,135),(122,139),(123,131),(123,136),(123,139),(124,132),(124,135),(124,140),(125,133),(125,136),(125,140),(126,141),(127,141),(128,141),(129,141),(130,141),(131,141),(132,141),(133,141),(134,141),(135,141),(136,141),(137,141),(138,141),(139,141),(140,141)],142)
=> ?
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,15),(1,21),(1,29),(1,30),(1,35),(1,36),(1,44),(1,45),(1,93),(2,14),(2,20),(2,26),(2,28),(2,32),(2,34),(2,43),(2,45),(2,92),(3,13),(3,19),(3,25),(3,27),(3,31),(3,33),(3,43),(3,44),(3,91),(4,16),(4,19),(4,28),(4,29),(4,37),(4,39),(4,46),(4,48),(4,90),(5,17),(5,20),(5,27),(5,30),(5,38),(5,40),(5,47),(5,48),(5,89),(6,18),(6,21),(6,25),(6,26),(6,41),(6,42),(6,46),(6,47),(6,88),(7,22),(7,23),(7,33),(7,34),(7,37),(7,38),(7,88),(7,93),(8,22),(8,24),(8,31),(8,35),(8,39),(8,41),(8,89),(8,92),(9,23),(9,24),(9,32),(9,36),(9,40),(9,42),(9,90),(9,91),(10,12),(10,16),(10,17),(10,18),(10,91),(10,92),(10,93),(11,12),(11,13),(11,14),(11,15),(11,88),(11,89),(11,90),(12,120),(12,121),(12,122),(13,52),(13,53),(13,99),(13,101),(13,120),(14,52),(14,54),(14,100),(14,102),(14,121),(15,53),(15,54),(15,103),(15,104),(15,122),(16,55),(16,57),(16,108),(16,109),(16,120),(17,56),(17,57),(17,107),(17,110),(17,121),(18,55),(18,56),(18,105),(18,106),(18,122),(19,64),(19,66),(19,117),(19,118),(19,120),(20,65),(20,67),(20,117),(20,119),(20,121),(21,68),(21,69),(21,118),(21,119),(21,122),(22,51),(22,70),(22,73),(22,124),(22,128),(23,51),(23,71),(23,74),(23,123),(23,127),(24,51),(24,72),(24,75),(24,125),(24,126),(25,58),(25,61),(25,76),(25,101),(25,105),(25,118),(26,58),(26,62),(26,77),(26,102),(26,106),(26,119),(27,59),(27,61),(27,78),(27,99),(27,107),(27,117),(28,60),(28,62),(28,79),(28,100),(28,108),(28,117),(29,60),(29,63),(29,80),(29,104),(29,109),(29,118),(30,59),(30,63),(30,81),(30,103),(30,110),(30,119),(31,66),(31,70),(31,76),(31,83),(31,99),(31,126),(32,67),(32,71),(32,77),(32,84),(32,100),(32,126),(33,64),(33,70),(33,78),(33,82),(33,101),(33,127),(34,65),(34,71),(34,79),(34,82),(34,102),(34,128),(35,69),(35,72),(35,80),(35,83),(35,103),(35,128),(36,68),(36,72),(36,81),(36,84),(36,104),(36,127),(37,64),(37,73),(37,79),(37,87),(37,109),(37,123),(38,65),(38,74),(38,78),(38,87),(38,110),(38,124),(39,66),(39,73),(39,80),(39,85),(39,108),(39,125),(40,67),(40,74),(40,81),(40,86),(40,107),(40,125),(41,69),(41,75),(41,76),(41,85),(41,106),(41,124),(42,68),(42,75),(42,77),(42,86),(42,105),(42,123),(43,49),(43,52),(43,58),(43,82),(43,117),(43,126),(44,49),(44,53),(44,59),(44,83),(44,118),(44,127),(45,49),(45,54),(45,60),(45,84),(45,119),(45,128),(46,50),(46,55),(46,62),(46,85),(46,118),(46,123),(47,50),(47,56),(47,61),(47,86),(47,119),(47,124),(48,50),(48,57),(48,63),(48,87),(48,117),(48,125),(49,97),(49,139),(49,140),(50,98),(50,138),(50,140),(51,138),(51,139),(52,97),(52,113),(52,143),(53,97),(53,111),(53,141),(54,97),(54,112),(54,142),(55,98),(55,115),(55,141),(56,98),(56,114),(56,142),(57,98),(57,116),(57,143),(58,113),(58,137),(58,140),(59,111),(59,135),(59,140),(60,112),(60,136),(60,140),(61,114),(61,132),(61,140),(62,115),(62,133),(62,140),(63,116),(63,134),(63,140),(64,94),(64,129),(64,141),(65,95),(65,129),(65,142),(66,94),(66,130),(66,143),(67,95),(67,131),(67,143),(68,96),(68,131),(68,141),(69,96),(69,130),(69,142),(70,94),(70,132),(70,139),(71,95),(71,133),(71,139),(72,96),(72,134),(72,139),(73,94),(73,136),(73,138),(74,95),(74,135),(74,138),(75,96),(75,137),(75,138),(76,130),(76,132),(76,137),(77,131),(77,133),(77,137),(78,129),(78,132),(78,135),(79,129),(79,133),(79,136),(80,130),(80,134),(80,136),(81,131),(81,134),(81,135),(82,113),(82,129),(82,139),(83,111),(83,130),(83,139),(84,112),(84,131),(84,139),(85,115),(85,130),(85,138),(86,114),(86,131),(86,138),(87,116),(87,129),(87,138),(88,101),(88,102),(88,122),(88,123),(88,124),(89,99),(89,103),(89,121),(89,124),(89,125),(90,100),(90,104),(90,120),(90,123),(90,125),(91,105),(91,107),(91,120),(91,126),(91,127),(92,106),(92,108),(92,121),(92,126),(92,128),(93,109),(93,110),(93,122),(93,127),(93,128),(94,144),(95,144),(96,144),(97,144),(98,144),(99,111),(99,132),(99,143),(100,112),(100,133),(100,143),(101,113),(101,132),(101,141),(102,113),(102,133),(102,142),(103,111),(103,134),(103,142),(104,112),(104,134),(104,141),(105,114),(105,137),(105,141),(106,115),(106,137),(106,142),(107,114),(107,135),(107,143),(108,115),(108,136),(108,143),(109,116),(109,136),(109,141),(110,116),(110,135),(110,142),(111,144),(112,144),(113,144),(114,144),(115,144),(116,144),(117,129),(117,140),(117,143),(118,130),(118,140),(118,141),(119,131),(119,140),(119,142),(120,141),(120,143),(121,142),(121,143),(122,141),(122,142),(123,133),(123,138),(123,141),(124,132),(124,138),(124,142),(125,134),(125,138),(125,143),(126,137),(126,139),(126,143),(127,135),(127,139),(127,141),(128,136),(128,139),(128,142),(129,144),(130,144),(131,144),(132,144),(133,144),(134,144),(135,144),(136,144),(137,144),(138,144),(139,144),(140,144),(141,144),(142,144),(143,144)],145)
=> ?
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,15),(1,22),(1,24),(1,32),(1,34),(1,37),(1,38),(1,69),(2,14),(2,22),(2,23),(2,31),(2,33),(2,35),(2,36),(2,68),(3,19),(3,21),(3,26),(3,28),(3,36),(3,38),(3,40),(3,71),(4,18),(4,20),(4,25),(4,27),(4,35),(4,37),(4,39),(4,71),(5,11),(5,29),(5,30),(5,33),(5,34),(5,39),(5,40),(5,70),(6,11),(6,12),(6,13),(6,14),(6,15),(6,41),(6,71),(7,12),(7,17),(7,18),(7,19),(7,31),(7,69),(7,70),(8,13),(8,16),(8,20),(8,21),(8,32),(8,68),(8,70),(9,16),(9,23),(9,25),(9,26),(9,29),(9,41),(9,69),(10,17),(10,24),(10,27),(10,28),(10,30),(10,41),(10,68),(11,76),(11,81),(11,88),(11,97),(12,48),(12,76),(12,79),(12,100),(13,49),(13,76),(13,80),(13,99),(14,48),(14,77),(14,97),(14,99),(15,49),(15,78),(15,97),(15,100),(16,50),(16,51),(16,99),(16,102),(17,52),(17,53),(17,100),(17,101),(18,52),(18,54),(18,79),(18,82),(18,86),(19,53),(19,55),(19,79),(19,83),(19,87),(20,50),(20,56),(20,80),(20,82),(20,84),(21,51),(21,57),(21,80),(21,83),(21,85),(22,42),(22,43),(22,89),(22,90),(22,97),(23,62),(23,63),(23,66),(23,89),(23,99),(24,64),(24,65),(24,67),(24,90),(24,100),(25,50),(25,58),(25,62),(25,86),(25,103),(26,51),(26,59),(26,63),(26,87),(26,103),(27,52),(27,60),(27,64),(27,84),(27,103),(28,53),(28,61),(28,65),(28,85),(28,103),(29,58),(29,59),(29,66),(29,88),(29,102),(30,60),(30,61),(30,67),(30,88),(30,101),(31,48),(31,54),(31,55),(31,89),(31,101),(32,49),(32,56),(32,57),(32,90),(32,102),(33,44),(33,45),(33,66),(33,97),(33,101),(34,46),(34,47),(34,67),(34,97),(34,102),(35,42),(35,44),(35,54),(35,62),(35,77),(35,84),(36,43),(36,45),(36,55),(36,63),(36,77),(36,85),(37,42),(37,46),(37,56),(37,64),(37,78),(37,86),(38,43),(38,47),(38,57),(38,65),(38,78),(38,87),(39,44),(39,46),(39,58),(39,60),(39,81),(39,82),(40,45),(40,47),(40,59),(40,61),(40,81),(40,83),(41,88),(41,99),(41,100),(41,103),(42,91),(42,93),(42,111),(43,92),(43,94),(43,111),(44,72),(44,105),(44,111),(45,73),(45,106),(45,111),(46,74),(46,107),(46,111),(47,75),(47,108),(47,111),(48,95),(48,112),(49,96),(49,112),(50,107),(50,109),(51,108),(51,109),(52,105),(52,110),(53,106),(53,110),(54,91),(54,95),(54,105),(55,92),(55,95),(55,106),(56,93),(56,96),(56,107),(57,94),(57,96),(57,108),(58,72),(58,104),(58,107),(59,73),(59,104),(59,108),(60,74),(60,104),(60,105),(61,75),(61,104),(61,106),(62,72),(62,91),(62,109),(63,73),(63,92),(63,109),(64,74),(64,93),(64,110),(65,75),(65,94),(65,110),(66,72),(66,73),(66,112),(67,74),(67,75),(67,112),(68,84),(68,85),(68,90),(68,99),(68,101),(69,86),(69,87),(69,89),(69,100),(69,102),(70,76),(70,82),(70,83),(70,101),(70,102),(71,77),(71,78),(71,79),(71,80),(71,81),(71,103),(72,113),(73,113),(74,113),(75,113),(76,98),(76,112),(77,95),(77,109),(77,111),(78,96),(78,110),(78,111),(79,95),(79,98),(79,110),(80,96),(80,98),(80,109),(81,98),(81,104),(81,111),(82,98),(82,105),(82,107),(83,98),(83,106),(83,108),(84,93),(84,105),(84,109),(85,94),(85,106),(85,109),(86,91),(86,107),(86,110),(87,92),(87,108),(87,110),(88,104),(88,112),(89,91),(89,92),(89,112),(90,93),(90,94),(90,112),(91,113),(92,113),(93,113),(94,113),(95,113),(96,113),(97,111),(97,112),(98,113),(99,109),(99,112),(100,110),(100,112),(101,105),(101,106),(101,112),(102,107),(102,108),(102,112),(103,104),(103,109),(103,110),(104,113),(105,113),(106,113),(107,113),(108,113),(109,113),(110,113),(111,113),(112,113)],114)
=> ?
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([],1)
=> 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 0
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
Description
The number of elements which do not have a complement in the lattice. A complement of an element $x$ in a lattice is an element $y$ such that the meet of $x$ and $y$ is the bottom element and their join is the top element.
Mp00111: Graphs complementGraphs
Mp00266: Graphs connected vertex partitionsLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001719: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,24),(1,26),(2,8),(2,9),(2,24),(2,25),(3,16),(3,17),(3,18),(3,19),(3,24),(4,9),(4,14),(4,15),(4,17),(4,26),(5,8),(5,12),(5,13),(5,16),(5,26),(6,11),(6,13),(6,15),(6,19),(6,25),(7,10),(7,12),(7,14),(7,18),(7,25),(8,27),(8,31),(9,28),(9,31),(10,29),(10,32),(11,30),(11,32),(12,20),(12,27),(12,29),(13,21),(13,27),(13,30),(14,22),(14,28),(14,29),(15,23),(15,28),(15,30),(16,20),(16,21),(16,31),(17,22),(17,23),(17,31),(18,20),(18,22),(18,32),(19,21),(19,23),(19,32),(20,33),(21,33),(22,33),(23,33),(24,31),(24,32),(25,27),(25,28),(25,32),(26,29),(26,30),(26,31),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ?
=> ? = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,10),(1,28),(1,29),(2,12),(2,16),(2,20),(2,22),(2,29),(3,11),(3,15),(3,20),(3,21),(3,28),(4,13),(4,17),(4,19),(4,21),(4,29),(5,14),(5,18),(5,19),(5,22),(5,28),(6,8),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,9),(7,11),(7,12),(7,13),(7,14),(8,27),(8,34),(8,35),(9,27),(9,30),(9,31),(10,27),(10,32),(10,33),(11,23),(11,30),(11,34),(12,24),(12,31),(12,34),(13,23),(13,31),(13,35),(14,24),(14,30),(14,35),(15,25),(15,32),(15,34),(16,26),(16,33),(16,34),(17,25),(17,33),(17,35),(18,26),(18,32),(18,35),(19,35),(19,36),(20,34),(20,36),(21,23),(21,25),(21,36),(22,24),(22,26),(22,36),(23,37),(24,37),(25,37),(26,37),(27,37),(28,30),(28,32),(28,36),(29,31),(29,33),(29,36),(30,37),(31,37),(32,37),(33,37),(34,37),(35,37),(36,37)],38)
=> ?
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ?
=> ? = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ?
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ?
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ?
=> ? = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ?
=> ? = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ?
=> ? = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ?
=> ? = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,20),(1,29),(1,31),(1,36),(1,40),(1,42),(1,44),(1,81),(1,86),(2,19),(2,28),(2,30),(2,35),(2,39),(2,41),(2,43),(2,81),(2,85),(3,17),(3,26),(3,32),(3,35),(3,37),(3,42),(3,45),(3,82),(3,84),(4,18),(4,27),(4,33),(4,36),(4,38),(4,41),(4,46),(4,82),(4,83),(5,25),(5,37),(5,38),(5,39),(5,40),(5,47),(5,48),(5,79),(5,80),(6,15),(6,16),(6,24),(6,32),(6,33),(6,34),(6,48),(6,85),(6,86),(7,13),(7,14),(7,23),(7,30),(7,31),(7,34),(7,47),(7,83),(7,84),(8,13),(8,17),(8,22),(8,27),(8,43),(8,49),(8,79),(8,86),(9,14),(9,18),(9,21),(9,26),(9,44),(9,49),(9,80),(9,85),(10,15),(10,19),(10,21),(10,29),(10,45),(10,50),(10,79),(10,83),(11,16),(11,20),(11,22),(11,28),(11,46),(11,50),(11,80),(11,84),(12,23),(12,24),(12,25),(12,49),(12,50),(12,81),(12,82),(13,63),(13,91),(13,103),(13,108),(13,127),(14,64),(14,90),(14,102),(14,108),(14,128),(15,65),(15,92),(15,104),(15,109),(15,130),(16,66),(16,93),(16,105),(16,109),(16,129),(17,59),(17,96),(17,101),(17,103),(17,131),(18,60),(18,97),(18,100),(18,102),(18,131),(19,61),(19,94),(19,98),(19,104),(19,132),(20,62),(20,95),(20,99),(20,105),(20,132),(21,73),(21,74),(21,102),(21,104),(21,138),(22,72),(22,75),(22,103),(22,105),(22,138),(23,76),(23,78),(23,108),(23,110),(23,139),(24,77),(24,78),(24,109),(24,111),(24,140),(25,76),(25,77),(25,106),(25,107),(25,138),(26,69),(26,74),(26,114),(26,128),(26,131),(27,68),(27,75),(27,115),(27,127),(27,131),(28,70),(28,72),(28,112),(28,129),(28,132),(29,71),(29,73),(29,113),(29,130),(29,132),(30,53),(30,63),(30,90),(30,98),(30,110),(30,112),(31,54),(31,64),(31,91),(31,99),(31,110),(31,113),(32,56),(32,65),(32,93),(32,101),(32,111),(32,114),(33,55),(33,66),(33,92),(33,100),(33,111),(33,115),(34,67),(34,78),(34,90),(34,91),(34,92),(34,93),(35,51),(35,59),(35,61),(35,112),(35,114),(35,124),(36,52),(36,60),(36,62),(36,113),(36,115),(36,124),(37,51),(37,56),(37,58),(37,96),(37,106),(37,128),(38,52),(38,55),(38,57),(38,97),(38,106),(38,127),(39,51),(39,53),(39,57),(39,94),(39,107),(39,129),(40,52),(40,54),(40,58),(40,95),(40,107),(40,130),(41,57),(41,68),(41,70),(41,98),(41,100),(41,124),(42,58),(42,69),(42,71),(42,99),(42,101),(42,124),(43,59),(43,63),(43,68),(43,72),(43,94),(43,140),(44,60),(44,64),(44,69),(44,73),(44,95),(44,140),(45,61),(45,65),(45,71),(45,74),(45,96),(45,139),(46,62),(46,66),(46,70),(46,75),(46,97),(46,139),(47,53),(47,54),(47,67),(47,76),(47,127),(47,128),(48,55),(48,56),(48,67),(48,77),(48,129),(48,130),(49,108),(49,131),(49,138),(49,140),(50,109),(50,132),(50,138),(50,139),(51,122),(51,133),(51,143),(52,123),(52,133),(52,144),(53,116),(53,134),(53,143),(54,116),(54,135),(54,144),(55,117),(55,136),(55,144),(56,117),(56,137),(56,143),(57,133),(57,134),(57,136),(58,133),(58,135),(58,137),(59,118),(59,122),(59,146),(60,119),(60,123),(60,146),(61,120),(61,122),(61,145),(62,121),(62,123),(62,145),(63,118),(63,134),(63,141),(64,119),(64,135),(64,141),(65,120),(65,137),(65,142),(66,121),(66,136),(66,142),(67,87),(67,143),(67,144),(68,88),(68,134),(68,146),(69,89),(69,135),(69,146),(70,88),(70,136),(70,145),(71,89),(71,137),(71,145),(72,88),(72,118),(72,148),(73,89),(73,119),(73,148),(74,89),(74,120),(74,147),(75,88),(75,121),(75,147),(76,87),(76,116),(76,147),(77,87),(77,117),(77,148),(78,87),(78,141),(78,142),(79,94),(79,96),(79,127),(79,130),(79,138),(80,95),(80,97),(80,128),(80,129),(80,138),(81,107),(81,110),(81,124),(81,132),(81,140),(82,106),(82,111),(82,124),(82,131),(82,139),(83,92),(83,98),(83,102),(83,113),(83,127),(83,139),(84,93),(84,99),(84,103),(84,112),(84,128),(84,139),(85,90),(85,100),(85,104),(85,114),(85,129),(85,140),(86,91),(86,101),(86,105),(86,115),(86,130),(86,140),(87,149),(88,149),(89,149),(90,125),(90,141),(90,143),(91,126),(91,141),(91,144),(92,125),(92,142),(92,144),(93,126),(93,142),(93,143),(94,122),(94,134),(94,148),(95,123),(95,135),(95,148),(96,122),(96,137),(96,147),(97,123),(97,136),(97,147),(98,125),(98,134),(98,145),(99,126),(99,135),(99,145),(100,125),(100,136),(100,146),(101,126),(101,137),(101,146),(102,119),(102,125),(102,147),(103,118),(103,126),(103,147),(104,120),(104,125),(104,148),(105,121),(105,126),(105,148),(106,117),(106,133),(106,147),(107,116),(107,133),(107,148),(108,141),(108,147),(109,142),(109,148),(110,116),(110,141),(110,145),(111,117),(111,142),(111,146),(112,118),(112,143),(112,145),(113,119),(113,144),(113,145),(114,120),(114,143),(114,146),(115,121),(115,144),(115,146),(116,149),(117,149),(118,149),(119,149),(120,149),(121,149),(122,149),(123,149),(124,133),(124,145),(124,146),(125,149),(126,149),(127,134),(127,144),(127,147),(128,135),(128,143),(128,147),(129,136),(129,143),(129,148),(130,137),(130,144),(130,148),(131,146),(131,147),(132,145),(132,148),(133,149),(134,149),(135,149),(136,149),(137,149),(138,147),(138,148),(139,142),(139,145),(139,147),(140,141),(140,146),(140,148),(141,149),(142,149),(143,149),(144,149),(145,149),(146,149),(147,149),(148,149)],150)
=> ?
=> ? = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,22),(1,27),(1,28),(1,32),(1,35),(1,36),(1,37),(1,40),(1,41),(1,90),(2,21),(2,25),(2,26),(2,31),(2,33),(2,34),(2,37),(2,38),(2,39),(2,89),(3,16),(3,26),(3,30),(3,41),(3,43),(3,45),(3,49),(3,86),(3,92),(4,15),(4,25),(4,29),(4,40),(4,42),(4,44),(4,48),(4,85),(4,92),(5,17),(5,27),(5,29),(5,39),(5,43),(5,46),(5,50),(5,88),(5,91),(6,18),(6,28),(6,30),(6,38),(6,42),(6,47),(6,51),(6,87),(6,91),(7,13),(7,23),(7,24),(7,44),(7,45),(7,46),(7,47),(7,89),(7,90),(8,13),(8,19),(8,20),(8,21),(8,22),(8,59),(8,91),(8,92),(9,14),(9,17),(9,18),(9,19),(9,31),(9,85),(9,86),(9,90),(10,14),(10,15),(10,16),(10,20),(10,32),(10,87),(10,88),(10,89),(11,24),(11,33),(11,35),(11,48),(11,50),(11,59),(11,86),(11,87),(12,23),(12,34),(12,36),(12,49),(12,51),(12,59),(12,85),(12,88),(13,97),(13,98),(13,99),(13,100),(13,103),(14,52),(14,127),(14,128),(14,138),(15,77),(15,96),(15,106),(15,112),(15,127),(16,78),(16,96),(16,107),(16,113),(16,128),(17,75),(17,95),(17,108),(17,111),(17,127),(18,76),(18,95),(18,109),(18,110),(18,128),(19,52),(19,69),(19,95),(19,100),(19,139),(20,52),(20,70),(20,96),(20,99),(20,140),(21,68),(21,69),(21,99),(21,101),(21,104),(21,114),(22,68),(22,70),(22,100),(22,102),(22,105),(22,115),(23,65),(23,67),(23,103),(23,134),(23,136),(24,64),(24,66),(24,103),(24,135),(24,137),(25,55),(25,71),(25,104),(25,106),(25,116),(25,132),(26,56),(26,72),(26,104),(26,107),(26,117),(26,133),(27,58),(27,73),(27,105),(27,108),(27,119),(27,132),(28,57),(28,74),(28,105),(28,109),(28,118),(28,133),(29,60),(29,62),(29,127),(29,129),(29,132),(30,61),(30,63),(30,128),(30,129),(30,133),(31,69),(31,75),(31,76),(31,116),(31,117),(31,138),(32,70),(32,77),(32,78),(32,118),(32,119),(32,138),(33,71),(33,80),(33,84),(33,114),(33,117),(33,135),(34,72),(34,79),(34,83),(34,114),(34,116),(34,134),(35,73),(35,81),(35,84),(35,115),(35,118),(35,137),(36,74),(36,82),(36,83),(36,115),(36,119),(36,136),(37,68),(37,83),(37,84),(37,132),(37,133),(37,138),(38,55),(38,76),(38,79),(38,101),(38,133),(38,135),(39,56),(39,75),(39,80),(39,101),(39,132),(39,134),(40,57),(40,77),(40,81),(40,102),(40,132),(40,136),(41,58),(41,78),(41,82),(41,102),(41,133),(41,137),(42,53),(42,55),(42,57),(42,110),(42,112),(42,129),(43,54),(43,56),(43,58),(43,111),(43,113),(43,129),(44,53),(44,62),(44,66),(44,97),(44,106),(44,136),(45,54),(45,63),(45,67),(45,97),(45,107),(45,137),(46,54),(46,62),(46,64),(46,98),(46,108),(46,134),(47,53),(47,63),(47,65),(47,98),(47,109),(47,135),(48,60),(48,66),(48,71),(48,81),(48,112),(48,139),(49,61),(49,67),(49,72),(49,82),(49,113),(49,139),(50,60),(50,64),(50,73),(50,80),(50,111),(50,140),(51,61),(51,65),(51,74),(51,79),(51,110),(51,140),(52,144),(52,156),(53,143),(53,145),(53,147),(54,143),(54,146),(54,148),(55,121),(55,145),(55,151),(56,122),(56,146),(56,151),(57,123),(57,147),(57,151),(58,124),(58,148),(58,151),(59,103),(59,114),(59,115),(59,139),(59,140),(60,93),(60,141),(60,156),(61,94),(61,142),(61,156),(62,93),(62,143),(62,154),(63,94),(63,143),(63,155),(64,93),(64,148),(64,152),(65,94),(65,147),(65,152),(66,93),(66,145),(66,153),(67,94),(67,146),(67,153),(68,120),(68,144),(68,151),(69,125),(69,144),(69,149),(70,126),(70,144),(70,150),(71,141),(71,145),(71,149),(72,142),(72,146),(72,149),(73,141),(73,148),(73,150),(74,142),(74,147),(74,150),(75,122),(75,125),(75,154),(76,121),(76,125),(76,155),(77,123),(77,126),(77,154),(78,124),(78,126),(78,155),(79,121),(79,142),(79,152),(80,122),(80,141),(80,152),(81,123),(81,141),(81,153),(82,124),(82,142),(82,153),(83,120),(83,142),(83,154),(84,120),(84,141),(84,155),(85,110),(85,116),(85,127),(85,136),(85,139),(86,111),(86,117),(86,128),(86,137),(86,139),(87,112),(87,118),(87,128),(87,135),(87,140),(88,113),(88,119),(88,127),(88,134),(88,140),(89,99),(89,106),(89,107),(89,134),(89,135),(89,138),(90,100),(90,108),(90,109),(90,136),(90,137),(90,138),(91,95),(91,98),(91,101),(91,105),(91,129),(91,140),(92,96),(92,97),(92,102),(92,104),(92,129),(92,139),(93,157),(94,157),(95,125),(95,131),(95,156),(96,126),(96,130),(96,156),(97,130),(97,143),(97,153),(98,131),(98,143),(98,152),(99,130),(99,144),(99,152),(100,131),(100,144),(100,153),(101,125),(101,151),(101,152),(102,126),(102,151),(102,153),(103,152),(103,153),(104,130),(104,149),(104,151),(105,131),(105,150),(105,151),(106,130),(106,145),(106,154),(107,130),(107,146),(107,155),(108,131),(108,148),(108,154),(109,131),(109,147),(109,155),(110,121),(110,147),(110,156),(111,122),(111,148),(111,156),(112,123),(112,145),(112,156),(113,124),(113,146),(113,156),(114,120),(114,149),(114,152),(115,120),(115,150),(115,153),(116,121),(116,149),(116,154),(117,122),(117,149),(117,155),(118,123),(118,150),(118,155),(119,124),(119,150),(119,154),(120,157),(121,157),(122,157),(123,157),(124,157),(125,157),(126,157),(127,154),(127,156),(128,155),(128,156),(129,143),(129,151),(129,156),(130,157),(131,157),(132,141),(132,151),(132,154),(133,142),(133,151),(133,155),(134,146),(134,152),(134,154),(135,145),(135,152),(135,155),(136,147),(136,153),(136,154),(137,148),(137,153),(137,155),(138,144),(138,154),(138,155),(139,149),(139,153),(139,156),(140,150),(140,152),(140,156),(141,157),(142,157),(143,157),(144,157),(145,157),(146,157),(147,157),(148,157),(149,157),(150,157),(151,157),(152,157),(153,157),(154,157),(155,157),(156,157)],158)
=> ?
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,20),(1,21),(1,32),(1,35),(1,36),(1,41),(1,42),(1,43),(2,15),(2,18),(2,19),(2,31),(2,33),(2,34),(2,39),(2,40),(2,43),(3,23),(3,25),(3,28),(3,38),(3,40),(3,42),(3,71),(3,75),(4,22),(4,24),(4,27),(4,37),(4,39),(4,41),(4,70),(4,75),(5,17),(5,22),(5,23),(5,26),(5,31),(5,32),(5,72),(5,73),(6,13),(6,24),(6,29),(6,33),(6,35),(6,38),(6,72),(6,74),(7,12),(7,25),(7,30),(7,34),(7,36),(7,37),(7,73),(7,74),(8,12),(8,13),(8,14),(8,17),(8,43),(8,70),(8,71),(9,14),(9,15),(9,16),(9,26),(9,44),(9,74),(9,75),(10,18),(10,20),(10,27),(10,30),(10,44),(10,71),(10,72),(11,19),(11,21),(11,28),(11,29),(11,44),(11,70),(11,73),(12,80),(12,88),(12,94),(12,108),(13,80),(13,87),(13,95),(13,109),(14,45),(14,80),(14,83),(14,117),(15,62),(15,81),(15,83),(15,84),(15,92),(16,63),(16,82),(16,83),(16,85),(16,93),(17,45),(17,91),(17,108),(17,109),(18,58),(18,65),(18,84),(18,96),(18,111),(19,59),(19,64),(19,84),(19,97),(19,110),(20,60),(20,67),(20,85),(20,99),(20,111),(21,61),(21,66),(21,85),(21,98),(21,110),(22,46),(22,48),(22,86),(22,89),(22,108),(23,47),(23,49),(23,86),(23,90),(23,109),(24,50),(24,52),(24,87),(24,89),(24,107),(25,51),(25,53),(25,88),(25,90),(25,107),(26,45),(26,62),(26,63),(26,86),(26,118),(27,58),(27,60),(27,68),(27,89),(27,117),(28,59),(28,61),(28,69),(28,90),(28,117),(29,64),(29,66),(29,69),(29,87),(29,118),(30,65),(30,67),(30,68),(30,88),(30,118),(31,46),(31,47),(31,62),(31,91),(31,96),(31,97),(32,48),(32,49),(32,63),(32,91),(32,98),(32,99),(33,50),(33,55),(33,64),(33,92),(33,95),(33,96),(34,51),(34,54),(34,65),(34,92),(34,94),(34,97),(35,52),(35,57),(35,66),(35,93),(35,95),(35,99),(36,53),(36,56),(36,67),(36,93),(36,94),(36,98),(37,54),(37,56),(37,68),(37,107),(37,108),(38,55),(38,57),(38,69),(38,107),(38,109),(39,46),(39,50),(39,54),(39,58),(39,81),(39,110),(40,47),(40,51),(40,55),(40,59),(40,81),(40,111),(41,48),(41,52),(41,56),(41,60),(41,82),(41,110),(42,49),(42,53),(42,57),(42,61),(42,82),(42,111),(43,83),(43,91),(43,94),(43,95),(43,110),(43,111),(44,84),(44,85),(44,117),(44,118),(45,106),(45,124),(46,100),(46,104),(46,121),(47,101),(47,104),(47,122),(48,102),(48,105),(48,121),(49,103),(49,105),(49,122),(50,100),(50,113),(50,115),(51,101),(51,114),(51,115),(52,102),(52,113),(52,116),(53,103),(53,114),(53,116),(54,76),(54,115),(54,121),(55,77),(55,115),(55,122),(56,78),(56,116),(56,121),(57,79),(57,116),(57,122),(58,76),(58,100),(58,123),(59,77),(59,101),(59,123),(60,78),(60,102),(60,123),(61,79),(61,103),(61,123),(62,104),(62,106),(62,119),(63,105),(63,106),(63,120),(64,77),(64,113),(64,119),(65,76),(65,114),(65,119),(66,79),(66,113),(66,120),(67,78),(67,114),(67,120),(68,76),(68,78),(68,124),(69,77),(69,79),(69,124),(70,87),(70,108),(70,110),(70,117),(71,88),(71,109),(71,111),(71,117),(72,89),(72,96),(72,99),(72,109),(72,118),(73,90),(73,97),(73,98),(73,108),(73,118),(74,80),(74,92),(74,93),(74,107),(74,118),(75,81),(75,82),(75,86),(75,107),(75,117),(76,125),(77,125),(78,125),(79,125),(80,112),(80,124),(81,104),(81,115),(81,123),(82,105),(82,116),(82,123),(83,106),(83,112),(83,123),(84,119),(84,123),(85,120),(85,123),(86,104),(86,105),(86,124),(87,113),(87,124),(88,114),(88,124),(89,100),(89,102),(89,124),(90,101),(90,103),(90,124),(91,106),(91,121),(91,122),(92,112),(92,115),(92,119),(93,112),(93,116),(93,120),(94,112),(94,114),(94,121),(95,112),(95,113),(95,122),(96,100),(96,119),(96,122),(97,101),(97,119),(97,121),(98,103),(98,120),(98,121),(99,102),(99,120),(99,122),(100,125),(101,125),(102,125),(103,125),(104,125),(105,125),(106,125),(107,115),(107,116),(107,124),(108,121),(108,124),(109,122),(109,124),(110,113),(110,121),(110,123),(111,114),(111,122),(111,123),(112,125),(113,125),(114,125),(115,125),(116,125),(117,123),(117,124),(118,119),(118,120),(118,124),(119,125),(120,125),(121,125),(122,125),(123,125),(124,125)],126)
=> ?
=> ? = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,21),(1,25),(1,26),(1,27),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(2,21),(2,22),(2,23),(2,24),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(3,14),(3,19),(3,20),(3,30),(3,36),(3,42),(3,78),(3,79),(4,13),(4,16),(4,18),(4,29),(4,35),(4,41),(4,77),(4,79),(5,12),(5,15),(5,17),(5,28),(5,34),(5,40),(5,77),(5,78),(6,12),(6,18),(6,19),(6,31),(6,37),(6,43),(6,80),(6,82),(7,13),(7,17),(7,20),(7,32),(7,38),(7,44),(7,81),(7,82),(8,14),(8,15),(8,16),(8,33),(8,39),(8,45),(8,80),(8,81),(9,22),(9,25),(9,28),(9,31),(9,46),(9,79),(9,81),(10,23),(10,26),(10,29),(10,32),(10,46),(10,78),(10,80),(11,24),(11,27),(11,30),(11,33),(11,46),(11,77),(11,82),(12,50),(12,116),(12,117),(12,119),(13,51),(13,116),(13,118),(13,120),(14,52),(14,117),(14,118),(14,121),(15,65),(15,71),(15,85),(15,88),(15,117),(16,66),(16,72),(16,86),(16,88),(16,118),(17,67),(17,73),(17,85),(17,89),(17,116),(18,68),(18,74),(18,86),(18,90),(18,116),(19,69),(19,75),(19,87),(19,90),(19,117),(20,70),(20,76),(20,87),(20,89),(20,118),(21,47),(21,48),(21,49),(21,119),(21,120),(21,121),(22,47),(22,53),(22,56),(22,83),(22,93),(22,95),(23,48),(23,54),(23,57),(23,83),(23,92),(23,94),(24,49),(24,55),(24,58),(24,83),(24,91),(24,96),(25,47),(25,59),(25,62),(25,84),(25,99),(25,101),(26,48),(26,60),(26,63),(26,84),(26,98),(26,100),(27,49),(27,61),(27,64),(27,84),(27,97),(27,102),(28,50),(28,53),(28,59),(28,85),(28,126),(29,51),(29,54),(29,60),(29,86),(29,126),(30,52),(30,55),(30,61),(30,87),(30,126),(31,50),(31,56),(31,62),(31,90),(31,125),(32,51),(32,57),(32,63),(32,89),(32,125),(33,52),(33,58),(33,64),(33,88),(33,125),(34,53),(34,65),(34,67),(34,91),(34,92),(34,119),(35,54),(35,66),(35,68),(35,91),(35,93),(35,120),(36,55),(36,69),(36,70),(36,92),(36,93),(36,121),(37,56),(37,68),(37,69),(37,94),(37,96),(37,119),(38,57),(38,67),(38,70),(38,95),(38,96),(38,120),(39,58),(39,65),(39,66),(39,94),(39,95),(39,121),(40,59),(40,71),(40,73),(40,97),(40,98),(40,119),(41,60),(41,72),(41,74),(41,97),(41,99),(41,120),(42,61),(42,75),(42,76),(42,98),(42,99),(42,121),(43,62),(43,74),(43,75),(43,100),(43,102),(43,119),(44,63),(44,73),(44,76),(44,101),(44,102),(44,120),(45,64),(45,71),(45,72),(45,100),(45,101),(45,121),(46,83),(46,84),(46,125),(46,126),(47,103),(47,122),(47,132),(48,103),(48,123),(48,131),(49,103),(49,124),(49,133),(50,122),(50,134),(51,123),(51,134),(52,124),(52,134),(53,104),(53,122),(53,127),(54,105),(54,123),(54,127),(55,106),(55,124),(55,127),(56,109),(56,122),(56,128),(57,108),(57,123),(57,128),(58,107),(58,124),(58,128),(59,110),(59,122),(59,129),(60,111),(60,123),(60,129),(61,112),(61,124),(61,129),(62,115),(62,122),(62,130),(63,114),(63,123),(63,130),(64,113),(64,124),(64,130),(65,104),(65,107),(65,131),(66,105),(66,107),(66,132),(67,104),(67,108),(67,133),(68,105),(68,109),(68,133),(69,106),(69,109),(69,131),(70,106),(70,108),(70,132),(71,110),(71,113),(71,131),(72,111),(72,113),(72,132),(73,110),(73,114),(73,133),(74,111),(74,115),(74,133),(75,112),(75,115),(75,131),(76,112),(76,114),(76,132),(77,88),(77,91),(77,97),(77,116),(77,126),(78,89),(78,92),(78,98),(78,117),(78,126),(79,90),(79,93),(79,99),(79,118),(79,126),(80,86),(80,94),(80,100),(80,117),(80,125),(81,85),(81,95),(81,101),(81,118),(81,125),(82,87),(82,96),(82,102),(82,116),(82,125),(83,103),(83,127),(83,128),(84,103),(84,129),(84,130),(85,104),(85,110),(85,134),(86,105),(86,111),(86,134),(87,106),(87,112),(87,134),(88,107),(88,113),(88,134),(89,108),(89,114),(89,134),(90,109),(90,115),(90,134),(91,107),(91,127),(91,133),(92,108),(92,127),(92,131),(93,109),(93,127),(93,132),(94,105),(94,128),(94,131),(95,104),(95,128),(95,132),(96,106),(96,128),(96,133),(97,113),(97,129),(97,133),(98,114),(98,129),(98,131),(99,115),(99,129),(99,132),(100,111),(100,130),(100,131),(101,110),(101,130),(101,132),(102,112),(102,130),(102,133),(103,135),(104,135),(105,135),(106,135),(107,135),(108,135),(109,135),(110,135),(111,135),(112,135),(113,135),(114,135),(115,135),(116,133),(116,134),(117,131),(117,134),(118,132),(118,134),(119,122),(119,131),(119,133),(120,123),(120,132),(120,133),(121,124),(121,131),(121,132),(122,135),(123,135),(124,135),(125,128),(125,130),(125,134),(126,127),(126,129),(126,134),(127,135),(128,135),(129,135),(130,135),(131,135),(132,135),(133,135),(134,135)],136)
=> ?
=> ? = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ?
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,12),(1,13),(1,64),(1,65),(1,66),(1,67),(2,15),(2,24),(2,28),(2,32),(2,36),(2,42),(2,65),(2,71),(3,14),(3,23),(3,27),(3,31),(3,35),(3,42),(3,64),(3,70),(4,17),(4,26),(4,30),(4,33),(4,37),(4,41),(4,64),(4,71),(5,16),(5,25),(5,29),(5,34),(5,38),(5,41),(5,65),(5,70),(6,19),(6,27),(6,28),(6,29),(6,30),(6,40),(6,67),(6,69),(7,18),(7,23),(7,24),(7,25),(7,26),(7,40),(7,66),(7,68),(8,21),(8,35),(8,36),(8,37),(8,38),(8,39),(8,66),(8,69),(9,20),(9,31),(9,32),(9,33),(9,34),(9,39),(9,67),(9,68),(10,13),(10,18),(10,19),(10,20),(10,21),(10,22),(10,70),(10,71),(11,12),(11,14),(11,15),(11,16),(11,17),(11,22),(11,68),(11,69),(12,43),(12,76),(12,77),(12,116),(13,43),(13,78),(13,79),(13,117),(14,60),(14,72),(14,76),(14,80),(14,84),(15,60),(15,73),(15,77),(15,81),(15,85),(16,61),(16,72),(16,77),(16,82),(16,86),(17,61),(17,73),(17,76),(17,83),(17,87),(18,62),(18,74),(18,78),(18,88),(18,89),(19,62),(19,75),(19,79),(19,90),(19,91),(20,63),(20,74),(20,79),(20,92),(20,93),(21,63),(21,75),(21,78),(21,94),(21,95),(22,43),(22,72),(22,73),(22,74),(22,75),(23,44),(23,52),(23,80),(23,88),(23,108),(24,45),(24,52),(24,81),(24,89),(24,109),(25,47),(25,53),(25,82),(25,88),(25,109),(26,46),(26,53),(26,83),(26,89),(26,108),(27,44),(27,54),(27,84),(27,90),(27,110),(28,45),(28,54),(28,85),(28,91),(28,111),(29,47),(29,55),(29,86),(29,90),(29,111),(30,46),(30,55),(30,87),(30,91),(30,110),(31,48),(31,58),(31,80),(31,92),(31,110),(32,49),(32,58),(32,81),(32,93),(32,111),(33,50),(33,59),(33,83),(33,93),(33,110),(34,51),(34,59),(34,82),(34,92),(34,111),(35,48),(35,56),(35,84),(35,94),(35,108),(36,49),(36,56),(36,85),(36,95),(36,109),(37,50),(37,57),(37,87),(37,95),(37,108),(38,51),(38,57),(38,86),(38,94),(38,109),(39,48),(39,49),(39,50),(39,51),(39,63),(39,116),(40,44),(40,45),(40,46),(40,47),(40,62),(40,116),(41,53),(41,55),(41,57),(41,59),(41,61),(41,117),(42,52),(42,54),(42,56),(42,58),(42,60),(42,117),(43,118),(43,119),(44,96),(44,104),(44,120),(45,96),(45,105),(45,121),(46,97),(46,105),(46,120),(47,97),(47,104),(47,121),(48,98),(48,106),(48,120),(49,98),(49,107),(49,121),(50,99),(50,107),(50,120),(51,99),(51,106),(51,121),(52,96),(52,100),(52,122),(53,97),(53,101),(53,122),(54,96),(54,102),(54,123),(55,97),(55,103),(55,123),(56,98),(56,102),(56,122),(57,99),(57,103),(57,122),(58,98),(58,100),(58,123),(59,99),(59,101),(59,123),(60,100),(60,102),(60,118),(61,101),(61,103),(61,118),(62,104),(62,105),(62,119),(63,106),(63,107),(63,119),(64,76),(64,108),(64,110),(64,117),(65,77),(65,109),(65,111),(65,117),(66,78),(66,108),(66,109),(66,116),(67,79),(67,110),(67,111),(67,116),(68,74),(68,80),(68,81),(68,82),(68,83),(68,116),(69,75),(69,84),(69,85),(69,86),(69,87),(69,116),(70,72),(70,88),(70,90),(70,92),(70,94),(70,117),(71,73),(71,89),(71,91),(71,93),(71,95),(71,117),(72,112),(72,114),(72,118),(73,113),(73,115),(73,118),(74,112),(74,113),(74,119),(75,114),(75,115),(75,119),(76,118),(76,120),(77,118),(77,121),(78,119),(78,122),(79,119),(79,123),(80,100),(80,112),(80,120),(81,100),(81,113),(81,121),(82,101),(82,112),(82,121),(83,101),(83,113),(83,120),(84,102),(84,114),(84,120),(85,102),(85,115),(85,121),(86,103),(86,114),(86,121),(87,103),(87,115),(87,120),(88,104),(88,112),(88,122),(89,105),(89,113),(89,122),(90,104),(90,114),(90,123),(91,105),(91,115),(91,123),(92,106),(92,112),(92,123),(93,107),(93,113),(93,123),(94,106),(94,114),(94,122),(95,107),(95,115),(95,122),(96,124),(97,124),(98,124),(99,124),(100,124),(101,124),(102,124),(103,124),(104,124),(105,124),(106,124),(107,124),(108,120),(108,122),(109,121),(109,122),(110,120),(110,123),(111,121),(111,123),(112,124),(113,124),(114,124),(115,124),(116,119),(116,120),(116,121),(117,118),(117,122),(117,123),(118,124),(119,124),(120,124),(121,124),(122,124),(123,124)],125)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,25),(1,26),(1,27),(1,28),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,14),(2,19),(2,20),(2,32),(2,37),(2,38),(2,41),(2,42),(2,89),(3,13),(3,17),(3,18),(3,31),(3,35),(3,36),(3,39),(3,40),(3,89),(4,16),(4,22),(4,24),(4,34),(4,36),(4,38),(4,44),(4,46),(4,88),(5,15),(5,21),(5,23),(5,33),(5,35),(5,37),(5,43),(5,45),(5,88),(6,17),(6,21),(6,27),(6,41),(6,44),(6,47),(6,69),(6,71),(7,18),(7,22),(7,28),(7,42),(7,43),(7,48),(7,69),(7,72),(8,19),(8,23),(8,29),(8,39),(8,46),(8,48),(8,70),(8,71),(9,20),(9,24),(9,30),(9,40),(9,45),(9,47),(9,70),(9,72),(10,12),(10,15),(10,16),(10,26),(10,71),(10,72),(10,89),(11,12),(11,13),(11,14),(11,25),(11,69),(11,70),(11,88),(12,87),(12,106),(12,107),(12,133),(13,81),(13,94),(13,98),(13,102),(13,106),(14,82),(14,95),(14,99),(14,103),(14,106),(15,83),(15,96),(15,100),(15,104),(15,107),(16,84),(16,97),(16,101),(16,105),(16,107),(17,54),(17,61),(17,98),(17,122),(17,125),(18,53),(18,62),(18,98),(18,123),(18,126),(19,56),(19,64),(19,99),(19,122),(19,127),(20,55),(20,63),(20,99),(20,123),(20,128),(21,59),(21,67),(21,100),(21,120),(21,125),(22,60),(22,68),(22,101),(22,120),(22,126),(23,57),(23,65),(23,100),(23,121),(23,127),(24,58),(24,66),(24,101),(24,121),(24,128),(25,81),(25,82),(25,87),(25,108),(25,110),(25,111),(26,83),(26,84),(26,87),(26,109),(26,112),(26,113),(27,75),(27,78),(27,85),(27,111),(27,113),(27,125),(28,76),(28,77),(28,86),(28,111),(28,112),(28,126),(29,73),(29,80),(29,86),(29,110),(29,113),(29,127),(30,74),(30,79),(30,85),(30,110),(30,112),(30,128),(31,73),(31,74),(31,81),(31,109),(31,125),(31,126),(32,75),(32,76),(32,82),(32,109),(32,127),(32,128),(33,77),(33,79),(33,83),(33,108),(33,125),(33,127),(34,78),(34,80),(34,84),(34,108),(34,126),(34,128),(35,49),(35,53),(35,57),(35,94),(35,96),(35,125),(36,50),(36,54),(36,58),(36,94),(36,97),(36,126),(37,51),(37,55),(37,59),(37,95),(37,96),(37,127),(38,52),(38,56),(38,60),(38,95),(38,97),(38,128),(39,50),(39,57),(39,62),(39,73),(39,102),(39,122),(40,49),(40,58),(40,61),(40,74),(40,102),(40,123),(41,52),(41,59),(41,63),(41,75),(41,103),(41,122),(42,51),(42,60),(42,64),(42,76),(42,103),(42,123),(43,51),(43,53),(43,65),(43,77),(43,104),(43,120),(44,52),(44,54),(44,66),(44,78),(44,105),(44,120),(45,49),(45,55),(45,67),(45,79),(45,104),(45,121),(46,50),(46,56),(46,68),(46,80),(46,105),(46,121),(47,61),(47,63),(47,66),(47,67),(47,85),(47,133),(48,62),(48,64),(48,65),(48,68),(48,86),(48,133),(49,129),(49,134),(49,136),(50,130),(50,134),(50,137),(51,131),(51,135),(51,136),(52,132),(52,135),(52,137),(53,90),(53,136),(53,139),(54,91),(54,137),(54,139),(55,92),(55,136),(55,140),(56,93),(56,137),(56,140),(57,90),(57,134),(57,141),(58,91),(58,134),(58,142),(59,92),(59,135),(59,141),(60,93),(60,135),(60,142),(61,91),(61,129),(61,143),(62,90),(62,130),(62,143),(63,92),(63,132),(63,143),(64,93),(64,131),(64,143),(65,90),(65,131),(65,144),(66,91),(66,132),(66,144),(67,92),(67,129),(67,144),(68,93),(68,130),(68,144),(69,98),(69,103),(69,111),(69,120),(69,133),(70,99),(70,102),(70,110),(70,121),(70,133),(71,100),(71,105),(71,113),(71,122),(71,133),(72,101),(72,104),(72,112),(72,123),(72,133),(73,116),(73,130),(73,141),(74,116),(74,129),(74,142),(75,117),(75,132),(75,141),(76,117),(76,131),(76,142),(77,118),(77,131),(77,139),(78,119),(78,132),(78,139),(79,118),(79,129),(79,140),(80,119),(80,130),(80,140),(81,114),(81,116),(81,139),(82,114),(82,117),(82,140),(83,115),(83,118),(83,141),(84,115),(84,119),(84,142),(85,129),(85,132),(85,138),(86,130),(86,131),(86,138),(87,114),(87,115),(87,138),(88,94),(88,95),(88,107),(88,108),(88,120),(88,121),(89,96),(89,97),(89,106),(89,109),(89,122),(89,123),(90,145),(91,145),(92,145),(93,145),(94,124),(94,134),(94,139),(95,124),(95,135),(95,140),(96,124),(96,136),(96,141),(97,124),(97,137),(97,142),(98,139),(98,143),(99,140),(99,143),(100,141),(100,144),(101,142),(101,144),(102,116),(102,134),(102,143),(103,117),(103,135),(103,143),(104,118),(104,136),(104,144),(105,119),(105,137),(105,144),(106,114),(106,124),(106,143),(107,115),(107,124),(107,144),(108,115),(108,139),(108,140),(109,114),(109,141),(109,142),(110,116),(110,138),(110,140),(111,117),(111,138),(111,139),(112,118),(112,138),(112,142),(113,119),(113,138),(113,141),(114,145),(115,145),(116,145),(117,145),(118,145),(119,145),(120,135),(120,139),(120,144),(121,134),(121,140),(121,144),(122,137),(122,141),(122,143),(123,136),(123,142),(123,143),(124,145),(125,129),(125,139),(125,141),(126,130),(126,139),(126,142),(127,131),(127,140),(127,141),(128,132),(128,140),(128,142),(129,145),(130,145),(131,145),(132,145),(133,138),(133,143),(133,144),(134,145),(135,145),(136,145),(137,145),(138,145),(139,145),(140,145),(141,145),(142,145),(143,145),(144,145)],146)
=> ?
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,11),(1,12),(1,15),(1,58),(1,60),(1,61),(2,15),(2,24),(2,25),(2,26),(2,31),(2,62),(2,63),(3,17),(3,21),(3,28),(3,33),(3,37),(3,61),(3,63),(4,16),(4,20),(4,27),(4,32),(4,37),(4,60),(4,62),(5,18),(5,22),(5,30),(5,34),(5,36),(5,60),(5,63),(6,19),(6,23),(6,29),(6,35),(6,36),(6,61),(6,62),(7,31),(7,32),(7,33),(7,34),(7,35),(7,58),(7,59),(8,13),(8,14),(8,26),(8,27),(8,28),(8,29),(8,30),(8,58),(9,12),(9,14),(9,20),(9,21),(9,22),(9,23),(9,25),(9,59),(10,11),(10,13),(10,16),(10,17),(10,18),(10,19),(10,24),(10,59),(11,40),(11,68),(11,69),(11,94),(12,41),(12,70),(12,71),(12,94),(13,44),(13,45),(13,46),(13,47),(13,56),(13,94),(14,48),(14,49),(14,50),(14,51),(14,57),(14,94),(15,40),(15,41),(15,65),(15,97),(16,44),(16,52),(16,68),(16,72),(16,76),(17,45),(17,52),(17,69),(17,73),(17,77),(18,47),(18,53),(18,68),(18,74),(18,77),(19,46),(19,53),(19,69),(19,75),(19,76),(20,48),(20,54),(20,70),(20,72),(20,78),(21,49),(21,54),(21,71),(21,73),(21,79),(22,50),(22,55),(22,70),(22,74),(22,79),(23,51),(23,55),(23,71),(23,75),(23,78),(24,40),(24,56),(24,64),(24,76),(24,77),(25,41),(25,57),(25,64),(25,78),(25,79),(26,56),(26,57),(26,65),(26,80),(26,81),(27,38),(27,44),(27,48),(27,80),(27,92),(28,38),(28,45),(28,49),(28,81),(28,93),(29,39),(29,46),(29,51),(29,80),(29,93),(30,39),(30,47),(30,50),(30,81),(30,92),(31,64),(31,65),(31,66),(31,67),(32,42),(32,66),(32,72),(32,92),(33,42),(33,67),(33,73),(33,93),(34,43),(34,67),(34,74),(34,92),(35,43),(35,66),(35,75),(35,93),(36,39),(36,43),(36,53),(36,55),(36,97),(37,38),(37,42),(37,52),(37,54),(37,97),(38,82),(38,84),(38,103),(39,83),(39,85),(39,103),(40,98),(40,99),(41,98),(41,100),(42,86),(42,103),(43,87),(43,103),(44,82),(44,88),(44,101),(45,82),(45,89),(45,102),(46,83),(46,88),(46,102),(47,83),(47,89),(47,101),(48,84),(48,90),(48,101),(49,84),(49,91),(49,102),(50,85),(50,91),(50,101),(51,85),(51,90),(51,102),(52,82),(52,86),(52,99),(53,83),(53,87),(53,99),(54,84),(54,86),(54,100),(55,85),(55,87),(55,100),(56,88),(56,89),(56,98),(57,90),(57,91),(57,98),(58,65),(58,92),(58,93),(58,94),(59,64),(59,72),(59,73),(59,74),(59,75),(59,94),(60,68),(60,70),(60,92),(60,97),(61,69),(61,71),(61,93),(61,97),(62,66),(62,76),(62,78),(62,80),(62,97),(63,67),(63,77),(63,79),(63,81),(63,97),(64,95),(64,96),(64,98),(65,98),(65,103),(66,95),(66,103),(67,96),(67,103),(68,99),(68,101),(69,99),(69,102),(70,100),(70,101),(71,100),(71,102),(72,86),(72,95),(72,101),(73,86),(73,96),(73,102),(74,87),(74,96),(74,101),(75,87),(75,95),(75,102),(76,88),(76,95),(76,99),(77,89),(77,96),(77,99),(78,90),(78,95),(78,100),(79,91),(79,96),(79,100),(80,88),(80,90),(80,103),(81,89),(81,91),(81,103),(82,104),(83,104),(84,104),(85,104),(86,104),(87,104),(88,104),(89,104),(90,104),(91,104),(92,101),(92,103),(93,102),(93,103),(94,98),(94,101),(94,102),(95,104),(96,104),(97,99),(97,100),(97,103),(98,104),(99,104),(100,104),(101,104),(102,104),(103,104)],105)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,14),(1,18),(1,19),(1,28),(1,31),(1,32),(1,34),(1,37),(1,38),(2,13),(2,16),(2,17),(2,28),(2,29),(2,30),(2,33),(2,35),(2,36),(3,12),(3,21),(3,23),(3,25),(3,27),(3,30),(3,32),(3,50),(4,11),(4,20),(4,22),(4,24),(4,26),(4,29),(4,31),(4,50),(5,11),(5,16),(5,18),(5,27),(5,39),(5,73),(5,74),(6,12),(6,17),(6,19),(6,26),(6,40),(6,73),(6,75),(7,15),(7,20),(7,21),(7,33),(7,34),(7,74),(7,75),(8,22),(8,25),(8,35),(8,37),(8,40),(8,72),(8,74),(9,23),(9,24),(9,36),(9,38),(9,39),(9,72),(9,75),(10,13),(10,14),(10,15),(10,50),(10,72),(10,73),(11,41),(11,84),(11,104),(11,105),(12,42),(12,85),(12,104),(12,106),(13,43),(13,63),(13,82),(13,86),(13,90),(14,43),(14,64),(14,83),(14,87),(14,91),(15,63),(15,64),(15,76),(15,107),(16,45),(16,65),(16,86),(16,92),(16,105),(17,44),(17,66),(17,86),(17,93),(17,106),(18,47),(18,67),(18,87),(18,94),(18,105),(19,46),(19,68),(19,87),(19,95),(19,106),(20,51),(20,53),(20,76),(20,84),(20,88),(21,52),(21,54),(21,76),(21,85),(21,89),(22,48),(22,59),(22,61),(22,84),(22,103),(23,49),(23,60),(23,62),(23,85),(23,103),(24,41),(24,55),(24,57),(24,88),(24,103),(25,42),(25,56),(25,58),(25,89),(25,103),(26,44),(26,46),(26,48),(26,88),(26,104),(27,45),(27,47),(27,49),(27,89),(27,104),(28,43),(28,69),(28,70),(28,71),(28,105),(28,106),(29,44),(29,51),(29,55),(29,59),(29,82),(29,105),(30,45),(30,52),(30,56),(30,60),(30,82),(30,106),(31,46),(31,53),(31,57),(31,61),(31,83),(31,105),(32,47),(32,54),(32,58),(32,62),(32,83),(32,106),(33,51),(33,52),(33,63),(33,71),(33,92),(33,93),(34,53),(34,54),(34,64),(34,71),(34,94),(34,95),(35,56),(35,59),(35,66),(35,70),(35,90),(35,92),(36,55),(36,60),(36,65),(36,69),(36,90),(36,93),(37,58),(37,61),(37,68),(37,70),(37,91),(37,94),(38,57),(38,62),(38,67),(38,69),(38,91),(38,95),(39,41),(39,49),(39,65),(39,67),(39,107),(40,42),(40,48),(40,66),(40,68),(40,107),(41,108),(41,117),(42,109),(42,117),(43,77),(43,96),(43,116),(44,78),(44,97),(44,116),(45,79),(45,98),(45,116),(46,80),(46,99),(46,116),(47,81),(47,100),(47,116),(48,78),(48,80),(48,117),(49,79),(49,81),(49,117),(50,76),(50,82),(50,83),(50,103),(50,104),(51,97),(51,101),(51,114),(52,98),(52,101),(52,115),(53,99),(53,102),(53,114),(54,100),(54,102),(54,115),(55,97),(55,108),(55,110),(56,98),(56,109),(56,110),(57,99),(57,108),(57,111),(58,100),(58,109),(58,111),(59,78),(59,110),(59,114),(60,79),(60,110),(60,115),(61,80),(61,111),(61,114),(62,81),(62,111),(62,115),(63,77),(63,101),(63,112),(64,77),(64,102),(64,113),(65,79),(65,108),(65,112),(66,78),(66,109),(66,112),(67,81),(67,108),(67,113),(68,80),(68,109),(68,113),(69,96),(69,108),(69,115),(70,96),(70,109),(70,114),(71,77),(71,114),(71,115),(72,90),(72,91),(72,103),(72,107),(73,86),(73,87),(73,104),(73,107),(74,84),(74,89),(74,92),(74,94),(74,107),(75,85),(75,88),(75,93),(75,95),(75,107),(76,101),(76,102),(76,117),(77,118),(78,118),(79,118),(80,118),(81,118),(82,101),(82,110),(82,116),(83,102),(83,111),(83,116),(84,114),(84,117),(85,115),(85,117),(86,112),(86,116),(87,113),(87,116),(88,97),(88,99),(88,117),(89,98),(89,100),(89,117),(90,96),(90,110),(90,112),(91,96),(91,111),(91,113),(92,98),(92,112),(92,114),(93,97),(93,112),(93,115),(94,100),(94,113),(94,114),(95,99),(95,113),(95,115),(96,118),(97,118),(98,118),(99,118),(100,118),(101,118),(102,118),(103,110),(103,111),(103,117),(104,116),(104,117),(105,108),(105,114),(105,116),(106,109),(106,115),(106,116),(107,112),(107,113),(107,117),(108,118),(109,118),(110,118),(111,118),(112,118),(113,118),(114,118),(115,118),(116,118),(117,118)],119)
=> ?
=> ? = 1 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ?
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,14),(1,18),(1,22),(1,28),(1,30),(1,36),(1,37),(1,66),(2,13),(2,17),(2,21),(2,27),(2,29),(2,34),(2,35),(2,66),(3,12),(3,20),(3,24),(3,26),(3,32),(3,35),(3,37),(3,67),(4,11),(4,19),(4,23),(4,25),(4,31),(4,34),(4,36),(4,67),(5,16),(5,19),(5,20),(5,27),(5,28),(5,39),(5,40),(6,15),(6,17),(6,18),(6,25),(6,26),(6,38),(6,40),(7,29),(7,30),(7,31),(7,32),(7,33),(7,40),(7,41),(8,21),(8,22),(8,23),(8,24),(8,33),(8,38),(8,39),(9,11),(9,12),(9,15),(9,39),(9,41),(9,66),(10,13),(10,14),(10,16),(10,38),(10,41),(10,67),(11,42),(11,74),(11,80),(11,94),(12,43),(12,75),(12,81),(12,94),(13,44),(13,76),(13,78),(13,95),(14,45),(14,77),(14,79),(14,95),(15,42),(15,43),(15,72),(15,98),(16,44),(16,45),(16,73),(16,98),(17,46),(17,47),(17,72),(17,78),(17,82),(18,48),(18,49),(18,72),(18,79),(18,83),(19,50),(19,52),(19,73),(19,80),(19,84),(20,51),(20,53),(20,73),(20,81),(20,85),(21,54),(21,55),(21,64),(21,78),(21,97),(22,56),(22,57),(22,65),(22,79),(22,97),(23,54),(23,56),(23,62),(23,80),(23,96),(24,55),(24,57),(24,63),(24,81),(24,96),(25,42),(25,46),(25,48),(25,84),(25,96),(26,43),(26,47),(26,49),(26,85),(26,96),(27,44),(27,50),(27,51),(27,82),(27,97),(28,45),(28,52),(28,53),(28,83),(28,97),(29,58),(29,59),(29,64),(29,82),(29,95),(30,60),(30,61),(30,65),(30,83),(30,95),(31,58),(31,60),(31,62),(31,84),(31,94),(32,59),(32,61),(32,63),(32,85),(32,94),(33,62),(33,63),(33,64),(33,65),(33,98),(34,46),(34,50),(34,54),(34,58),(34,74),(34,76),(35,47),(35,51),(35,55),(35,59),(35,75),(35,76),(36,48),(36,52),(36,56),(36,60),(36,74),(36,77),(37,49),(37,53),(37,57),(37,61),(37,75),(37,77),(38,78),(38,79),(38,96),(38,98),(39,80),(39,81),(39,97),(39,98),(40,82),(40,83),(40,84),(40,85),(40,98),(41,94),(41,95),(41,98),(42,90),(42,104),(43,91),(43,104),(44,92),(44,105),(45,93),(45,105),(46,86),(46,90),(46,99),(47,87),(47,91),(47,99),(48,88),(48,90),(48,100),(49,89),(49,91),(49,100),(50,86),(50,92),(50,101),(51,87),(51,92),(51,102),(52,88),(52,93),(52,101),(53,89),(53,93),(53,102),(54,68),(54,99),(54,101),(55,69),(55,99),(55,102),(56,70),(56,100),(56,101),(57,71),(57,100),(57,102),(58,68),(58,86),(58,103),(59,69),(59,87),(59,103),(60,70),(60,88),(60,103),(61,71),(61,89),(61,103),(62,68),(62,70),(62,104),(63,69),(63,71),(63,104),(64,68),(64,69),(64,105),(65,70),(65,71),(65,105),(66,72),(66,74),(66,75),(66,95),(66,97),(67,73),(67,76),(67,77),(67,94),(67,96),(68,106),(69,106),(70,106),(71,106),(72,90),(72,91),(72,105),(73,92),(73,93),(73,104),(74,90),(74,101),(74,103),(75,91),(75,102),(75,103),(76,92),(76,99),(76,103),(77,93),(77,100),(77,103),(78,99),(78,105),(79,100),(79,105),(80,101),(80,104),(81,102),(81,104),(82,86),(82,87),(82,105),(83,88),(83,89),(83,105),(84,86),(84,88),(84,104),(85,87),(85,89),(85,104),(86,106),(87,106),(88,106),(89,106),(90,106),(91,106),(92,106),(93,106),(94,103),(94,104),(95,103),(95,105),(96,99),(96,100),(96,104),(97,101),(97,102),(97,105),(98,104),(98,105),(99,106),(100,106),(101,106),(102,106),(103,106),(104,106),(105,106)],107)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,20),(1,21),(1,22),(1,23),(1,36),(1,37),(1,67),(2,12),(2,16),(2,17),(2,18),(2,19),(2,34),(2,35),(2,67),(3,15),(3,28),(3,29),(3,30),(3,31),(3,35),(3,37),(3,66),(4,14),(4,24),(4,25),(4,26),(4,27),(4,34),(4,36),(4,66),(5,17),(5,21),(5,25),(5,29),(5,33),(5,39),(5,41),(6,16),(6,20),(6,24),(6,28),(6,33),(6,38),(6,40),(7,18),(7,23),(7,27),(7,30),(7,32),(7,38),(7,41),(8,19),(8,22),(8,26),(8,31),(8,32),(8,39),(8,40),(9,11),(9,14),(9,15),(9,40),(9,41),(9,67),(10,11),(10,12),(10,13),(10,38),(10,39),(10,66),(11,76),(11,77),(11,95),(12,76),(12,78),(12,82),(12,83),(13,76),(13,79),(13,84),(13,85),(14,77),(14,80),(14,86),(14,87),(15,77),(15,81),(15,88),(15,89),(16,42),(16,46),(16,58),(16,82),(16,93),(17,43),(17,47),(17,58),(17,83),(17,94),(18,44),(18,48),(18,59),(18,82),(18,94),(19,45),(19,49),(19,59),(19,83),(19,93),(20,50),(20,54),(20,60),(20,84),(20,93),(21,51),(21,55),(21,60),(21,85),(21,94),(22,52),(22,56),(22,61),(22,85),(22,93),(23,53),(23,57),(23,61),(23,84),(23,94),(24,42),(24,50),(24,62),(24,86),(24,91),(25,43),(25,51),(25,62),(25,87),(25,92),(26,45),(26,52),(26,63),(26,86),(26,92),(27,44),(27,53),(27,63),(27,87),(27,91),(28,46),(28,54),(28,64),(28,88),(28,91),(29,47),(29,55),(29,64),(29,89),(29,92),(30,48),(30,57),(30,65),(30,89),(30,91),(31,49),(31,56),(31,65),(31,88),(31,92),(32,59),(32,61),(32,63),(32,65),(32,95),(33,58),(33,60),(33,62),(33,64),(33,95),(34,42),(34,43),(34,44),(34,45),(34,78),(34,80),(35,46),(35,47),(35,48),(35,49),(35,78),(35,81),(36,50),(36,51),(36,52),(36,53),(36,79),(36,80),(37,54),(37,55),(37,56),(37,57),(37,79),(37,81),(38,82),(38,84),(38,91),(38,95),(39,83),(39,85),(39,92),(39,95),(40,86),(40,88),(40,93),(40,95),(41,87),(41,89),(41,94),(41,95),(42,68),(42,96),(42,100),(43,68),(43,97),(43,101),(44,69),(44,96),(44,101),(45,69),(45,97),(45,100),(46,70),(46,96),(46,102),(47,70),(47,97),(47,103),(48,71),(48,96),(48,103),(49,71),(49,97),(49,102),(50,72),(50,98),(50,100),(51,72),(51,99),(51,101),(52,73),(52,99),(52,100),(53,73),(53,98),(53,101),(54,74),(54,98),(54,102),(55,74),(55,99),(55,103),(56,75),(56,99),(56,102),(57,75),(57,98),(57,103),(58,68),(58,70),(58,104),(59,69),(59,71),(59,104),(60,72),(60,74),(60,104),(61,73),(61,75),(61,104),(62,68),(62,72),(62,105),(63,69),(63,73),(63,105),(64,70),(64,74),(64,105),(65,71),(65,75),(65,105),(66,77),(66,78),(66,79),(66,91),(66,92),(67,76),(67,80),(67,81),(67,93),(67,94),(68,106),(69,106),(70,106),(71,106),(72,106),(73,106),(74,106),(75,106),(76,90),(76,104),(77,90),(77,105),(78,90),(78,96),(78,97),(79,90),(79,98),(79,99),(80,90),(80,100),(80,101),(81,90),(81,102),(81,103),(82,96),(82,104),(83,97),(83,104),(84,98),(84,104),(85,99),(85,104),(86,100),(86,105),(87,101),(87,105),(88,102),(88,105),(89,103),(89,105),(90,106),(91,96),(91,98),(91,105),(92,97),(92,99),(92,105),(93,100),(93,102),(93,104),(94,101),(94,103),(94,104),(95,104),(95,105),(96,106),(97,106),(98,106),(99,106),(100,106),(101,106),(102,106),(103,106),(104,106),(105,106)],107)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 1 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 1 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ?
=> ? = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,17),(1,23),(1,30),(1,42),(1,44),(2,10),(2,16),(2,22),(2,30),(2,41),(2,43),(3,12),(3,18),(3,24),(3,29),(3,41),(3,44),(4,13),(4,19),(4,25),(4,29),(4,42),(4,43),(5,15),(5,21),(5,27),(5,28),(5,43),(5,44),(6,14),(6,20),(6,26),(6,28),(6,41),(6,42),(7,22),(7,23),(7,24),(7,25),(7,26),(7,27),(7,31),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,31),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,31),(10,32),(10,45),(10,47),(10,57),(11,32),(11,46),(11,48),(11,58),(12,33),(12,45),(12,48),(12,59),(13,33),(13,46),(13,47),(13,60),(14,34),(14,45),(14,46),(14,61),(15,34),(15,47),(15,48),(15,62),(16,35),(16,49),(16,51),(16,57),(17,35),(17,50),(17,52),(17,58),(18,36),(18,49),(18,52),(18,59),(19,36),(19,50),(19,51),(19,60),(20,37),(20,49),(20,50),(20,61),(21,37),(21,51),(21,52),(21,62),(22,38),(22,53),(22,55),(22,57),(23,38),(23,54),(23,56),(23,58),(24,39),(24,53),(24,56),(24,59),(25,39),(25,54),(25,55),(25,60),(26,40),(26,53),(26,54),(26,61),(27,40),(27,55),(27,56),(27,62),(28,34),(28,37),(28,40),(28,70),(29,33),(29,36),(29,39),(29,70),(30,32),(30,35),(30,38),(30,70),(31,57),(31,58),(31,59),(31,60),(31,61),(31,62),(32,63),(32,71),(33,64),(33,71),(34,65),(34,71),(35,63),(35,72),(36,64),(36,72),(37,65),(37,72),(38,63),(38,73),(39,64),(39,73),(40,65),(40,73),(41,45),(41,49),(41,53),(41,70),(42,46),(42,50),(42,54),(42,70),(43,47),(43,51),(43,55),(43,70),(44,48),(44,52),(44,56),(44,70),(45,66),(45,71),(46,67),(46,71),(47,68),(47,71),(48,69),(48,71),(49,66),(49,72),(50,67),(50,72),(51,68),(51,72),(52,69),(52,72),(53,66),(53,73),(54,67),(54,73),(55,68),(55,73),(56,69),(56,73),(57,63),(57,66),(57,68),(58,63),(58,67),(58,69),(59,64),(59,66),(59,69),(60,64),(60,67),(60,68),(61,65),(61,66),(61,67),(62,65),(62,68),(62,69),(63,74),(64,74),(65,74),(66,74),(67,74),(68,74),(69,74),(70,71),(70,72),(70,73),(71,74),(72,74),(73,74)],75)
=> ?
=> ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,18),(1,21),(1,24),(1,27),(1,32),(1,33),(2,11),(2,14),(2,17),(2,20),(2,23),(2,26),(2,31),(2,33),(3,10),(3,13),(3,16),(3,19),(3,22),(3,25),(3,31),(3,32),(4,10),(4,11),(4,12),(4,30),(4,60),(4,61),(5,16),(5,17),(5,18),(5,29),(5,59),(5,61),(6,13),(6,14),(6,15),(6,29),(6,58),(6,60),(7,22),(7,23),(7,24),(7,28),(7,58),(7,61),(8,19),(8,20),(8,21),(8,28),(8,59),(8,60),(9,25),(9,26),(9,27),(9,30),(9,58),(9,59),(10,34),(10,68),(10,71),(10,86),(11,35),(11,69),(11,72),(11,86),(12,36),(12,70),(12,73),(12,86),(13,40),(13,41),(13,52),(13,68),(13,74),(14,40),(14,42),(14,53),(14,69),(14,75),(15,41),(15,42),(15,54),(15,70),(15,76),(16,43),(16,44),(16,52),(16,71),(16,77),(17,43),(17,45),(17,53),(17,72),(17,78),(18,44),(18,45),(18,54),(18,73),(18,79),(19,49),(19,50),(19,55),(19,68),(19,77),(20,49),(20,51),(20,56),(20,69),(20,78),(21,50),(21,51),(21,57),(21,70),(21,79),(22,46),(22,47),(22,55),(22,71),(22,74),(23,46),(23,48),(23,56),(23,72),(23,75),(24,47),(24,48),(24,57),(24,73),(24,76),(25,34),(25,37),(25,38),(25,74),(25,77),(26,35),(26,37),(26,39),(26,75),(26,78),(27,36),(27,38),(27,39),(27,76),(27,79),(28,55),(28,56),(28,57),(28,87),(29,52),(29,53),(29,54),(29,87),(30,34),(30,35),(30,36),(30,87),(31,37),(31,40),(31,43),(31,46),(31,49),(31,86),(32,38),(32,41),(32,44),(32,47),(32,50),(32,86),(33,39),(33,42),(33,45),(33,48),(33,51),(33,86),(34,88),(34,89),(35,88),(35,90),(36,88),(36,91),(37,82),(37,85),(37,88),(38,80),(38,83),(38,88),(39,81),(39,84),(39,88),(40,64),(40,82),(40,92),(41,62),(41,80),(41,92),(42,63),(42,81),(42,92),(43,64),(43,85),(43,93),(44,62),(44,83),(44,93),(45,63),(45,84),(45,93),(46,67),(46,82),(46,93),(47,65),(47,80),(47,93),(48,66),(48,81),(48,93),(49,67),(49,85),(49,92),(50,65),(50,83),(50,92),(51,66),(51,84),(51,92),(52,62),(52,64),(52,89),(53,63),(53,64),(53,90),(54,62),(54,63),(54,91),(55,65),(55,67),(55,89),(56,66),(56,67),(56,90),(57,65),(57,66),(57,91),(58,74),(58,75),(58,76),(58,87),(59,77),(59,78),(59,79),(59,87),(60,68),(60,69),(60,70),(60,87),(61,71),(61,72),(61,73),(61,87),(62,94),(63,94),(64,94),(65,94),(66,94),(67,94),(68,89),(68,92),(69,90),(69,92),(70,91),(70,92),(71,89),(71,93),(72,90),(72,93),(73,91),(73,93),(74,80),(74,82),(74,89),(75,81),(75,82),(75,90),(76,80),(76,81),(76,91),(77,83),(77,85),(77,89),(78,84),(78,85),(78,90),(79,83),(79,84),(79,91),(80,94),(81,94),(82,94),(83,94),(84,94),(85,94),(86,88),(86,92),(86,93),(87,89),(87,90),(87,91),(88,94),(89,94),(90,94),(91,94),(92,94),(93,94)],95)
=> ?
=> ? = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,14),(1,22),(1,23),(1,32),(1,36),(1,40),(1,48),(1,90),(1,94),(2,13),(2,21),(2,23),(2,31),(2,35),(2,39),(2,47),(2,89),(2,93),(3,16),(3,19),(3,24),(3,34),(3,35),(3,41),(3,49),(3,90),(3,91),(4,15),(4,20),(4,24),(4,33),(4,36),(4,42),(4,50),(4,89),(4,92),(5,15),(5,19),(5,25),(5,31),(5,38),(5,43),(5,51),(5,87),(5,94),(6,16),(6,20),(6,25),(6,32),(6,37),(6,44),(6,52),(6,88),(6,93),(7,13),(7,22),(7,26),(7,33),(7,37),(7,45),(7,53),(7,87),(7,91),(8,14),(8,21),(8,26),(8,34),(8,38),(8,46),(8,54),(8,88),(8,92),(9,18),(9,29),(9,30),(9,43),(9,44),(9,45),(9,46),(9,89),(9,90),(10,18),(10,27),(10,28),(10,39),(10,40),(10,41),(10,42),(10,87),(10,88),(11,17),(11,28),(11,30),(11,49),(11,50),(11,53),(11,54),(11,93),(11,94),(12,17),(12,27),(12,29),(12,47),(12,48),(12,51),(12,52),(12,91),(12,92),(13,95),(13,101),(13,103),(13,109),(13,127),(14,96),(14,102),(14,104),(14,110),(14,127),(15,97),(15,99),(15,106),(15,108),(15,126),(16,98),(16,100),(16,105),(16,107),(16,126),(17,115),(17,116),(17,117),(17,118),(17,125),(18,111),(18,112),(18,113),(18,114),(18,125),(19,63),(19,68),(19,126),(19,132),(19,139),(20,64),(20,67),(20,126),(20,133),(20,138),(21,65),(21,69),(21,127),(21,134),(21,136),(22,66),(22,70),(22,127),(22,135),(22,137),(23,55),(23,59),(23,127),(23,129),(23,131),(24,56),(24,60),(24,126),(24,129),(24,130),(25,57),(25,61),(25,126),(25,128),(25,131),(26,58),(26,62),(26,127),(26,128),(26,130),(27,71),(27,72),(27,125),(27,132),(27,133),(28,73),(28,74),(28,125),(28,134),(28,135),(29,75),(29,76),(29,125),(29,136),(29,137),(30,77),(30,78),(30,125),(30,138),(30,139),(31,63),(31,69),(31,83),(31,95),(31,99),(31,131),(32,64),(32,70),(32,84),(32,96),(32,100),(32,131),(33,66),(33,67),(33,85),(33,97),(33,101),(33,130),(34,65),(34,68),(34,86),(34,98),(34,102),(34,130),(35,63),(35,65),(35,79),(35,103),(35,105),(35,129),(36,64),(36,66),(36,80),(36,104),(36,106),(36,129),(37,67),(37,70),(37,81),(37,107),(37,109),(37,128),(38,68),(38,69),(38,82),(38,108),(38,110),(38,128),(39,55),(39,71),(39,79),(39,95),(39,111),(39,134),(40,55),(40,72),(40,80),(40,96),(40,112),(40,135),(41,56),(41,73),(41,79),(41,98),(41,112),(41,132),(42,56),(42,74),(42,80),(42,97),(42,111),(42,133),(43,57),(43,75),(43,82),(43,99),(43,113),(43,139),(44,57),(44,76),(44,81),(44,100),(44,114),(44,138),(45,58),(45,77),(45,81),(45,101),(45,113),(45,137),(46,58),(46,78),(46,82),(46,102),(46,114),(46,136),(47,59),(47,71),(47,83),(47,103),(47,115),(47,136),(48,59),(48,72),(48,84),(48,104),(48,116),(48,137),(49,60),(49,73),(49,86),(49,105),(49,117),(49,139),(50,60),(50,74),(50,85),(50,106),(50,118),(50,138),(51,61),(51,75),(51,83),(51,108),(51,116),(51,132),(52,61),(52,76),(52,84),(52,107),(52,115),(52,133),(53,62),(53,77),(53,85),(53,109),(53,117),(53,135),(54,62),(54,78),(54,86),(54,110),(54,118),(54,134),(55,121),(55,144),(55,157),(56,122),(56,144),(56,156),(57,123),(57,145),(57,159),(58,124),(58,145),(58,158),(59,121),(59,146),(59,158),(60,122),(60,147),(60,159),(61,123),(61,146),(61,156),(62,124),(62,147),(62,157),(63,119),(63,148),(63,159),(64,120),(64,149),(64,159),(65,119),(65,150),(65,158),(66,120),(66,151),(66,158),(67,120),(67,154),(67,156),(68,119),(68,155),(68,156),(69,119),(69,152),(69,157),(70,120),(70,153),(70,157),(71,121),(71,148),(71,160),(72,121),(72,149),(72,161),(73,122),(73,150),(73,161),(74,122),(74,151),(74,160),(75,123),(75,152),(75,161),(76,123),(76,153),(76,160),(77,124),(77,154),(77,161),(78,124),(78,155),(78,160),(79,144),(79,148),(79,150),(80,144),(80,149),(80,151),(81,145),(81,153),(81,154),(82,145),(82,152),(82,155),(83,146),(83,148),(83,152),(84,146),(84,149),(84,153),(85,147),(85,151),(85,154),(86,147),(86,150),(86,155),(87,95),(87,97),(87,113),(87,128),(87,132),(87,135),(88,96),(88,98),(88,114),(88,128),(88,133),(88,134),(89,99),(89,101),(89,111),(89,129),(89,136),(89,138),(90,100),(90,102),(90,112),(90,129),(90,137),(90,139),(91,103),(91,107),(91,117),(91,130),(91,132),(91,137),(92,104),(92,108),(92,118),(92,130),(92,133),(92,136),(93,105),(93,109),(93,115),(93,131),(93,134),(93,138),(94,106),(94,110),(94,116),(94,131),(94,135),(94,139),(95,140),(95,148),(95,157),(96,141),(96,149),(96,157),(97,140),(97,151),(97,156),(98,141),(98,150),(98,156),(99,140),(99,152),(99,159),(100,141),(100,153),(100,159),(101,140),(101,154),(101,158),(102,141),(102,155),(102,158),(103,142),(103,148),(103,158),(104,143),(104,149),(104,158),(105,142),(105,150),(105,159),(106,143),(106,151),(106,159),(107,142),(107,153),(107,156),(108,143),(108,152),(108,156),(109,142),(109,154),(109,157),(110,143),(110,155),(110,157),(111,140),(111,144),(111,160),(112,141),(112,144),(112,161),(113,140),(113,145),(113,161),(114,141),(114,145),(114,160),(115,142),(115,146),(115,160),(116,143),(116,146),(116,161),(117,142),(117,147),(117,161),(118,143),(118,147),(118,160),(119,162),(120,162),(121,162),(122,162),(123,162),(124,162),(125,160),(125,161),(126,156),(126,159),(127,157),(127,158),(128,145),(128,156),(128,157),(129,144),(129,158),(129,159),(130,147),(130,156),(130,158),(131,146),(131,157),(131,159),(132,148),(132,156),(132,161),(133,149),(133,156),(133,160),(134,150),(134,157),(134,160),(135,151),(135,157),(135,161),(136,152),(136,158),(136,160),(137,153),(137,158),(137,161),(138,154),(138,159),(138,160),(139,155),(139,159),(139,161),(140,162),(141,162),(142,162),(143,162),(144,162),(145,162),(146,162),(147,162),(148,162),(149,162),(150,162),(151,162),(152,162),(153,162),(154,162),(155,162),(156,162),(157,162),(158,162),(159,162),(160,162),(161,162)],163)
=> ?
=> ? = 1 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,18),(1,22),(1,29),(1,36),(1,38),(1,40),(1,42),(1,44),(1,78),(2,17),(2,21),(2,29),(2,35),(2,37),(2,39),(2,41),(2,43),(2,77),(3,14),(3,19),(3,20),(3,32),(3,33),(3,34),(3,37),(3,38),(3,79),(4,15),(4,27),(4,31),(4,33),(4,35),(4,40),(4,80),(4,82),(5,16),(5,28),(5,30),(5,34),(5,36),(5,39),(5,81),(5,82),(6,14),(6,21),(6,22),(6,25),(6,26),(6,45),(6,76),(6,82),(7,23),(7,24),(7,32),(7,41),(7,42),(7,45),(7,80),(7,81),(8,13),(8,16),(8,24),(8,26),(8,27),(8,43),(8,78),(8,79),(9,12),(9,15),(9,23),(9,25),(9,28),(9,44),(9,77),(9,79),(10,12),(10,17),(10,19),(10,30),(10,76),(10,78),(10,80),(11,13),(11,18),(11,20),(11,31),(11,76),(11,77),(11,81),(12,68),(12,101),(12,116),(12,118),(13,69),(13,102),(13,115),(13,119),(14,47),(14,89),(14,90),(14,103),(14,114),(15,53),(15,93),(15,99),(15,101),(15,104),(16,52),(16,94),(16,100),(16,102),(16,105),(17,62),(17,64),(17,91),(17,95),(17,118),(18,63),(18,65),(18,92),(18,96),(18,119),(19,60),(19,62),(19,90),(19,97),(19,116),(20,61),(20,63),(20,90),(20,98),(20,115),(21,56),(21,70),(21,87),(21,114),(21,118),(22,57),(22,71),(22,88),(22,114),(22,119),(23,73),(23,74),(23,101),(23,106),(23,120),(24,72),(24,75),(24,102),(24,106),(24,121),(25,71),(25,74),(25,103),(25,104),(25,118),(26,70),(26,75),(26,103),(26,105),(26,119),(27,66),(27,69),(27,99),(27,105),(27,121),(28,67),(28,68),(28,100),(28,104),(28,120),(29,46),(29,48),(29,49),(29,91),(29,92),(29,114),(30,60),(30,64),(30,68),(30,94),(30,122),(31,61),(31,65),(31,69),(31,93),(31,122),(32,47),(32,54),(32,55),(32,97),(32,98),(32,106),(33,50),(33,59),(33,61),(33,89),(33,97),(33,99),(34,51),(34,58),(34,60),(34,89),(34,98),(34,100),(35,48),(35,50),(35,66),(35,87),(35,93),(35,95),(36,49),(36,51),(36,67),(36,88),(36,94),(36,96),(37,50),(37,54),(37,58),(37,62),(37,114),(37,115),(38,51),(38,55),(38,59),(38,63),(38,114),(38,116),(39,49),(39,52),(39,58),(39,64),(39,87),(39,120),(40,48),(40,53),(40,59),(40,65),(40,88),(40,121),(41,46),(41,54),(41,56),(41,72),(41,95),(41,120),(42,46),(42,55),(42,57),(42,73),(42,96),(42,121),(43,52),(43,66),(43,70),(43,72),(43,91),(43,115),(44,53),(44,67),(44,71),(44,73),(44,92),(44,116),(45,47),(45,56),(45,57),(45,74),(45,75),(45,122),(46,123),(46,126),(46,127),(47,107),(47,123),(47,128),(48,111),(48,126),(48,131),(49,110),(49,127),(49,131),(50,112),(50,124),(50,131),(51,113),(51,125),(51,131),(52,108),(52,110),(52,129),(53,109),(53,111),(53,130),(54,112),(54,123),(54,129),(55,113),(55,123),(55,130),(56,85),(56,123),(56,132),(57,86),(57,123),(57,133),(58,83),(58,129),(58,131),(59,84),(59,130),(59,131),(60,83),(60,125),(60,128),(61,84),(61,124),(61,128),(62,83),(62,112),(62,134),(63,84),(63,113),(63,134),(64,83),(64,110),(64,132),(65,84),(65,111),(65,133),(66,108),(66,124),(66,126),(67,109),(67,125),(67,127),(68,125),(68,132),(69,124),(69,133),(70,85),(70,108),(70,134),(71,86),(71,109),(71,134),(72,85),(72,126),(72,129),(73,86),(73,127),(73,130),(74,86),(74,107),(74,132),(75,85),(75,107),(75,133),(76,90),(76,118),(76,119),(76,122),(77,92),(77,93),(77,115),(77,118),(77,120),(78,91),(78,94),(78,116),(78,119),(78,121),(79,99),(79,100),(79,103),(79,106),(79,115),(79,116),(80,95),(80,97),(80,101),(80,121),(80,122),(81,96),(81,98),(81,102),(81,120),(81,122),(82,87),(82,88),(82,89),(82,104),(82,105),(82,122),(83,135),(84,135),(85,135),(86,135),(87,108),(87,131),(87,132),(88,109),(88,131),(88,133),(89,117),(89,128),(89,131),(90,128),(90,134),(91,110),(91,126),(91,134),(92,111),(92,127),(92,134),(93,111),(93,124),(93,132),(94,110),(94,125),(94,133),(95,112),(95,126),(95,132),(96,113),(96,127),(96,133),(97,112),(97,128),(97,130),(98,113),(98,128),(98,129),(99,117),(99,124),(99,130),(100,117),(100,125),(100,129),(101,130),(101,132),(102,129),(102,133),(103,107),(103,117),(103,134),(104,109),(104,117),(104,132),(105,108),(105,117),(105,133),(106,107),(106,129),(106,130),(107,135),(108,135),(109,135),(110,135),(111,135),(112,135),(113,135),(114,123),(114,131),(114,134),(115,124),(115,129),(115,134),(116,125),(116,130),(116,134),(117,135),(118,132),(118,134),(119,133),(119,134),(120,127),(120,129),(120,132),(121,126),(121,130),(121,133),(122,128),(122,132),(122,133),(123,135),(124,135),(125,135),(126,135),(127,135),(128,135),(129,135),(130,135),(131,135),(132,135),(133,135),(134,135)],136)
=> ?
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,30),(1,31),(1,32),(1,33),(1,47),(1,48),(1,84),(1,85),(2,21),(2,25),(2,35),(2,38),(2,42),(2,46),(2,83),(2,85),(3,20),(3,24),(3,34),(3,38),(3,41),(3,45),(3,82),(3,84),(4,19),(4,22),(4,37),(4,39),(4,43),(4,45),(4,80),(4,85),(5,18),(5,23),(5,36),(5,39),(5,44),(5,46),(5,81),(5,84),(6,28),(6,29),(6,40),(6,43),(6,44),(6,48),(6,82),(6,83),(7,26),(7,27),(7,40),(7,41),(7,42),(7,47),(7,80),(7,81),(8,12),(8,15),(8,16),(8,18),(8,22),(8,26),(8,30),(8,34),(8,83),(9,12),(9,14),(9,17),(9,19),(9,23),(9,27),(9,31),(9,35),(9,82),(10,13),(10,14),(10,16),(10,20),(10,25),(10,28),(10,32),(10,36),(10,80),(11,13),(11,15),(11,17),(11,21),(11,24),(11,29),(11,33),(11,37),(11,81),(12,49),(12,54),(12,117),(12,119),(12,121),(13,50),(13,55),(13,118),(13,119),(13,120),(14,56),(14,59),(14,64),(14,86),(14,88),(14,119),(15,57),(15,58),(15,65),(15,87),(15,89),(15,119),(16,70),(16,76),(16,78),(16,98),(16,101),(16,119),(17,71),(17,77),(17,79),(17,99),(17,100),(17,119),(18,76),(18,87),(18,97),(18,102),(18,117),(19,77),(19,86),(19,96),(19,103),(19,117),(20,78),(20,88),(20,94),(20,104),(20,118),(21,79),(21,89),(21,95),(21,105),(21,118),(22,57),(22,66),(22,98),(22,117),(22,125),(23,56),(23,67),(23,99),(23,117),(23,124),(24,58),(24,68),(24,100),(24,118),(24,122),(25,59),(25,69),(25,101),(25,118),(25,123),(26,54),(26,60),(26,72),(26,87),(26,91),(26,98),(27,54),(27,61),(27,73),(27,86),(27,90),(27,99),(28,55),(28,62),(28,74),(28,88),(28,92),(28,101),(29,55),(29,63),(29,75),(29,89),(29,93),(29,100),(30,49),(30,60),(30,65),(30,70),(30,102),(30,125),(31,49),(31,61),(31,64),(31,71),(31,103),(31,124),(32,50),(32,62),(32,64),(32,70),(32,104),(32,123),(33,50),(33,63),(33,65),(33,71),(33,105),(33,122),(34,58),(34,66),(34,72),(34,78),(34,102),(34,121),(35,59),(35,67),(35,73),(35,79),(35,103),(35,121),(36,56),(36,69),(36,74),(36,76),(36,104),(36,120),(37,57),(37,68),(37,75),(37,77),(37,105),(37,120),(38,52),(38,116),(38,118),(38,121),(39,53),(39,116),(39,117),(39,120),(40,51),(40,90),(40,91),(40,92),(40,93),(41,52),(41,72),(41,90),(41,94),(41,122),(42,52),(42,73),(42,91),(42,95),(42,123),(43,53),(43,75),(43,92),(43,96),(43,125),(44,53),(44,74),(44,93),(44,97),(44,124),(45,66),(45,68),(45,94),(45,96),(45,116),(46,67),(46,69),(46,95),(46,97),(46,116),(47,51),(47,60),(47,61),(47,122),(47,123),(48,51),(48,62),(48,63),(48,124),(48,125),(49,106),(49,134),(49,140),(50,107),(50,134),(50,139),(51,135),(51,136),(52,128),(52,139),(53,129),(53,140),(54,106),(54,128),(54,137),(55,107),(55,129),(55,138),(56,109),(56,132),(56,137),(57,108),(57,133),(57,137),(58,108),(58,130),(58,138),(59,109),(59,131),(59,138),(60,106),(60,130),(60,136),(61,106),(61,131),(61,135),(62,107),(62,132),(62,136),(63,107),(63,133),(63,135),(64,131),(64,132),(64,134),(65,130),(65,133),(65,134),(66,108),(66,112),(66,140),(67,109),(67,113),(67,140),(68,108),(68,114),(68,139),(69,109),(69,115),(69,139),(70,110),(70,134),(70,136),(71,111),(71,134),(71,135),(72,112),(72,128),(72,130),(73,113),(73,128),(73,131),(74,115),(74,129),(74,132),(75,114),(75,129),(75,133),(76,110),(76,115),(76,137),(77,111),(77,114),(77,137),(78,110),(78,112),(78,138),(79,111),(79,113),(79,138),(80,86),(80,92),(80,94),(80,98),(80,120),(80,123),(81,87),(81,93),(81,95),(81,99),(81,120),(81,122),(82,88),(82,90),(82,96),(82,100),(82,121),(82,124),(83,89),(83,91),(83,97),(83,101),(83,121),(83,125),(84,102),(84,104),(84,116),(84,122),(84,124),(85,103),(85,105),(85,116),(85,123),(85,125),(86,126),(86,131),(86,137),(87,127),(87,130),(87,137),(88,126),(88,132),(88,138),(89,127),(89,133),(89,138),(90,126),(90,128),(90,135),(91,127),(91,128),(91,136),(92,126),(92,129),(92,136),(93,127),(93,129),(93,135),(94,112),(94,126),(94,139),(95,113),(95,127),(95,139),(96,114),(96,126),(96,140),(97,115),(97,127),(97,140),(98,112),(98,136),(98,137),(99,113),(99,135),(99,137),(100,114),(100,135),(100,138),(101,115),(101,136),(101,138),(102,110),(102,130),(102,140),(103,111),(103,131),(103,140),(104,110),(104,132),(104,139),(105,111),(105,133),(105,139),(106,141),(107,141),(108,141),(109,141),(110,141),(111,141),(112,141),(113,141),(114,141),(115,141),(116,139),(116,140),(117,137),(117,140),(118,138),(118,139),(119,134),(119,137),(119,138),(120,129),(120,137),(120,139),(121,128),(121,138),(121,140),(122,130),(122,135),(122,139),(123,131),(123,136),(123,139),(124,132),(124,135),(124,140),(125,133),(125,136),(125,140),(126,141),(127,141),(128,141),(129,141),(130,141),(131,141),(132,141),(133,141),(134,141),(135,141),(136,141),(137,141),(138,141),(139,141),(140,141)],142)
=> ?
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,15),(1,21),(1,29),(1,30),(1,35),(1,36),(1,44),(1,45),(1,93),(2,14),(2,20),(2,26),(2,28),(2,32),(2,34),(2,43),(2,45),(2,92),(3,13),(3,19),(3,25),(3,27),(3,31),(3,33),(3,43),(3,44),(3,91),(4,16),(4,19),(4,28),(4,29),(4,37),(4,39),(4,46),(4,48),(4,90),(5,17),(5,20),(5,27),(5,30),(5,38),(5,40),(5,47),(5,48),(5,89),(6,18),(6,21),(6,25),(6,26),(6,41),(6,42),(6,46),(6,47),(6,88),(7,22),(7,23),(7,33),(7,34),(7,37),(7,38),(7,88),(7,93),(8,22),(8,24),(8,31),(8,35),(8,39),(8,41),(8,89),(8,92),(9,23),(9,24),(9,32),(9,36),(9,40),(9,42),(9,90),(9,91),(10,12),(10,16),(10,17),(10,18),(10,91),(10,92),(10,93),(11,12),(11,13),(11,14),(11,15),(11,88),(11,89),(11,90),(12,120),(12,121),(12,122),(13,52),(13,53),(13,99),(13,101),(13,120),(14,52),(14,54),(14,100),(14,102),(14,121),(15,53),(15,54),(15,103),(15,104),(15,122),(16,55),(16,57),(16,108),(16,109),(16,120),(17,56),(17,57),(17,107),(17,110),(17,121),(18,55),(18,56),(18,105),(18,106),(18,122),(19,64),(19,66),(19,117),(19,118),(19,120),(20,65),(20,67),(20,117),(20,119),(20,121),(21,68),(21,69),(21,118),(21,119),(21,122),(22,51),(22,70),(22,73),(22,124),(22,128),(23,51),(23,71),(23,74),(23,123),(23,127),(24,51),(24,72),(24,75),(24,125),(24,126),(25,58),(25,61),(25,76),(25,101),(25,105),(25,118),(26,58),(26,62),(26,77),(26,102),(26,106),(26,119),(27,59),(27,61),(27,78),(27,99),(27,107),(27,117),(28,60),(28,62),(28,79),(28,100),(28,108),(28,117),(29,60),(29,63),(29,80),(29,104),(29,109),(29,118),(30,59),(30,63),(30,81),(30,103),(30,110),(30,119),(31,66),(31,70),(31,76),(31,83),(31,99),(31,126),(32,67),(32,71),(32,77),(32,84),(32,100),(32,126),(33,64),(33,70),(33,78),(33,82),(33,101),(33,127),(34,65),(34,71),(34,79),(34,82),(34,102),(34,128),(35,69),(35,72),(35,80),(35,83),(35,103),(35,128),(36,68),(36,72),(36,81),(36,84),(36,104),(36,127),(37,64),(37,73),(37,79),(37,87),(37,109),(37,123),(38,65),(38,74),(38,78),(38,87),(38,110),(38,124),(39,66),(39,73),(39,80),(39,85),(39,108),(39,125),(40,67),(40,74),(40,81),(40,86),(40,107),(40,125),(41,69),(41,75),(41,76),(41,85),(41,106),(41,124),(42,68),(42,75),(42,77),(42,86),(42,105),(42,123),(43,49),(43,52),(43,58),(43,82),(43,117),(43,126),(44,49),(44,53),(44,59),(44,83),(44,118),(44,127),(45,49),(45,54),(45,60),(45,84),(45,119),(45,128),(46,50),(46,55),(46,62),(46,85),(46,118),(46,123),(47,50),(47,56),(47,61),(47,86),(47,119),(47,124),(48,50),(48,57),(48,63),(48,87),(48,117),(48,125),(49,97),(49,139),(49,140),(50,98),(50,138),(50,140),(51,138),(51,139),(52,97),(52,113),(52,143),(53,97),(53,111),(53,141),(54,97),(54,112),(54,142),(55,98),(55,115),(55,141),(56,98),(56,114),(56,142),(57,98),(57,116),(57,143),(58,113),(58,137),(58,140),(59,111),(59,135),(59,140),(60,112),(60,136),(60,140),(61,114),(61,132),(61,140),(62,115),(62,133),(62,140),(63,116),(63,134),(63,140),(64,94),(64,129),(64,141),(65,95),(65,129),(65,142),(66,94),(66,130),(66,143),(67,95),(67,131),(67,143),(68,96),(68,131),(68,141),(69,96),(69,130),(69,142),(70,94),(70,132),(70,139),(71,95),(71,133),(71,139),(72,96),(72,134),(72,139),(73,94),(73,136),(73,138),(74,95),(74,135),(74,138),(75,96),(75,137),(75,138),(76,130),(76,132),(76,137),(77,131),(77,133),(77,137),(78,129),(78,132),(78,135),(79,129),(79,133),(79,136),(80,130),(80,134),(80,136),(81,131),(81,134),(81,135),(82,113),(82,129),(82,139),(83,111),(83,130),(83,139),(84,112),(84,131),(84,139),(85,115),(85,130),(85,138),(86,114),(86,131),(86,138),(87,116),(87,129),(87,138),(88,101),(88,102),(88,122),(88,123),(88,124),(89,99),(89,103),(89,121),(89,124),(89,125),(90,100),(90,104),(90,120),(90,123),(90,125),(91,105),(91,107),(91,120),(91,126),(91,127),(92,106),(92,108),(92,121),(92,126),(92,128),(93,109),(93,110),(93,122),(93,127),(93,128),(94,144),(95,144),(96,144),(97,144),(98,144),(99,111),(99,132),(99,143),(100,112),(100,133),(100,143),(101,113),(101,132),(101,141),(102,113),(102,133),(102,142),(103,111),(103,134),(103,142),(104,112),(104,134),(104,141),(105,114),(105,137),(105,141),(106,115),(106,137),(106,142),(107,114),(107,135),(107,143),(108,115),(108,136),(108,143),(109,116),(109,136),(109,141),(110,116),(110,135),(110,142),(111,144),(112,144),(113,144),(114,144),(115,144),(116,144),(117,129),(117,140),(117,143),(118,130),(118,140),(118,141),(119,131),(119,140),(119,142),(120,141),(120,143),(121,142),(121,143),(122,141),(122,142),(123,133),(123,138),(123,141),(124,132),(124,138),(124,142),(125,134),(125,138),(125,143),(126,137),(126,139),(126,143),(127,135),(127,139),(127,141),(128,136),(128,139),(128,142),(129,144),(130,144),(131,144),(132,144),(133,144),(134,144),(135,144),(136,144),(137,144),(138,144),(139,144),(140,144),(141,144),(142,144),(143,144)],145)
=> ?
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,15),(1,22),(1,24),(1,32),(1,34),(1,37),(1,38),(1,69),(2,14),(2,22),(2,23),(2,31),(2,33),(2,35),(2,36),(2,68),(3,19),(3,21),(3,26),(3,28),(3,36),(3,38),(3,40),(3,71),(4,18),(4,20),(4,25),(4,27),(4,35),(4,37),(4,39),(4,71),(5,11),(5,29),(5,30),(5,33),(5,34),(5,39),(5,40),(5,70),(6,11),(6,12),(6,13),(6,14),(6,15),(6,41),(6,71),(7,12),(7,17),(7,18),(7,19),(7,31),(7,69),(7,70),(8,13),(8,16),(8,20),(8,21),(8,32),(8,68),(8,70),(9,16),(9,23),(9,25),(9,26),(9,29),(9,41),(9,69),(10,17),(10,24),(10,27),(10,28),(10,30),(10,41),(10,68),(11,76),(11,81),(11,88),(11,97),(12,48),(12,76),(12,79),(12,100),(13,49),(13,76),(13,80),(13,99),(14,48),(14,77),(14,97),(14,99),(15,49),(15,78),(15,97),(15,100),(16,50),(16,51),(16,99),(16,102),(17,52),(17,53),(17,100),(17,101),(18,52),(18,54),(18,79),(18,82),(18,86),(19,53),(19,55),(19,79),(19,83),(19,87),(20,50),(20,56),(20,80),(20,82),(20,84),(21,51),(21,57),(21,80),(21,83),(21,85),(22,42),(22,43),(22,89),(22,90),(22,97),(23,62),(23,63),(23,66),(23,89),(23,99),(24,64),(24,65),(24,67),(24,90),(24,100),(25,50),(25,58),(25,62),(25,86),(25,103),(26,51),(26,59),(26,63),(26,87),(26,103),(27,52),(27,60),(27,64),(27,84),(27,103),(28,53),(28,61),(28,65),(28,85),(28,103),(29,58),(29,59),(29,66),(29,88),(29,102),(30,60),(30,61),(30,67),(30,88),(30,101),(31,48),(31,54),(31,55),(31,89),(31,101),(32,49),(32,56),(32,57),(32,90),(32,102),(33,44),(33,45),(33,66),(33,97),(33,101),(34,46),(34,47),(34,67),(34,97),(34,102),(35,42),(35,44),(35,54),(35,62),(35,77),(35,84),(36,43),(36,45),(36,55),(36,63),(36,77),(36,85),(37,42),(37,46),(37,56),(37,64),(37,78),(37,86),(38,43),(38,47),(38,57),(38,65),(38,78),(38,87),(39,44),(39,46),(39,58),(39,60),(39,81),(39,82),(40,45),(40,47),(40,59),(40,61),(40,81),(40,83),(41,88),(41,99),(41,100),(41,103),(42,91),(42,93),(42,111),(43,92),(43,94),(43,111),(44,72),(44,105),(44,111),(45,73),(45,106),(45,111),(46,74),(46,107),(46,111),(47,75),(47,108),(47,111),(48,95),(48,112),(49,96),(49,112),(50,107),(50,109),(51,108),(51,109),(52,105),(52,110),(53,106),(53,110),(54,91),(54,95),(54,105),(55,92),(55,95),(55,106),(56,93),(56,96),(56,107),(57,94),(57,96),(57,108),(58,72),(58,104),(58,107),(59,73),(59,104),(59,108),(60,74),(60,104),(60,105),(61,75),(61,104),(61,106),(62,72),(62,91),(62,109),(63,73),(63,92),(63,109),(64,74),(64,93),(64,110),(65,75),(65,94),(65,110),(66,72),(66,73),(66,112),(67,74),(67,75),(67,112),(68,84),(68,85),(68,90),(68,99),(68,101),(69,86),(69,87),(69,89),(69,100),(69,102),(70,76),(70,82),(70,83),(70,101),(70,102),(71,77),(71,78),(71,79),(71,80),(71,81),(71,103),(72,113),(73,113),(74,113),(75,113),(76,98),(76,112),(77,95),(77,109),(77,111),(78,96),(78,110),(78,111),(79,95),(79,98),(79,110),(80,96),(80,98),(80,109),(81,98),(81,104),(81,111),(82,98),(82,105),(82,107),(83,98),(83,106),(83,108),(84,93),(84,105),(84,109),(85,94),(85,106),(85,109),(86,91),(86,107),(86,110),(87,92),(87,108),(87,110),(88,104),(88,112),(89,91),(89,92),(89,112),(90,93),(90,94),(90,112),(91,113),(92,113),(93,113),(94,113),(95,113),(96,113),(97,111),(97,112),(98,113),(99,109),(99,112),(100,110),(100,112),(101,105),(101,106),(101,112),(102,107),(102,108),(102,112),(103,104),(103,109),(103,110),(104,113),(105,113),(106,113),(107,113),(108,113),(109,113),(110,113),(111,113),(112,113)],114)
=> ?
=> ? = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
Description
The number of shortest chains of small intervals from the bottom to the top in a lattice. An interval $[a, b]$ in a lattice is small if $b$ is a join of elements covering $a$.
Mp00111: Graphs complementGraphs
Mp00266: Graphs connected vertex partitionsLattices
Mp00196: Lattices The modular quotient of a lattice.Lattices
St001820: Lattices ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,10),(1,11),(1,24),(1,26),(2,8),(2,9),(2,24),(2,25),(3,16),(3,17),(3,18),(3,19),(3,24),(4,9),(4,14),(4,15),(4,17),(4,26),(5,8),(5,12),(5,13),(5,16),(5,26),(6,11),(6,13),(6,15),(6,19),(6,25),(7,10),(7,12),(7,14),(7,18),(7,25),(8,27),(8,31),(9,28),(9,31),(10,29),(10,32),(11,30),(11,32),(12,20),(12,27),(12,29),(13,21),(13,27),(13,30),(14,22),(14,28),(14,29),(15,23),(15,28),(15,30),(16,20),(16,21),(16,31),(17,22),(17,23),(17,31),(18,20),(18,22),(18,32),(19,21),(19,23),(19,32),(20,33),(21,33),(22,33),(23,33),(24,31),(24,32),(25,27),(25,28),(25,32),(26,29),(26,30),(26,31),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ?
=> ? = 0 + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,10),(1,28),(1,29),(2,12),(2,16),(2,20),(2,22),(2,29),(3,11),(3,15),(3,20),(3,21),(3,28),(4,13),(4,17),(4,19),(4,21),(4,29),(5,14),(5,18),(5,19),(5,22),(5,28),(6,8),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,9),(7,11),(7,12),(7,13),(7,14),(8,27),(8,34),(8,35),(9,27),(9,30),(9,31),(10,27),(10,32),(10,33),(11,23),(11,30),(11,34),(12,24),(12,31),(12,34),(13,23),(13,31),(13,35),(14,24),(14,30),(14,35),(15,25),(15,32),(15,34),(16,26),(16,33),(16,34),(17,25),(17,33),(17,35),(18,26),(18,32),(18,35),(19,35),(19,36),(20,34),(20,36),(21,23),(21,25),(21,36),(22,24),(22,26),(22,36),(23,37),(24,37),(25,37),(26,37),(27,37),(28,30),(28,32),(28,36),(29,31),(29,33),(29,36),(30,37),(31,37),(32,37),(33,37),(34,37),(35,37),(36,37)],38)
=> ?
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ?
=> ? = 0 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ?
=> ? = 0 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(1,14),(1,15),(1,17),(2,10),(2,11),(2,12),(2,17),(3,7),(3,8),(3,9),(3,17),(4,9),(4,12),(4,15),(4,16),(5,8),(5,11),(5,14),(5,16),(6,7),(6,10),(6,13),(6,16),(7,18),(7,21),(8,19),(8,21),(9,20),(9,21),(10,18),(10,22),(11,19),(11,22),(12,20),(12,22),(13,18),(13,23),(14,19),(14,23),(15,20),(15,23),(16,21),(16,22),(16,23),(17,18),(17,19),(17,20),(18,24),(19,24),(20,24),(21,24),(22,24),(23,24)],25)
=> ?
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 0 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,25),(2,13),(2,14),(2,15),(2,25),(3,10),(3,11),(3,12),(3,25),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,21),(7,24),(7,29),(8,19),(8,22),(8,29),(9,20),(9,23),(9,29),(10,26),(10,29),(11,27),(11,29),(12,28),(12,29),(13,19),(13,21),(13,26),(14,20),(14,21),(14,27),(15,19),(15,20),(15,28),(16,22),(16,24),(16,26),(17,23),(17,24),(17,27),(18,22),(18,23),(18,28),(19,30),(20,30),(21,30),(22,30),(23,30),(24,30),(25,26),(25,27),(25,28),(26,30),(27,30),(28,30),(29,30)],31)
=> ?
=> ? = 0 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ?
=> ? = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,26),(17,26),(18,26),(19,26),(20,26),(21,26),(22,26),(23,26),(24,26),(25,26)],27)
=> ?
=> ? = 0 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ?
=> ? = 0 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ?
=> ? = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,20),(1,29),(1,31),(1,36),(1,40),(1,42),(1,44),(1,81),(1,86),(2,19),(2,28),(2,30),(2,35),(2,39),(2,41),(2,43),(2,81),(2,85),(3,17),(3,26),(3,32),(3,35),(3,37),(3,42),(3,45),(3,82),(3,84),(4,18),(4,27),(4,33),(4,36),(4,38),(4,41),(4,46),(4,82),(4,83),(5,25),(5,37),(5,38),(5,39),(5,40),(5,47),(5,48),(5,79),(5,80),(6,15),(6,16),(6,24),(6,32),(6,33),(6,34),(6,48),(6,85),(6,86),(7,13),(7,14),(7,23),(7,30),(7,31),(7,34),(7,47),(7,83),(7,84),(8,13),(8,17),(8,22),(8,27),(8,43),(8,49),(8,79),(8,86),(9,14),(9,18),(9,21),(9,26),(9,44),(9,49),(9,80),(9,85),(10,15),(10,19),(10,21),(10,29),(10,45),(10,50),(10,79),(10,83),(11,16),(11,20),(11,22),(11,28),(11,46),(11,50),(11,80),(11,84),(12,23),(12,24),(12,25),(12,49),(12,50),(12,81),(12,82),(13,63),(13,91),(13,103),(13,108),(13,127),(14,64),(14,90),(14,102),(14,108),(14,128),(15,65),(15,92),(15,104),(15,109),(15,130),(16,66),(16,93),(16,105),(16,109),(16,129),(17,59),(17,96),(17,101),(17,103),(17,131),(18,60),(18,97),(18,100),(18,102),(18,131),(19,61),(19,94),(19,98),(19,104),(19,132),(20,62),(20,95),(20,99),(20,105),(20,132),(21,73),(21,74),(21,102),(21,104),(21,138),(22,72),(22,75),(22,103),(22,105),(22,138),(23,76),(23,78),(23,108),(23,110),(23,139),(24,77),(24,78),(24,109),(24,111),(24,140),(25,76),(25,77),(25,106),(25,107),(25,138),(26,69),(26,74),(26,114),(26,128),(26,131),(27,68),(27,75),(27,115),(27,127),(27,131),(28,70),(28,72),(28,112),(28,129),(28,132),(29,71),(29,73),(29,113),(29,130),(29,132),(30,53),(30,63),(30,90),(30,98),(30,110),(30,112),(31,54),(31,64),(31,91),(31,99),(31,110),(31,113),(32,56),(32,65),(32,93),(32,101),(32,111),(32,114),(33,55),(33,66),(33,92),(33,100),(33,111),(33,115),(34,67),(34,78),(34,90),(34,91),(34,92),(34,93),(35,51),(35,59),(35,61),(35,112),(35,114),(35,124),(36,52),(36,60),(36,62),(36,113),(36,115),(36,124),(37,51),(37,56),(37,58),(37,96),(37,106),(37,128),(38,52),(38,55),(38,57),(38,97),(38,106),(38,127),(39,51),(39,53),(39,57),(39,94),(39,107),(39,129),(40,52),(40,54),(40,58),(40,95),(40,107),(40,130),(41,57),(41,68),(41,70),(41,98),(41,100),(41,124),(42,58),(42,69),(42,71),(42,99),(42,101),(42,124),(43,59),(43,63),(43,68),(43,72),(43,94),(43,140),(44,60),(44,64),(44,69),(44,73),(44,95),(44,140),(45,61),(45,65),(45,71),(45,74),(45,96),(45,139),(46,62),(46,66),(46,70),(46,75),(46,97),(46,139),(47,53),(47,54),(47,67),(47,76),(47,127),(47,128),(48,55),(48,56),(48,67),(48,77),(48,129),(48,130),(49,108),(49,131),(49,138),(49,140),(50,109),(50,132),(50,138),(50,139),(51,122),(51,133),(51,143),(52,123),(52,133),(52,144),(53,116),(53,134),(53,143),(54,116),(54,135),(54,144),(55,117),(55,136),(55,144),(56,117),(56,137),(56,143),(57,133),(57,134),(57,136),(58,133),(58,135),(58,137),(59,118),(59,122),(59,146),(60,119),(60,123),(60,146),(61,120),(61,122),(61,145),(62,121),(62,123),(62,145),(63,118),(63,134),(63,141),(64,119),(64,135),(64,141),(65,120),(65,137),(65,142),(66,121),(66,136),(66,142),(67,87),(67,143),(67,144),(68,88),(68,134),(68,146),(69,89),(69,135),(69,146),(70,88),(70,136),(70,145),(71,89),(71,137),(71,145),(72,88),(72,118),(72,148),(73,89),(73,119),(73,148),(74,89),(74,120),(74,147),(75,88),(75,121),(75,147),(76,87),(76,116),(76,147),(77,87),(77,117),(77,148),(78,87),(78,141),(78,142),(79,94),(79,96),(79,127),(79,130),(79,138),(80,95),(80,97),(80,128),(80,129),(80,138),(81,107),(81,110),(81,124),(81,132),(81,140),(82,106),(82,111),(82,124),(82,131),(82,139),(83,92),(83,98),(83,102),(83,113),(83,127),(83,139),(84,93),(84,99),(84,103),(84,112),(84,128),(84,139),(85,90),(85,100),(85,104),(85,114),(85,129),(85,140),(86,91),(86,101),(86,105),(86,115),(86,130),(86,140),(87,149),(88,149),(89,149),(90,125),(90,141),(90,143),(91,126),(91,141),(91,144),(92,125),(92,142),(92,144),(93,126),(93,142),(93,143),(94,122),(94,134),(94,148),(95,123),(95,135),(95,148),(96,122),(96,137),(96,147),(97,123),(97,136),(97,147),(98,125),(98,134),(98,145),(99,126),(99,135),(99,145),(100,125),(100,136),(100,146),(101,126),(101,137),(101,146),(102,119),(102,125),(102,147),(103,118),(103,126),(103,147),(104,120),(104,125),(104,148),(105,121),(105,126),(105,148),(106,117),(106,133),(106,147),(107,116),(107,133),(107,148),(108,141),(108,147),(109,142),(109,148),(110,116),(110,141),(110,145),(111,117),(111,142),(111,146),(112,118),(112,143),(112,145),(113,119),(113,144),(113,145),(114,120),(114,143),(114,146),(115,121),(115,144),(115,146),(116,149),(117,149),(118,149),(119,149),(120,149),(121,149),(122,149),(123,149),(124,133),(124,145),(124,146),(125,149),(126,149),(127,134),(127,144),(127,147),(128,135),(128,143),(128,147),(129,136),(129,143),(129,148),(130,137),(130,144),(130,148),(131,146),(131,147),(132,145),(132,148),(133,149),(134,149),(135,149),(136,149),(137,149),(138,147),(138,148),(139,142),(139,145),(139,147),(140,141),(140,146),(140,148),(141,149),(142,149),(143,149),(144,149),(145,149),(146,149),(147,149),(148,149)],150)
=> ?
=> ? = 0 + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,22),(1,27),(1,28),(1,32),(1,35),(1,36),(1,37),(1,40),(1,41),(1,90),(2,21),(2,25),(2,26),(2,31),(2,33),(2,34),(2,37),(2,38),(2,39),(2,89),(3,16),(3,26),(3,30),(3,41),(3,43),(3,45),(3,49),(3,86),(3,92),(4,15),(4,25),(4,29),(4,40),(4,42),(4,44),(4,48),(4,85),(4,92),(5,17),(5,27),(5,29),(5,39),(5,43),(5,46),(5,50),(5,88),(5,91),(6,18),(6,28),(6,30),(6,38),(6,42),(6,47),(6,51),(6,87),(6,91),(7,13),(7,23),(7,24),(7,44),(7,45),(7,46),(7,47),(7,89),(7,90),(8,13),(8,19),(8,20),(8,21),(8,22),(8,59),(8,91),(8,92),(9,14),(9,17),(9,18),(9,19),(9,31),(9,85),(9,86),(9,90),(10,14),(10,15),(10,16),(10,20),(10,32),(10,87),(10,88),(10,89),(11,24),(11,33),(11,35),(11,48),(11,50),(11,59),(11,86),(11,87),(12,23),(12,34),(12,36),(12,49),(12,51),(12,59),(12,85),(12,88),(13,97),(13,98),(13,99),(13,100),(13,103),(14,52),(14,127),(14,128),(14,138),(15,77),(15,96),(15,106),(15,112),(15,127),(16,78),(16,96),(16,107),(16,113),(16,128),(17,75),(17,95),(17,108),(17,111),(17,127),(18,76),(18,95),(18,109),(18,110),(18,128),(19,52),(19,69),(19,95),(19,100),(19,139),(20,52),(20,70),(20,96),(20,99),(20,140),(21,68),(21,69),(21,99),(21,101),(21,104),(21,114),(22,68),(22,70),(22,100),(22,102),(22,105),(22,115),(23,65),(23,67),(23,103),(23,134),(23,136),(24,64),(24,66),(24,103),(24,135),(24,137),(25,55),(25,71),(25,104),(25,106),(25,116),(25,132),(26,56),(26,72),(26,104),(26,107),(26,117),(26,133),(27,58),(27,73),(27,105),(27,108),(27,119),(27,132),(28,57),(28,74),(28,105),(28,109),(28,118),(28,133),(29,60),(29,62),(29,127),(29,129),(29,132),(30,61),(30,63),(30,128),(30,129),(30,133),(31,69),(31,75),(31,76),(31,116),(31,117),(31,138),(32,70),(32,77),(32,78),(32,118),(32,119),(32,138),(33,71),(33,80),(33,84),(33,114),(33,117),(33,135),(34,72),(34,79),(34,83),(34,114),(34,116),(34,134),(35,73),(35,81),(35,84),(35,115),(35,118),(35,137),(36,74),(36,82),(36,83),(36,115),(36,119),(36,136),(37,68),(37,83),(37,84),(37,132),(37,133),(37,138),(38,55),(38,76),(38,79),(38,101),(38,133),(38,135),(39,56),(39,75),(39,80),(39,101),(39,132),(39,134),(40,57),(40,77),(40,81),(40,102),(40,132),(40,136),(41,58),(41,78),(41,82),(41,102),(41,133),(41,137),(42,53),(42,55),(42,57),(42,110),(42,112),(42,129),(43,54),(43,56),(43,58),(43,111),(43,113),(43,129),(44,53),(44,62),(44,66),(44,97),(44,106),(44,136),(45,54),(45,63),(45,67),(45,97),(45,107),(45,137),(46,54),(46,62),(46,64),(46,98),(46,108),(46,134),(47,53),(47,63),(47,65),(47,98),(47,109),(47,135),(48,60),(48,66),(48,71),(48,81),(48,112),(48,139),(49,61),(49,67),(49,72),(49,82),(49,113),(49,139),(50,60),(50,64),(50,73),(50,80),(50,111),(50,140),(51,61),(51,65),(51,74),(51,79),(51,110),(51,140),(52,144),(52,156),(53,143),(53,145),(53,147),(54,143),(54,146),(54,148),(55,121),(55,145),(55,151),(56,122),(56,146),(56,151),(57,123),(57,147),(57,151),(58,124),(58,148),(58,151),(59,103),(59,114),(59,115),(59,139),(59,140),(60,93),(60,141),(60,156),(61,94),(61,142),(61,156),(62,93),(62,143),(62,154),(63,94),(63,143),(63,155),(64,93),(64,148),(64,152),(65,94),(65,147),(65,152),(66,93),(66,145),(66,153),(67,94),(67,146),(67,153),(68,120),(68,144),(68,151),(69,125),(69,144),(69,149),(70,126),(70,144),(70,150),(71,141),(71,145),(71,149),(72,142),(72,146),(72,149),(73,141),(73,148),(73,150),(74,142),(74,147),(74,150),(75,122),(75,125),(75,154),(76,121),(76,125),(76,155),(77,123),(77,126),(77,154),(78,124),(78,126),(78,155),(79,121),(79,142),(79,152),(80,122),(80,141),(80,152),(81,123),(81,141),(81,153),(82,124),(82,142),(82,153),(83,120),(83,142),(83,154),(84,120),(84,141),(84,155),(85,110),(85,116),(85,127),(85,136),(85,139),(86,111),(86,117),(86,128),(86,137),(86,139),(87,112),(87,118),(87,128),(87,135),(87,140),(88,113),(88,119),(88,127),(88,134),(88,140),(89,99),(89,106),(89,107),(89,134),(89,135),(89,138),(90,100),(90,108),(90,109),(90,136),(90,137),(90,138),(91,95),(91,98),(91,101),(91,105),(91,129),(91,140),(92,96),(92,97),(92,102),(92,104),(92,129),(92,139),(93,157),(94,157),(95,125),(95,131),(95,156),(96,126),(96,130),(96,156),(97,130),(97,143),(97,153),(98,131),(98,143),(98,152),(99,130),(99,144),(99,152),(100,131),(100,144),(100,153),(101,125),(101,151),(101,152),(102,126),(102,151),(102,153),(103,152),(103,153),(104,130),(104,149),(104,151),(105,131),(105,150),(105,151),(106,130),(106,145),(106,154),(107,130),(107,146),(107,155),(108,131),(108,148),(108,154),(109,131),(109,147),(109,155),(110,121),(110,147),(110,156),(111,122),(111,148),(111,156),(112,123),(112,145),(112,156),(113,124),(113,146),(113,156),(114,120),(114,149),(114,152),(115,120),(115,150),(115,153),(116,121),(116,149),(116,154),(117,122),(117,149),(117,155),(118,123),(118,150),(118,155),(119,124),(119,150),(119,154),(120,157),(121,157),(122,157),(123,157),(124,157),(125,157),(126,157),(127,154),(127,156),(128,155),(128,156),(129,143),(129,151),(129,156),(130,157),(131,157),(132,141),(132,151),(132,154),(133,142),(133,151),(133,155),(134,146),(134,152),(134,154),(135,145),(135,152),(135,155),(136,147),(136,153),(136,154),(137,148),(137,153),(137,155),(138,144),(138,154),(138,155),(139,149),(139,153),(139,156),(140,150),(140,152),(140,156),(141,157),(142,157),(143,157),(144,157),(145,157),(146,157),(147,157),(148,157),(149,157),(150,157),(151,157),(152,157),(153,157),(154,157),(155,157),(156,157)],158)
=> ?
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,20),(1,21),(1,32),(1,35),(1,36),(1,41),(1,42),(1,43),(2,15),(2,18),(2,19),(2,31),(2,33),(2,34),(2,39),(2,40),(2,43),(3,23),(3,25),(3,28),(3,38),(3,40),(3,42),(3,71),(3,75),(4,22),(4,24),(4,27),(4,37),(4,39),(4,41),(4,70),(4,75),(5,17),(5,22),(5,23),(5,26),(5,31),(5,32),(5,72),(5,73),(6,13),(6,24),(6,29),(6,33),(6,35),(6,38),(6,72),(6,74),(7,12),(7,25),(7,30),(7,34),(7,36),(7,37),(7,73),(7,74),(8,12),(8,13),(8,14),(8,17),(8,43),(8,70),(8,71),(9,14),(9,15),(9,16),(9,26),(9,44),(9,74),(9,75),(10,18),(10,20),(10,27),(10,30),(10,44),(10,71),(10,72),(11,19),(11,21),(11,28),(11,29),(11,44),(11,70),(11,73),(12,80),(12,88),(12,94),(12,108),(13,80),(13,87),(13,95),(13,109),(14,45),(14,80),(14,83),(14,117),(15,62),(15,81),(15,83),(15,84),(15,92),(16,63),(16,82),(16,83),(16,85),(16,93),(17,45),(17,91),(17,108),(17,109),(18,58),(18,65),(18,84),(18,96),(18,111),(19,59),(19,64),(19,84),(19,97),(19,110),(20,60),(20,67),(20,85),(20,99),(20,111),(21,61),(21,66),(21,85),(21,98),(21,110),(22,46),(22,48),(22,86),(22,89),(22,108),(23,47),(23,49),(23,86),(23,90),(23,109),(24,50),(24,52),(24,87),(24,89),(24,107),(25,51),(25,53),(25,88),(25,90),(25,107),(26,45),(26,62),(26,63),(26,86),(26,118),(27,58),(27,60),(27,68),(27,89),(27,117),(28,59),(28,61),(28,69),(28,90),(28,117),(29,64),(29,66),(29,69),(29,87),(29,118),(30,65),(30,67),(30,68),(30,88),(30,118),(31,46),(31,47),(31,62),(31,91),(31,96),(31,97),(32,48),(32,49),(32,63),(32,91),(32,98),(32,99),(33,50),(33,55),(33,64),(33,92),(33,95),(33,96),(34,51),(34,54),(34,65),(34,92),(34,94),(34,97),(35,52),(35,57),(35,66),(35,93),(35,95),(35,99),(36,53),(36,56),(36,67),(36,93),(36,94),(36,98),(37,54),(37,56),(37,68),(37,107),(37,108),(38,55),(38,57),(38,69),(38,107),(38,109),(39,46),(39,50),(39,54),(39,58),(39,81),(39,110),(40,47),(40,51),(40,55),(40,59),(40,81),(40,111),(41,48),(41,52),(41,56),(41,60),(41,82),(41,110),(42,49),(42,53),(42,57),(42,61),(42,82),(42,111),(43,83),(43,91),(43,94),(43,95),(43,110),(43,111),(44,84),(44,85),(44,117),(44,118),(45,106),(45,124),(46,100),(46,104),(46,121),(47,101),(47,104),(47,122),(48,102),(48,105),(48,121),(49,103),(49,105),(49,122),(50,100),(50,113),(50,115),(51,101),(51,114),(51,115),(52,102),(52,113),(52,116),(53,103),(53,114),(53,116),(54,76),(54,115),(54,121),(55,77),(55,115),(55,122),(56,78),(56,116),(56,121),(57,79),(57,116),(57,122),(58,76),(58,100),(58,123),(59,77),(59,101),(59,123),(60,78),(60,102),(60,123),(61,79),(61,103),(61,123),(62,104),(62,106),(62,119),(63,105),(63,106),(63,120),(64,77),(64,113),(64,119),(65,76),(65,114),(65,119),(66,79),(66,113),(66,120),(67,78),(67,114),(67,120),(68,76),(68,78),(68,124),(69,77),(69,79),(69,124),(70,87),(70,108),(70,110),(70,117),(71,88),(71,109),(71,111),(71,117),(72,89),(72,96),(72,99),(72,109),(72,118),(73,90),(73,97),(73,98),(73,108),(73,118),(74,80),(74,92),(74,93),(74,107),(74,118),(75,81),(75,82),(75,86),(75,107),(75,117),(76,125),(77,125),(78,125),(79,125),(80,112),(80,124),(81,104),(81,115),(81,123),(82,105),(82,116),(82,123),(83,106),(83,112),(83,123),(84,119),(84,123),(85,120),(85,123),(86,104),(86,105),(86,124),(87,113),(87,124),(88,114),(88,124),(89,100),(89,102),(89,124),(90,101),(90,103),(90,124),(91,106),(91,121),(91,122),(92,112),(92,115),(92,119),(93,112),(93,116),(93,120),(94,112),(94,114),(94,121),(95,112),(95,113),(95,122),(96,100),(96,119),(96,122),(97,101),(97,119),(97,121),(98,103),(98,120),(98,121),(99,102),(99,120),(99,122),(100,125),(101,125),(102,125),(103,125),(104,125),(105,125),(106,125),(107,115),(107,116),(107,124),(108,121),(108,124),(109,122),(109,124),(110,113),(110,121),(110,123),(111,114),(111,122),(111,123),(112,125),(113,125),(114,125),(115,125),(116,125),(117,123),(117,124),(118,119),(118,120),(118,124),(119,125),(120,125),(121,125),(122,125),(123,125),(124,125)],126)
=> ?
=> ? = 0 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,21),(1,25),(1,26),(1,27),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(2,21),(2,22),(2,23),(2,24),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(3,14),(3,19),(3,20),(3,30),(3,36),(3,42),(3,78),(3,79),(4,13),(4,16),(4,18),(4,29),(4,35),(4,41),(4,77),(4,79),(5,12),(5,15),(5,17),(5,28),(5,34),(5,40),(5,77),(5,78),(6,12),(6,18),(6,19),(6,31),(6,37),(6,43),(6,80),(6,82),(7,13),(7,17),(7,20),(7,32),(7,38),(7,44),(7,81),(7,82),(8,14),(8,15),(8,16),(8,33),(8,39),(8,45),(8,80),(8,81),(9,22),(9,25),(9,28),(9,31),(9,46),(9,79),(9,81),(10,23),(10,26),(10,29),(10,32),(10,46),(10,78),(10,80),(11,24),(11,27),(11,30),(11,33),(11,46),(11,77),(11,82),(12,50),(12,116),(12,117),(12,119),(13,51),(13,116),(13,118),(13,120),(14,52),(14,117),(14,118),(14,121),(15,65),(15,71),(15,85),(15,88),(15,117),(16,66),(16,72),(16,86),(16,88),(16,118),(17,67),(17,73),(17,85),(17,89),(17,116),(18,68),(18,74),(18,86),(18,90),(18,116),(19,69),(19,75),(19,87),(19,90),(19,117),(20,70),(20,76),(20,87),(20,89),(20,118),(21,47),(21,48),(21,49),(21,119),(21,120),(21,121),(22,47),(22,53),(22,56),(22,83),(22,93),(22,95),(23,48),(23,54),(23,57),(23,83),(23,92),(23,94),(24,49),(24,55),(24,58),(24,83),(24,91),(24,96),(25,47),(25,59),(25,62),(25,84),(25,99),(25,101),(26,48),(26,60),(26,63),(26,84),(26,98),(26,100),(27,49),(27,61),(27,64),(27,84),(27,97),(27,102),(28,50),(28,53),(28,59),(28,85),(28,126),(29,51),(29,54),(29,60),(29,86),(29,126),(30,52),(30,55),(30,61),(30,87),(30,126),(31,50),(31,56),(31,62),(31,90),(31,125),(32,51),(32,57),(32,63),(32,89),(32,125),(33,52),(33,58),(33,64),(33,88),(33,125),(34,53),(34,65),(34,67),(34,91),(34,92),(34,119),(35,54),(35,66),(35,68),(35,91),(35,93),(35,120),(36,55),(36,69),(36,70),(36,92),(36,93),(36,121),(37,56),(37,68),(37,69),(37,94),(37,96),(37,119),(38,57),(38,67),(38,70),(38,95),(38,96),(38,120),(39,58),(39,65),(39,66),(39,94),(39,95),(39,121),(40,59),(40,71),(40,73),(40,97),(40,98),(40,119),(41,60),(41,72),(41,74),(41,97),(41,99),(41,120),(42,61),(42,75),(42,76),(42,98),(42,99),(42,121),(43,62),(43,74),(43,75),(43,100),(43,102),(43,119),(44,63),(44,73),(44,76),(44,101),(44,102),(44,120),(45,64),(45,71),(45,72),(45,100),(45,101),(45,121),(46,83),(46,84),(46,125),(46,126),(47,103),(47,122),(47,132),(48,103),(48,123),(48,131),(49,103),(49,124),(49,133),(50,122),(50,134),(51,123),(51,134),(52,124),(52,134),(53,104),(53,122),(53,127),(54,105),(54,123),(54,127),(55,106),(55,124),(55,127),(56,109),(56,122),(56,128),(57,108),(57,123),(57,128),(58,107),(58,124),(58,128),(59,110),(59,122),(59,129),(60,111),(60,123),(60,129),(61,112),(61,124),(61,129),(62,115),(62,122),(62,130),(63,114),(63,123),(63,130),(64,113),(64,124),(64,130),(65,104),(65,107),(65,131),(66,105),(66,107),(66,132),(67,104),(67,108),(67,133),(68,105),(68,109),(68,133),(69,106),(69,109),(69,131),(70,106),(70,108),(70,132),(71,110),(71,113),(71,131),(72,111),(72,113),(72,132),(73,110),(73,114),(73,133),(74,111),(74,115),(74,133),(75,112),(75,115),(75,131),(76,112),(76,114),(76,132),(77,88),(77,91),(77,97),(77,116),(77,126),(78,89),(78,92),(78,98),(78,117),(78,126),(79,90),(79,93),(79,99),(79,118),(79,126),(80,86),(80,94),(80,100),(80,117),(80,125),(81,85),(81,95),(81,101),(81,118),(81,125),(82,87),(82,96),(82,102),(82,116),(82,125),(83,103),(83,127),(83,128),(84,103),(84,129),(84,130),(85,104),(85,110),(85,134),(86,105),(86,111),(86,134),(87,106),(87,112),(87,134),(88,107),(88,113),(88,134),(89,108),(89,114),(89,134),(90,109),(90,115),(90,134),(91,107),(91,127),(91,133),(92,108),(92,127),(92,131),(93,109),(93,127),(93,132),(94,105),(94,128),(94,131),(95,104),(95,128),(95,132),(96,106),(96,128),(96,133),(97,113),(97,129),(97,133),(98,114),(98,129),(98,131),(99,115),(99,129),(99,132),(100,111),(100,130),(100,131),(101,110),(101,130),(101,132),(102,112),(102,130),(102,133),(103,135),(104,135),(105,135),(106,135),(107,135),(108,135),(109,135),(110,135),(111,135),(112,135),(113,135),(114,135),(115,135),(116,133),(116,134),(117,131),(117,134),(118,132),(118,134),(119,122),(119,131),(119,133),(120,123),(120,132),(120,133),(121,124),(121,131),(121,132),(122,135),(123,135),(124,135),(125,128),(125,130),(125,134),(126,127),(126,129),(126,134),(127,135),(128,135),(129,135),(130,135),(131,135),(132,135),(133,135),(134,135)],136)
=> ?
=> ? = 0 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ?
=> ? = 0 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ?
=> ? = 0 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,12),(1,13),(1,64),(1,65),(1,66),(1,67),(2,15),(2,24),(2,28),(2,32),(2,36),(2,42),(2,65),(2,71),(3,14),(3,23),(3,27),(3,31),(3,35),(3,42),(3,64),(3,70),(4,17),(4,26),(4,30),(4,33),(4,37),(4,41),(4,64),(4,71),(5,16),(5,25),(5,29),(5,34),(5,38),(5,41),(5,65),(5,70),(6,19),(6,27),(6,28),(6,29),(6,30),(6,40),(6,67),(6,69),(7,18),(7,23),(7,24),(7,25),(7,26),(7,40),(7,66),(7,68),(8,21),(8,35),(8,36),(8,37),(8,38),(8,39),(8,66),(8,69),(9,20),(9,31),(9,32),(9,33),(9,34),(9,39),(9,67),(9,68),(10,13),(10,18),(10,19),(10,20),(10,21),(10,22),(10,70),(10,71),(11,12),(11,14),(11,15),(11,16),(11,17),(11,22),(11,68),(11,69),(12,43),(12,76),(12,77),(12,116),(13,43),(13,78),(13,79),(13,117),(14,60),(14,72),(14,76),(14,80),(14,84),(15,60),(15,73),(15,77),(15,81),(15,85),(16,61),(16,72),(16,77),(16,82),(16,86),(17,61),(17,73),(17,76),(17,83),(17,87),(18,62),(18,74),(18,78),(18,88),(18,89),(19,62),(19,75),(19,79),(19,90),(19,91),(20,63),(20,74),(20,79),(20,92),(20,93),(21,63),(21,75),(21,78),(21,94),(21,95),(22,43),(22,72),(22,73),(22,74),(22,75),(23,44),(23,52),(23,80),(23,88),(23,108),(24,45),(24,52),(24,81),(24,89),(24,109),(25,47),(25,53),(25,82),(25,88),(25,109),(26,46),(26,53),(26,83),(26,89),(26,108),(27,44),(27,54),(27,84),(27,90),(27,110),(28,45),(28,54),(28,85),(28,91),(28,111),(29,47),(29,55),(29,86),(29,90),(29,111),(30,46),(30,55),(30,87),(30,91),(30,110),(31,48),(31,58),(31,80),(31,92),(31,110),(32,49),(32,58),(32,81),(32,93),(32,111),(33,50),(33,59),(33,83),(33,93),(33,110),(34,51),(34,59),(34,82),(34,92),(34,111),(35,48),(35,56),(35,84),(35,94),(35,108),(36,49),(36,56),(36,85),(36,95),(36,109),(37,50),(37,57),(37,87),(37,95),(37,108),(38,51),(38,57),(38,86),(38,94),(38,109),(39,48),(39,49),(39,50),(39,51),(39,63),(39,116),(40,44),(40,45),(40,46),(40,47),(40,62),(40,116),(41,53),(41,55),(41,57),(41,59),(41,61),(41,117),(42,52),(42,54),(42,56),(42,58),(42,60),(42,117),(43,118),(43,119),(44,96),(44,104),(44,120),(45,96),(45,105),(45,121),(46,97),(46,105),(46,120),(47,97),(47,104),(47,121),(48,98),(48,106),(48,120),(49,98),(49,107),(49,121),(50,99),(50,107),(50,120),(51,99),(51,106),(51,121),(52,96),(52,100),(52,122),(53,97),(53,101),(53,122),(54,96),(54,102),(54,123),(55,97),(55,103),(55,123),(56,98),(56,102),(56,122),(57,99),(57,103),(57,122),(58,98),(58,100),(58,123),(59,99),(59,101),(59,123),(60,100),(60,102),(60,118),(61,101),(61,103),(61,118),(62,104),(62,105),(62,119),(63,106),(63,107),(63,119),(64,76),(64,108),(64,110),(64,117),(65,77),(65,109),(65,111),(65,117),(66,78),(66,108),(66,109),(66,116),(67,79),(67,110),(67,111),(67,116),(68,74),(68,80),(68,81),(68,82),(68,83),(68,116),(69,75),(69,84),(69,85),(69,86),(69,87),(69,116),(70,72),(70,88),(70,90),(70,92),(70,94),(70,117),(71,73),(71,89),(71,91),(71,93),(71,95),(71,117),(72,112),(72,114),(72,118),(73,113),(73,115),(73,118),(74,112),(74,113),(74,119),(75,114),(75,115),(75,119),(76,118),(76,120),(77,118),(77,121),(78,119),(78,122),(79,119),(79,123),(80,100),(80,112),(80,120),(81,100),(81,113),(81,121),(82,101),(82,112),(82,121),(83,101),(83,113),(83,120),(84,102),(84,114),(84,120),(85,102),(85,115),(85,121),(86,103),(86,114),(86,121),(87,103),(87,115),(87,120),(88,104),(88,112),(88,122),(89,105),(89,113),(89,122),(90,104),(90,114),(90,123),(91,105),(91,115),(91,123),(92,106),(92,112),(92,123),(93,107),(93,113),(93,123),(94,106),(94,114),(94,122),(95,107),(95,115),(95,122),(96,124),(97,124),(98,124),(99,124),(100,124),(101,124),(102,124),(103,124),(104,124),(105,124),(106,124),(107,124),(108,120),(108,122),(109,121),(109,122),(110,120),(110,123),(111,121),(111,123),(112,124),(113,124),(114,124),(115,124),(116,119),(116,120),(116,121),(117,118),(117,122),(117,123),(118,124),(119,124),(120,124),(121,124),(122,124),(123,124)],125)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,25),(1,26),(1,27),(1,28),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,14),(2,19),(2,20),(2,32),(2,37),(2,38),(2,41),(2,42),(2,89),(3,13),(3,17),(3,18),(3,31),(3,35),(3,36),(3,39),(3,40),(3,89),(4,16),(4,22),(4,24),(4,34),(4,36),(4,38),(4,44),(4,46),(4,88),(5,15),(5,21),(5,23),(5,33),(5,35),(5,37),(5,43),(5,45),(5,88),(6,17),(6,21),(6,27),(6,41),(6,44),(6,47),(6,69),(6,71),(7,18),(7,22),(7,28),(7,42),(7,43),(7,48),(7,69),(7,72),(8,19),(8,23),(8,29),(8,39),(8,46),(8,48),(8,70),(8,71),(9,20),(9,24),(9,30),(9,40),(9,45),(9,47),(9,70),(9,72),(10,12),(10,15),(10,16),(10,26),(10,71),(10,72),(10,89),(11,12),(11,13),(11,14),(11,25),(11,69),(11,70),(11,88),(12,87),(12,106),(12,107),(12,133),(13,81),(13,94),(13,98),(13,102),(13,106),(14,82),(14,95),(14,99),(14,103),(14,106),(15,83),(15,96),(15,100),(15,104),(15,107),(16,84),(16,97),(16,101),(16,105),(16,107),(17,54),(17,61),(17,98),(17,122),(17,125),(18,53),(18,62),(18,98),(18,123),(18,126),(19,56),(19,64),(19,99),(19,122),(19,127),(20,55),(20,63),(20,99),(20,123),(20,128),(21,59),(21,67),(21,100),(21,120),(21,125),(22,60),(22,68),(22,101),(22,120),(22,126),(23,57),(23,65),(23,100),(23,121),(23,127),(24,58),(24,66),(24,101),(24,121),(24,128),(25,81),(25,82),(25,87),(25,108),(25,110),(25,111),(26,83),(26,84),(26,87),(26,109),(26,112),(26,113),(27,75),(27,78),(27,85),(27,111),(27,113),(27,125),(28,76),(28,77),(28,86),(28,111),(28,112),(28,126),(29,73),(29,80),(29,86),(29,110),(29,113),(29,127),(30,74),(30,79),(30,85),(30,110),(30,112),(30,128),(31,73),(31,74),(31,81),(31,109),(31,125),(31,126),(32,75),(32,76),(32,82),(32,109),(32,127),(32,128),(33,77),(33,79),(33,83),(33,108),(33,125),(33,127),(34,78),(34,80),(34,84),(34,108),(34,126),(34,128),(35,49),(35,53),(35,57),(35,94),(35,96),(35,125),(36,50),(36,54),(36,58),(36,94),(36,97),(36,126),(37,51),(37,55),(37,59),(37,95),(37,96),(37,127),(38,52),(38,56),(38,60),(38,95),(38,97),(38,128),(39,50),(39,57),(39,62),(39,73),(39,102),(39,122),(40,49),(40,58),(40,61),(40,74),(40,102),(40,123),(41,52),(41,59),(41,63),(41,75),(41,103),(41,122),(42,51),(42,60),(42,64),(42,76),(42,103),(42,123),(43,51),(43,53),(43,65),(43,77),(43,104),(43,120),(44,52),(44,54),(44,66),(44,78),(44,105),(44,120),(45,49),(45,55),(45,67),(45,79),(45,104),(45,121),(46,50),(46,56),(46,68),(46,80),(46,105),(46,121),(47,61),(47,63),(47,66),(47,67),(47,85),(47,133),(48,62),(48,64),(48,65),(48,68),(48,86),(48,133),(49,129),(49,134),(49,136),(50,130),(50,134),(50,137),(51,131),(51,135),(51,136),(52,132),(52,135),(52,137),(53,90),(53,136),(53,139),(54,91),(54,137),(54,139),(55,92),(55,136),(55,140),(56,93),(56,137),(56,140),(57,90),(57,134),(57,141),(58,91),(58,134),(58,142),(59,92),(59,135),(59,141),(60,93),(60,135),(60,142),(61,91),(61,129),(61,143),(62,90),(62,130),(62,143),(63,92),(63,132),(63,143),(64,93),(64,131),(64,143),(65,90),(65,131),(65,144),(66,91),(66,132),(66,144),(67,92),(67,129),(67,144),(68,93),(68,130),(68,144),(69,98),(69,103),(69,111),(69,120),(69,133),(70,99),(70,102),(70,110),(70,121),(70,133),(71,100),(71,105),(71,113),(71,122),(71,133),(72,101),(72,104),(72,112),(72,123),(72,133),(73,116),(73,130),(73,141),(74,116),(74,129),(74,142),(75,117),(75,132),(75,141),(76,117),(76,131),(76,142),(77,118),(77,131),(77,139),(78,119),(78,132),(78,139),(79,118),(79,129),(79,140),(80,119),(80,130),(80,140),(81,114),(81,116),(81,139),(82,114),(82,117),(82,140),(83,115),(83,118),(83,141),(84,115),(84,119),(84,142),(85,129),(85,132),(85,138),(86,130),(86,131),(86,138),(87,114),(87,115),(87,138),(88,94),(88,95),(88,107),(88,108),(88,120),(88,121),(89,96),(89,97),(89,106),(89,109),(89,122),(89,123),(90,145),(91,145),(92,145),(93,145),(94,124),(94,134),(94,139),(95,124),(95,135),(95,140),(96,124),(96,136),(96,141),(97,124),(97,137),(97,142),(98,139),(98,143),(99,140),(99,143),(100,141),(100,144),(101,142),(101,144),(102,116),(102,134),(102,143),(103,117),(103,135),(103,143),(104,118),(104,136),(104,144),(105,119),(105,137),(105,144),(106,114),(106,124),(106,143),(107,115),(107,124),(107,144),(108,115),(108,139),(108,140),(109,114),(109,141),(109,142),(110,116),(110,138),(110,140),(111,117),(111,138),(111,139),(112,118),(112,138),(112,142),(113,119),(113,138),(113,141),(114,145),(115,145),(116,145),(117,145),(118,145),(119,145),(120,135),(120,139),(120,144),(121,134),(121,140),(121,144),(122,137),(122,141),(122,143),(123,136),(123,142),(123,143),(124,145),(125,129),(125,139),(125,141),(126,130),(126,139),(126,142),(127,131),(127,140),(127,141),(128,132),(128,140),(128,142),(129,145),(130,145),(131,145),(132,145),(133,138),(133,143),(133,144),(134,145),(135,145),(136,145),(137,145),(138,145),(139,145),(140,145),(141,145),(142,145),(143,145),(144,145)],146)
=> ?
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,11),(1,12),(1,15),(1,58),(1,60),(1,61),(2,15),(2,24),(2,25),(2,26),(2,31),(2,62),(2,63),(3,17),(3,21),(3,28),(3,33),(3,37),(3,61),(3,63),(4,16),(4,20),(4,27),(4,32),(4,37),(4,60),(4,62),(5,18),(5,22),(5,30),(5,34),(5,36),(5,60),(5,63),(6,19),(6,23),(6,29),(6,35),(6,36),(6,61),(6,62),(7,31),(7,32),(7,33),(7,34),(7,35),(7,58),(7,59),(8,13),(8,14),(8,26),(8,27),(8,28),(8,29),(8,30),(8,58),(9,12),(9,14),(9,20),(9,21),(9,22),(9,23),(9,25),(9,59),(10,11),(10,13),(10,16),(10,17),(10,18),(10,19),(10,24),(10,59),(11,40),(11,68),(11,69),(11,94),(12,41),(12,70),(12,71),(12,94),(13,44),(13,45),(13,46),(13,47),(13,56),(13,94),(14,48),(14,49),(14,50),(14,51),(14,57),(14,94),(15,40),(15,41),(15,65),(15,97),(16,44),(16,52),(16,68),(16,72),(16,76),(17,45),(17,52),(17,69),(17,73),(17,77),(18,47),(18,53),(18,68),(18,74),(18,77),(19,46),(19,53),(19,69),(19,75),(19,76),(20,48),(20,54),(20,70),(20,72),(20,78),(21,49),(21,54),(21,71),(21,73),(21,79),(22,50),(22,55),(22,70),(22,74),(22,79),(23,51),(23,55),(23,71),(23,75),(23,78),(24,40),(24,56),(24,64),(24,76),(24,77),(25,41),(25,57),(25,64),(25,78),(25,79),(26,56),(26,57),(26,65),(26,80),(26,81),(27,38),(27,44),(27,48),(27,80),(27,92),(28,38),(28,45),(28,49),(28,81),(28,93),(29,39),(29,46),(29,51),(29,80),(29,93),(30,39),(30,47),(30,50),(30,81),(30,92),(31,64),(31,65),(31,66),(31,67),(32,42),(32,66),(32,72),(32,92),(33,42),(33,67),(33,73),(33,93),(34,43),(34,67),(34,74),(34,92),(35,43),(35,66),(35,75),(35,93),(36,39),(36,43),(36,53),(36,55),(36,97),(37,38),(37,42),(37,52),(37,54),(37,97),(38,82),(38,84),(38,103),(39,83),(39,85),(39,103),(40,98),(40,99),(41,98),(41,100),(42,86),(42,103),(43,87),(43,103),(44,82),(44,88),(44,101),(45,82),(45,89),(45,102),(46,83),(46,88),(46,102),(47,83),(47,89),(47,101),(48,84),(48,90),(48,101),(49,84),(49,91),(49,102),(50,85),(50,91),(50,101),(51,85),(51,90),(51,102),(52,82),(52,86),(52,99),(53,83),(53,87),(53,99),(54,84),(54,86),(54,100),(55,85),(55,87),(55,100),(56,88),(56,89),(56,98),(57,90),(57,91),(57,98),(58,65),(58,92),(58,93),(58,94),(59,64),(59,72),(59,73),(59,74),(59,75),(59,94),(60,68),(60,70),(60,92),(60,97),(61,69),(61,71),(61,93),(61,97),(62,66),(62,76),(62,78),(62,80),(62,97),(63,67),(63,77),(63,79),(63,81),(63,97),(64,95),(64,96),(64,98),(65,98),(65,103),(66,95),(66,103),(67,96),(67,103),(68,99),(68,101),(69,99),(69,102),(70,100),(70,101),(71,100),(71,102),(72,86),(72,95),(72,101),(73,86),(73,96),(73,102),(74,87),(74,96),(74,101),(75,87),(75,95),(75,102),(76,88),(76,95),(76,99),(77,89),(77,96),(77,99),(78,90),(78,95),(78,100),(79,91),(79,96),(79,100),(80,88),(80,90),(80,103),(81,89),(81,91),(81,103),(82,104),(83,104),(84,104),(85,104),(86,104),(87,104),(88,104),(89,104),(90,104),(91,104),(92,101),(92,103),(93,102),(93,103),(94,98),(94,101),(94,102),(95,104),(96,104),(97,99),(97,100),(97,103),(98,104),(99,104),(100,104),(101,104),(102,104),(103,104)],105)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,14),(1,18),(1,19),(1,28),(1,31),(1,32),(1,34),(1,37),(1,38),(2,13),(2,16),(2,17),(2,28),(2,29),(2,30),(2,33),(2,35),(2,36),(3,12),(3,21),(3,23),(3,25),(3,27),(3,30),(3,32),(3,50),(4,11),(4,20),(4,22),(4,24),(4,26),(4,29),(4,31),(4,50),(5,11),(5,16),(5,18),(5,27),(5,39),(5,73),(5,74),(6,12),(6,17),(6,19),(6,26),(6,40),(6,73),(6,75),(7,15),(7,20),(7,21),(7,33),(7,34),(7,74),(7,75),(8,22),(8,25),(8,35),(8,37),(8,40),(8,72),(8,74),(9,23),(9,24),(9,36),(9,38),(9,39),(9,72),(9,75),(10,13),(10,14),(10,15),(10,50),(10,72),(10,73),(11,41),(11,84),(11,104),(11,105),(12,42),(12,85),(12,104),(12,106),(13,43),(13,63),(13,82),(13,86),(13,90),(14,43),(14,64),(14,83),(14,87),(14,91),(15,63),(15,64),(15,76),(15,107),(16,45),(16,65),(16,86),(16,92),(16,105),(17,44),(17,66),(17,86),(17,93),(17,106),(18,47),(18,67),(18,87),(18,94),(18,105),(19,46),(19,68),(19,87),(19,95),(19,106),(20,51),(20,53),(20,76),(20,84),(20,88),(21,52),(21,54),(21,76),(21,85),(21,89),(22,48),(22,59),(22,61),(22,84),(22,103),(23,49),(23,60),(23,62),(23,85),(23,103),(24,41),(24,55),(24,57),(24,88),(24,103),(25,42),(25,56),(25,58),(25,89),(25,103),(26,44),(26,46),(26,48),(26,88),(26,104),(27,45),(27,47),(27,49),(27,89),(27,104),(28,43),(28,69),(28,70),(28,71),(28,105),(28,106),(29,44),(29,51),(29,55),(29,59),(29,82),(29,105),(30,45),(30,52),(30,56),(30,60),(30,82),(30,106),(31,46),(31,53),(31,57),(31,61),(31,83),(31,105),(32,47),(32,54),(32,58),(32,62),(32,83),(32,106),(33,51),(33,52),(33,63),(33,71),(33,92),(33,93),(34,53),(34,54),(34,64),(34,71),(34,94),(34,95),(35,56),(35,59),(35,66),(35,70),(35,90),(35,92),(36,55),(36,60),(36,65),(36,69),(36,90),(36,93),(37,58),(37,61),(37,68),(37,70),(37,91),(37,94),(38,57),(38,62),(38,67),(38,69),(38,91),(38,95),(39,41),(39,49),(39,65),(39,67),(39,107),(40,42),(40,48),(40,66),(40,68),(40,107),(41,108),(41,117),(42,109),(42,117),(43,77),(43,96),(43,116),(44,78),(44,97),(44,116),(45,79),(45,98),(45,116),(46,80),(46,99),(46,116),(47,81),(47,100),(47,116),(48,78),(48,80),(48,117),(49,79),(49,81),(49,117),(50,76),(50,82),(50,83),(50,103),(50,104),(51,97),(51,101),(51,114),(52,98),(52,101),(52,115),(53,99),(53,102),(53,114),(54,100),(54,102),(54,115),(55,97),(55,108),(55,110),(56,98),(56,109),(56,110),(57,99),(57,108),(57,111),(58,100),(58,109),(58,111),(59,78),(59,110),(59,114),(60,79),(60,110),(60,115),(61,80),(61,111),(61,114),(62,81),(62,111),(62,115),(63,77),(63,101),(63,112),(64,77),(64,102),(64,113),(65,79),(65,108),(65,112),(66,78),(66,109),(66,112),(67,81),(67,108),(67,113),(68,80),(68,109),(68,113),(69,96),(69,108),(69,115),(70,96),(70,109),(70,114),(71,77),(71,114),(71,115),(72,90),(72,91),(72,103),(72,107),(73,86),(73,87),(73,104),(73,107),(74,84),(74,89),(74,92),(74,94),(74,107),(75,85),(75,88),(75,93),(75,95),(75,107),(76,101),(76,102),(76,117),(77,118),(78,118),(79,118),(80,118),(81,118),(82,101),(82,110),(82,116),(83,102),(83,111),(83,116),(84,114),(84,117),(85,115),(85,117),(86,112),(86,116),(87,113),(87,116),(88,97),(88,99),(88,117),(89,98),(89,100),(89,117),(90,96),(90,110),(90,112),(91,96),(91,111),(91,113),(92,98),(92,112),(92,114),(93,97),(93,112),(93,115),(94,100),(94,113),(94,114),(95,99),(95,113),(95,115),(96,118),(97,118),(98,118),(99,118),(100,118),(101,118),(102,118),(103,110),(103,111),(103,117),(104,116),(104,117),(105,108),(105,114),(105,116),(106,109),(106,115),(106,116),(107,112),(107,113),(107,117),(108,118),(109,118),(110,118),(111,118),(112,118),(113,118),(114,118),(115,118),(116,118),(117,118)],119)
=> ?
=> ? = 1 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ?
=> ? = 0 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,14),(1,18),(1,22),(1,28),(1,30),(1,36),(1,37),(1,66),(2,13),(2,17),(2,21),(2,27),(2,29),(2,34),(2,35),(2,66),(3,12),(3,20),(3,24),(3,26),(3,32),(3,35),(3,37),(3,67),(4,11),(4,19),(4,23),(4,25),(4,31),(4,34),(4,36),(4,67),(5,16),(5,19),(5,20),(5,27),(5,28),(5,39),(5,40),(6,15),(6,17),(6,18),(6,25),(6,26),(6,38),(6,40),(7,29),(7,30),(7,31),(7,32),(7,33),(7,40),(7,41),(8,21),(8,22),(8,23),(8,24),(8,33),(8,38),(8,39),(9,11),(9,12),(9,15),(9,39),(9,41),(9,66),(10,13),(10,14),(10,16),(10,38),(10,41),(10,67),(11,42),(11,74),(11,80),(11,94),(12,43),(12,75),(12,81),(12,94),(13,44),(13,76),(13,78),(13,95),(14,45),(14,77),(14,79),(14,95),(15,42),(15,43),(15,72),(15,98),(16,44),(16,45),(16,73),(16,98),(17,46),(17,47),(17,72),(17,78),(17,82),(18,48),(18,49),(18,72),(18,79),(18,83),(19,50),(19,52),(19,73),(19,80),(19,84),(20,51),(20,53),(20,73),(20,81),(20,85),(21,54),(21,55),(21,64),(21,78),(21,97),(22,56),(22,57),(22,65),(22,79),(22,97),(23,54),(23,56),(23,62),(23,80),(23,96),(24,55),(24,57),(24,63),(24,81),(24,96),(25,42),(25,46),(25,48),(25,84),(25,96),(26,43),(26,47),(26,49),(26,85),(26,96),(27,44),(27,50),(27,51),(27,82),(27,97),(28,45),(28,52),(28,53),(28,83),(28,97),(29,58),(29,59),(29,64),(29,82),(29,95),(30,60),(30,61),(30,65),(30,83),(30,95),(31,58),(31,60),(31,62),(31,84),(31,94),(32,59),(32,61),(32,63),(32,85),(32,94),(33,62),(33,63),(33,64),(33,65),(33,98),(34,46),(34,50),(34,54),(34,58),(34,74),(34,76),(35,47),(35,51),(35,55),(35,59),(35,75),(35,76),(36,48),(36,52),(36,56),(36,60),(36,74),(36,77),(37,49),(37,53),(37,57),(37,61),(37,75),(37,77),(38,78),(38,79),(38,96),(38,98),(39,80),(39,81),(39,97),(39,98),(40,82),(40,83),(40,84),(40,85),(40,98),(41,94),(41,95),(41,98),(42,90),(42,104),(43,91),(43,104),(44,92),(44,105),(45,93),(45,105),(46,86),(46,90),(46,99),(47,87),(47,91),(47,99),(48,88),(48,90),(48,100),(49,89),(49,91),(49,100),(50,86),(50,92),(50,101),(51,87),(51,92),(51,102),(52,88),(52,93),(52,101),(53,89),(53,93),(53,102),(54,68),(54,99),(54,101),(55,69),(55,99),(55,102),(56,70),(56,100),(56,101),(57,71),(57,100),(57,102),(58,68),(58,86),(58,103),(59,69),(59,87),(59,103),(60,70),(60,88),(60,103),(61,71),(61,89),(61,103),(62,68),(62,70),(62,104),(63,69),(63,71),(63,104),(64,68),(64,69),(64,105),(65,70),(65,71),(65,105),(66,72),(66,74),(66,75),(66,95),(66,97),(67,73),(67,76),(67,77),(67,94),(67,96),(68,106),(69,106),(70,106),(71,106),(72,90),(72,91),(72,105),(73,92),(73,93),(73,104),(74,90),(74,101),(74,103),(75,91),(75,102),(75,103),(76,92),(76,99),(76,103),(77,93),(77,100),(77,103),(78,99),(78,105),(79,100),(79,105),(80,101),(80,104),(81,102),(81,104),(82,86),(82,87),(82,105),(83,88),(83,89),(83,105),(84,86),(84,88),(84,104),(85,87),(85,89),(85,104),(86,106),(87,106),(88,106),(89,106),(90,106),(91,106),(92,106),(93,106),(94,103),(94,104),(95,103),(95,105),(96,99),(96,100),(96,104),(97,101),(97,102),(97,105),(98,104),(98,105),(99,106),(100,106),(101,106),(102,106),(103,106),(104,106),(105,106)],107)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,20),(1,21),(1,22),(1,23),(1,36),(1,37),(1,67),(2,12),(2,16),(2,17),(2,18),(2,19),(2,34),(2,35),(2,67),(3,15),(3,28),(3,29),(3,30),(3,31),(3,35),(3,37),(3,66),(4,14),(4,24),(4,25),(4,26),(4,27),(4,34),(4,36),(4,66),(5,17),(5,21),(5,25),(5,29),(5,33),(5,39),(5,41),(6,16),(6,20),(6,24),(6,28),(6,33),(6,38),(6,40),(7,18),(7,23),(7,27),(7,30),(7,32),(7,38),(7,41),(8,19),(8,22),(8,26),(8,31),(8,32),(8,39),(8,40),(9,11),(9,14),(9,15),(9,40),(9,41),(9,67),(10,11),(10,12),(10,13),(10,38),(10,39),(10,66),(11,76),(11,77),(11,95),(12,76),(12,78),(12,82),(12,83),(13,76),(13,79),(13,84),(13,85),(14,77),(14,80),(14,86),(14,87),(15,77),(15,81),(15,88),(15,89),(16,42),(16,46),(16,58),(16,82),(16,93),(17,43),(17,47),(17,58),(17,83),(17,94),(18,44),(18,48),(18,59),(18,82),(18,94),(19,45),(19,49),(19,59),(19,83),(19,93),(20,50),(20,54),(20,60),(20,84),(20,93),(21,51),(21,55),(21,60),(21,85),(21,94),(22,52),(22,56),(22,61),(22,85),(22,93),(23,53),(23,57),(23,61),(23,84),(23,94),(24,42),(24,50),(24,62),(24,86),(24,91),(25,43),(25,51),(25,62),(25,87),(25,92),(26,45),(26,52),(26,63),(26,86),(26,92),(27,44),(27,53),(27,63),(27,87),(27,91),(28,46),(28,54),(28,64),(28,88),(28,91),(29,47),(29,55),(29,64),(29,89),(29,92),(30,48),(30,57),(30,65),(30,89),(30,91),(31,49),(31,56),(31,65),(31,88),(31,92),(32,59),(32,61),(32,63),(32,65),(32,95),(33,58),(33,60),(33,62),(33,64),(33,95),(34,42),(34,43),(34,44),(34,45),(34,78),(34,80),(35,46),(35,47),(35,48),(35,49),(35,78),(35,81),(36,50),(36,51),(36,52),(36,53),(36,79),(36,80),(37,54),(37,55),(37,56),(37,57),(37,79),(37,81),(38,82),(38,84),(38,91),(38,95),(39,83),(39,85),(39,92),(39,95),(40,86),(40,88),(40,93),(40,95),(41,87),(41,89),(41,94),(41,95),(42,68),(42,96),(42,100),(43,68),(43,97),(43,101),(44,69),(44,96),(44,101),(45,69),(45,97),(45,100),(46,70),(46,96),(46,102),(47,70),(47,97),(47,103),(48,71),(48,96),(48,103),(49,71),(49,97),(49,102),(50,72),(50,98),(50,100),(51,72),(51,99),(51,101),(52,73),(52,99),(52,100),(53,73),(53,98),(53,101),(54,74),(54,98),(54,102),(55,74),(55,99),(55,103),(56,75),(56,99),(56,102),(57,75),(57,98),(57,103),(58,68),(58,70),(58,104),(59,69),(59,71),(59,104),(60,72),(60,74),(60,104),(61,73),(61,75),(61,104),(62,68),(62,72),(62,105),(63,69),(63,73),(63,105),(64,70),(64,74),(64,105),(65,71),(65,75),(65,105),(66,77),(66,78),(66,79),(66,91),(66,92),(67,76),(67,80),(67,81),(67,93),(67,94),(68,106),(69,106),(70,106),(71,106),(72,106),(73,106),(74,106),(75,106),(76,90),(76,104),(77,90),(77,105),(78,90),(78,96),(78,97),(79,90),(79,98),(79,99),(80,90),(80,100),(80,101),(81,90),(81,102),(81,103),(82,96),(82,104),(83,97),(83,104),(84,98),(84,104),(85,99),(85,104),(86,100),(86,105),(87,101),(87,105),(88,102),(88,105),(89,103),(89,105),(90,106),(91,96),(91,98),(91,105),(92,97),(92,99),(92,105),(93,100),(93,102),(93,104),(94,101),(94,103),(94,104),(95,104),(95,105),(96,106),(97,106),(98,106),(99,106),(100,106),(101,106),(102,106),(103,106),(104,106),(105,106)],107)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 1 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 0 + 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ?
=> ? = 1 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ?
=> ? = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,17),(1,23),(1,30),(1,42),(1,44),(2,10),(2,16),(2,22),(2,30),(2,41),(2,43),(3,12),(3,18),(3,24),(3,29),(3,41),(3,44),(4,13),(4,19),(4,25),(4,29),(4,42),(4,43),(5,15),(5,21),(5,27),(5,28),(5,43),(5,44),(6,14),(6,20),(6,26),(6,28),(6,41),(6,42),(7,22),(7,23),(7,24),(7,25),(7,26),(7,27),(7,31),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(8,31),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(9,31),(10,32),(10,45),(10,47),(10,57),(11,32),(11,46),(11,48),(11,58),(12,33),(12,45),(12,48),(12,59),(13,33),(13,46),(13,47),(13,60),(14,34),(14,45),(14,46),(14,61),(15,34),(15,47),(15,48),(15,62),(16,35),(16,49),(16,51),(16,57),(17,35),(17,50),(17,52),(17,58),(18,36),(18,49),(18,52),(18,59),(19,36),(19,50),(19,51),(19,60),(20,37),(20,49),(20,50),(20,61),(21,37),(21,51),(21,52),(21,62),(22,38),(22,53),(22,55),(22,57),(23,38),(23,54),(23,56),(23,58),(24,39),(24,53),(24,56),(24,59),(25,39),(25,54),(25,55),(25,60),(26,40),(26,53),(26,54),(26,61),(27,40),(27,55),(27,56),(27,62),(28,34),(28,37),(28,40),(28,70),(29,33),(29,36),(29,39),(29,70),(30,32),(30,35),(30,38),(30,70),(31,57),(31,58),(31,59),(31,60),(31,61),(31,62),(32,63),(32,71),(33,64),(33,71),(34,65),(34,71),(35,63),(35,72),(36,64),(36,72),(37,65),(37,72),(38,63),(38,73),(39,64),(39,73),(40,65),(40,73),(41,45),(41,49),(41,53),(41,70),(42,46),(42,50),(42,54),(42,70),(43,47),(43,51),(43,55),(43,70),(44,48),(44,52),(44,56),(44,70),(45,66),(45,71),(46,67),(46,71),(47,68),(47,71),(48,69),(48,71),(49,66),(49,72),(50,67),(50,72),(51,68),(51,72),(52,69),(52,72),(53,66),(53,73),(54,67),(54,73),(55,68),(55,73),(56,69),(56,73),(57,63),(57,66),(57,68),(58,63),(58,67),(58,69),(59,64),(59,66),(59,69),(60,64),(60,67),(60,68),(61,65),(61,66),(61,67),(62,65),(62,68),(62,69),(63,74),(64,74),(65,74),(66,74),(67,74),(68,74),(69,74),(70,71),(70,72),(70,73),(71,74),(72,74),(73,74)],75)
=> ?
=> ? = 0 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,18),(1,21),(1,24),(1,27),(1,32),(1,33),(2,11),(2,14),(2,17),(2,20),(2,23),(2,26),(2,31),(2,33),(3,10),(3,13),(3,16),(3,19),(3,22),(3,25),(3,31),(3,32),(4,10),(4,11),(4,12),(4,30),(4,60),(4,61),(5,16),(5,17),(5,18),(5,29),(5,59),(5,61),(6,13),(6,14),(6,15),(6,29),(6,58),(6,60),(7,22),(7,23),(7,24),(7,28),(7,58),(7,61),(8,19),(8,20),(8,21),(8,28),(8,59),(8,60),(9,25),(9,26),(9,27),(9,30),(9,58),(9,59),(10,34),(10,68),(10,71),(10,86),(11,35),(11,69),(11,72),(11,86),(12,36),(12,70),(12,73),(12,86),(13,40),(13,41),(13,52),(13,68),(13,74),(14,40),(14,42),(14,53),(14,69),(14,75),(15,41),(15,42),(15,54),(15,70),(15,76),(16,43),(16,44),(16,52),(16,71),(16,77),(17,43),(17,45),(17,53),(17,72),(17,78),(18,44),(18,45),(18,54),(18,73),(18,79),(19,49),(19,50),(19,55),(19,68),(19,77),(20,49),(20,51),(20,56),(20,69),(20,78),(21,50),(21,51),(21,57),(21,70),(21,79),(22,46),(22,47),(22,55),(22,71),(22,74),(23,46),(23,48),(23,56),(23,72),(23,75),(24,47),(24,48),(24,57),(24,73),(24,76),(25,34),(25,37),(25,38),(25,74),(25,77),(26,35),(26,37),(26,39),(26,75),(26,78),(27,36),(27,38),(27,39),(27,76),(27,79),(28,55),(28,56),(28,57),(28,87),(29,52),(29,53),(29,54),(29,87),(30,34),(30,35),(30,36),(30,87),(31,37),(31,40),(31,43),(31,46),(31,49),(31,86),(32,38),(32,41),(32,44),(32,47),(32,50),(32,86),(33,39),(33,42),(33,45),(33,48),(33,51),(33,86),(34,88),(34,89),(35,88),(35,90),(36,88),(36,91),(37,82),(37,85),(37,88),(38,80),(38,83),(38,88),(39,81),(39,84),(39,88),(40,64),(40,82),(40,92),(41,62),(41,80),(41,92),(42,63),(42,81),(42,92),(43,64),(43,85),(43,93),(44,62),(44,83),(44,93),(45,63),(45,84),(45,93),(46,67),(46,82),(46,93),(47,65),(47,80),(47,93),(48,66),(48,81),(48,93),(49,67),(49,85),(49,92),(50,65),(50,83),(50,92),(51,66),(51,84),(51,92),(52,62),(52,64),(52,89),(53,63),(53,64),(53,90),(54,62),(54,63),(54,91),(55,65),(55,67),(55,89),(56,66),(56,67),(56,90),(57,65),(57,66),(57,91),(58,74),(58,75),(58,76),(58,87),(59,77),(59,78),(59,79),(59,87),(60,68),(60,69),(60,70),(60,87),(61,71),(61,72),(61,73),(61,87),(62,94),(63,94),(64,94),(65,94),(66,94),(67,94),(68,89),(68,92),(69,90),(69,92),(70,91),(70,92),(71,89),(71,93),(72,90),(72,93),(73,91),(73,93),(74,80),(74,82),(74,89),(75,81),(75,82),(75,90),(76,80),(76,81),(76,91),(77,83),(77,85),(77,89),(78,84),(78,85),(78,90),(79,83),(79,84),(79,91),(80,94),(81,94),(82,94),(83,94),(84,94),(85,94),(86,88),(86,92),(86,93),(87,89),(87,90),(87,91),(88,94),(89,94),(90,94),(91,94),(92,94),(93,94)],95)
=> ?
=> ? = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 0 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 1 + 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ?
=> ? = 1 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([],1)
=> 1 = 0 + 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,14),(1,22),(1,23),(1,32),(1,36),(1,40),(1,48),(1,90),(1,94),(2,13),(2,21),(2,23),(2,31),(2,35),(2,39),(2,47),(2,89),(2,93),(3,16),(3,19),(3,24),(3,34),(3,35),(3,41),(3,49),(3,90),(3,91),(4,15),(4,20),(4,24),(4,33),(4,36),(4,42),(4,50),(4,89),(4,92),(5,15),(5,19),(5,25),(5,31),(5,38),(5,43),(5,51),(5,87),(5,94),(6,16),(6,20),(6,25),(6,32),(6,37),(6,44),(6,52),(6,88),(6,93),(7,13),(7,22),(7,26),(7,33),(7,37),(7,45),(7,53),(7,87),(7,91),(8,14),(8,21),(8,26),(8,34),(8,38),(8,46),(8,54),(8,88),(8,92),(9,18),(9,29),(9,30),(9,43),(9,44),(9,45),(9,46),(9,89),(9,90),(10,18),(10,27),(10,28),(10,39),(10,40),(10,41),(10,42),(10,87),(10,88),(11,17),(11,28),(11,30),(11,49),(11,50),(11,53),(11,54),(11,93),(11,94),(12,17),(12,27),(12,29),(12,47),(12,48),(12,51),(12,52),(12,91),(12,92),(13,95),(13,101),(13,103),(13,109),(13,127),(14,96),(14,102),(14,104),(14,110),(14,127),(15,97),(15,99),(15,106),(15,108),(15,126),(16,98),(16,100),(16,105),(16,107),(16,126),(17,115),(17,116),(17,117),(17,118),(17,125),(18,111),(18,112),(18,113),(18,114),(18,125),(19,63),(19,68),(19,126),(19,132),(19,139),(20,64),(20,67),(20,126),(20,133),(20,138),(21,65),(21,69),(21,127),(21,134),(21,136),(22,66),(22,70),(22,127),(22,135),(22,137),(23,55),(23,59),(23,127),(23,129),(23,131),(24,56),(24,60),(24,126),(24,129),(24,130),(25,57),(25,61),(25,126),(25,128),(25,131),(26,58),(26,62),(26,127),(26,128),(26,130),(27,71),(27,72),(27,125),(27,132),(27,133),(28,73),(28,74),(28,125),(28,134),(28,135),(29,75),(29,76),(29,125),(29,136),(29,137),(30,77),(30,78),(30,125),(30,138),(30,139),(31,63),(31,69),(31,83),(31,95),(31,99),(31,131),(32,64),(32,70),(32,84),(32,96),(32,100),(32,131),(33,66),(33,67),(33,85),(33,97),(33,101),(33,130),(34,65),(34,68),(34,86),(34,98),(34,102),(34,130),(35,63),(35,65),(35,79),(35,103),(35,105),(35,129),(36,64),(36,66),(36,80),(36,104),(36,106),(36,129),(37,67),(37,70),(37,81),(37,107),(37,109),(37,128),(38,68),(38,69),(38,82),(38,108),(38,110),(38,128),(39,55),(39,71),(39,79),(39,95),(39,111),(39,134),(40,55),(40,72),(40,80),(40,96),(40,112),(40,135),(41,56),(41,73),(41,79),(41,98),(41,112),(41,132),(42,56),(42,74),(42,80),(42,97),(42,111),(42,133),(43,57),(43,75),(43,82),(43,99),(43,113),(43,139),(44,57),(44,76),(44,81),(44,100),(44,114),(44,138),(45,58),(45,77),(45,81),(45,101),(45,113),(45,137),(46,58),(46,78),(46,82),(46,102),(46,114),(46,136),(47,59),(47,71),(47,83),(47,103),(47,115),(47,136),(48,59),(48,72),(48,84),(48,104),(48,116),(48,137),(49,60),(49,73),(49,86),(49,105),(49,117),(49,139),(50,60),(50,74),(50,85),(50,106),(50,118),(50,138),(51,61),(51,75),(51,83),(51,108),(51,116),(51,132),(52,61),(52,76),(52,84),(52,107),(52,115),(52,133),(53,62),(53,77),(53,85),(53,109),(53,117),(53,135),(54,62),(54,78),(54,86),(54,110),(54,118),(54,134),(55,121),(55,144),(55,157),(56,122),(56,144),(56,156),(57,123),(57,145),(57,159),(58,124),(58,145),(58,158),(59,121),(59,146),(59,158),(60,122),(60,147),(60,159),(61,123),(61,146),(61,156),(62,124),(62,147),(62,157),(63,119),(63,148),(63,159),(64,120),(64,149),(64,159),(65,119),(65,150),(65,158),(66,120),(66,151),(66,158),(67,120),(67,154),(67,156),(68,119),(68,155),(68,156),(69,119),(69,152),(69,157),(70,120),(70,153),(70,157),(71,121),(71,148),(71,160),(72,121),(72,149),(72,161),(73,122),(73,150),(73,161),(74,122),(74,151),(74,160),(75,123),(75,152),(75,161),(76,123),(76,153),(76,160),(77,124),(77,154),(77,161),(78,124),(78,155),(78,160),(79,144),(79,148),(79,150),(80,144),(80,149),(80,151),(81,145),(81,153),(81,154),(82,145),(82,152),(82,155),(83,146),(83,148),(83,152),(84,146),(84,149),(84,153),(85,147),(85,151),(85,154),(86,147),(86,150),(86,155),(87,95),(87,97),(87,113),(87,128),(87,132),(87,135),(88,96),(88,98),(88,114),(88,128),(88,133),(88,134),(89,99),(89,101),(89,111),(89,129),(89,136),(89,138),(90,100),(90,102),(90,112),(90,129),(90,137),(90,139),(91,103),(91,107),(91,117),(91,130),(91,132),(91,137),(92,104),(92,108),(92,118),(92,130),(92,133),(92,136),(93,105),(93,109),(93,115),(93,131),(93,134),(93,138),(94,106),(94,110),(94,116),(94,131),(94,135),(94,139),(95,140),(95,148),(95,157),(96,141),(96,149),(96,157),(97,140),(97,151),(97,156),(98,141),(98,150),(98,156),(99,140),(99,152),(99,159),(100,141),(100,153),(100,159),(101,140),(101,154),(101,158),(102,141),(102,155),(102,158),(103,142),(103,148),(103,158),(104,143),(104,149),(104,158),(105,142),(105,150),(105,159),(106,143),(106,151),(106,159),(107,142),(107,153),(107,156),(108,143),(108,152),(108,156),(109,142),(109,154),(109,157),(110,143),(110,155),(110,157),(111,140),(111,144),(111,160),(112,141),(112,144),(112,161),(113,140),(113,145),(113,161),(114,141),(114,145),(114,160),(115,142),(115,146),(115,160),(116,143),(116,146),(116,161),(117,142),(117,147),(117,161),(118,143),(118,147),(118,160),(119,162),(120,162),(121,162),(122,162),(123,162),(124,162),(125,160),(125,161),(126,156),(126,159),(127,157),(127,158),(128,145),(128,156),(128,157),(129,144),(129,158),(129,159),(130,147),(130,156),(130,158),(131,146),(131,157),(131,159),(132,148),(132,156),(132,161),(133,149),(133,156),(133,160),(134,150),(134,157),(134,160),(135,151),(135,157),(135,161),(136,152),(136,158),(136,160),(137,153),(137,158),(137,161),(138,154),(138,159),(138,160),(139,155),(139,159),(139,161),(140,162),(141,162),(142,162),(143,162),(144,162),(145,162),(146,162),(147,162),(148,162),(149,162),(150,162),(151,162),(152,162),(153,162),(154,162),(155,162),(156,162),(157,162),(158,162),(159,162),(160,162),(161,162)],163)
=> ?
=> ? = 1 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,18),(1,22),(1,29),(1,36),(1,38),(1,40),(1,42),(1,44),(1,78),(2,17),(2,21),(2,29),(2,35),(2,37),(2,39),(2,41),(2,43),(2,77),(3,14),(3,19),(3,20),(3,32),(3,33),(3,34),(3,37),(3,38),(3,79),(4,15),(4,27),(4,31),(4,33),(4,35),(4,40),(4,80),(4,82),(5,16),(5,28),(5,30),(5,34),(5,36),(5,39),(5,81),(5,82),(6,14),(6,21),(6,22),(6,25),(6,26),(6,45),(6,76),(6,82),(7,23),(7,24),(7,32),(7,41),(7,42),(7,45),(7,80),(7,81),(8,13),(8,16),(8,24),(8,26),(8,27),(8,43),(8,78),(8,79),(9,12),(9,15),(9,23),(9,25),(9,28),(9,44),(9,77),(9,79),(10,12),(10,17),(10,19),(10,30),(10,76),(10,78),(10,80),(11,13),(11,18),(11,20),(11,31),(11,76),(11,77),(11,81),(12,68),(12,101),(12,116),(12,118),(13,69),(13,102),(13,115),(13,119),(14,47),(14,89),(14,90),(14,103),(14,114),(15,53),(15,93),(15,99),(15,101),(15,104),(16,52),(16,94),(16,100),(16,102),(16,105),(17,62),(17,64),(17,91),(17,95),(17,118),(18,63),(18,65),(18,92),(18,96),(18,119),(19,60),(19,62),(19,90),(19,97),(19,116),(20,61),(20,63),(20,90),(20,98),(20,115),(21,56),(21,70),(21,87),(21,114),(21,118),(22,57),(22,71),(22,88),(22,114),(22,119),(23,73),(23,74),(23,101),(23,106),(23,120),(24,72),(24,75),(24,102),(24,106),(24,121),(25,71),(25,74),(25,103),(25,104),(25,118),(26,70),(26,75),(26,103),(26,105),(26,119),(27,66),(27,69),(27,99),(27,105),(27,121),(28,67),(28,68),(28,100),(28,104),(28,120),(29,46),(29,48),(29,49),(29,91),(29,92),(29,114),(30,60),(30,64),(30,68),(30,94),(30,122),(31,61),(31,65),(31,69),(31,93),(31,122),(32,47),(32,54),(32,55),(32,97),(32,98),(32,106),(33,50),(33,59),(33,61),(33,89),(33,97),(33,99),(34,51),(34,58),(34,60),(34,89),(34,98),(34,100),(35,48),(35,50),(35,66),(35,87),(35,93),(35,95),(36,49),(36,51),(36,67),(36,88),(36,94),(36,96),(37,50),(37,54),(37,58),(37,62),(37,114),(37,115),(38,51),(38,55),(38,59),(38,63),(38,114),(38,116),(39,49),(39,52),(39,58),(39,64),(39,87),(39,120),(40,48),(40,53),(40,59),(40,65),(40,88),(40,121),(41,46),(41,54),(41,56),(41,72),(41,95),(41,120),(42,46),(42,55),(42,57),(42,73),(42,96),(42,121),(43,52),(43,66),(43,70),(43,72),(43,91),(43,115),(44,53),(44,67),(44,71),(44,73),(44,92),(44,116),(45,47),(45,56),(45,57),(45,74),(45,75),(45,122),(46,123),(46,126),(46,127),(47,107),(47,123),(47,128),(48,111),(48,126),(48,131),(49,110),(49,127),(49,131),(50,112),(50,124),(50,131),(51,113),(51,125),(51,131),(52,108),(52,110),(52,129),(53,109),(53,111),(53,130),(54,112),(54,123),(54,129),(55,113),(55,123),(55,130),(56,85),(56,123),(56,132),(57,86),(57,123),(57,133),(58,83),(58,129),(58,131),(59,84),(59,130),(59,131),(60,83),(60,125),(60,128),(61,84),(61,124),(61,128),(62,83),(62,112),(62,134),(63,84),(63,113),(63,134),(64,83),(64,110),(64,132),(65,84),(65,111),(65,133),(66,108),(66,124),(66,126),(67,109),(67,125),(67,127),(68,125),(68,132),(69,124),(69,133),(70,85),(70,108),(70,134),(71,86),(71,109),(71,134),(72,85),(72,126),(72,129),(73,86),(73,127),(73,130),(74,86),(74,107),(74,132),(75,85),(75,107),(75,133),(76,90),(76,118),(76,119),(76,122),(77,92),(77,93),(77,115),(77,118),(77,120),(78,91),(78,94),(78,116),(78,119),(78,121),(79,99),(79,100),(79,103),(79,106),(79,115),(79,116),(80,95),(80,97),(80,101),(80,121),(80,122),(81,96),(81,98),(81,102),(81,120),(81,122),(82,87),(82,88),(82,89),(82,104),(82,105),(82,122),(83,135),(84,135),(85,135),(86,135),(87,108),(87,131),(87,132),(88,109),(88,131),(88,133),(89,117),(89,128),(89,131),(90,128),(90,134),(91,110),(91,126),(91,134),(92,111),(92,127),(92,134),(93,111),(93,124),(93,132),(94,110),(94,125),(94,133),(95,112),(95,126),(95,132),(96,113),(96,127),(96,133),(97,112),(97,128),(97,130),(98,113),(98,128),(98,129),(99,117),(99,124),(99,130),(100,117),(100,125),(100,129),(101,130),(101,132),(102,129),(102,133),(103,107),(103,117),(103,134),(104,109),(104,117),(104,132),(105,108),(105,117),(105,133),(106,107),(106,129),(106,130),(107,135),(108,135),(109,135),(110,135),(111,135),(112,135),(113,135),(114,123),(114,131),(114,134),(115,124),(115,129),(115,134),(116,125),(116,130),(116,134),(117,135),(118,132),(118,134),(119,133),(119,134),(120,127),(120,129),(120,132),(121,126),(121,130),(121,133),(122,128),(122,132),(122,133),(123,135),(124,135),(125,135),(126,135),(127,135),(128,135),(129,135),(130,135),(131,135),(132,135),(133,135),(134,135)],136)
=> ?
=> ? = 0 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,30),(1,31),(1,32),(1,33),(1,47),(1,48),(1,84),(1,85),(2,21),(2,25),(2,35),(2,38),(2,42),(2,46),(2,83),(2,85),(3,20),(3,24),(3,34),(3,38),(3,41),(3,45),(3,82),(3,84),(4,19),(4,22),(4,37),(4,39),(4,43),(4,45),(4,80),(4,85),(5,18),(5,23),(5,36),(5,39),(5,44),(5,46),(5,81),(5,84),(6,28),(6,29),(6,40),(6,43),(6,44),(6,48),(6,82),(6,83),(7,26),(7,27),(7,40),(7,41),(7,42),(7,47),(7,80),(7,81),(8,12),(8,15),(8,16),(8,18),(8,22),(8,26),(8,30),(8,34),(8,83),(9,12),(9,14),(9,17),(9,19),(9,23),(9,27),(9,31),(9,35),(9,82),(10,13),(10,14),(10,16),(10,20),(10,25),(10,28),(10,32),(10,36),(10,80),(11,13),(11,15),(11,17),(11,21),(11,24),(11,29),(11,33),(11,37),(11,81),(12,49),(12,54),(12,117),(12,119),(12,121),(13,50),(13,55),(13,118),(13,119),(13,120),(14,56),(14,59),(14,64),(14,86),(14,88),(14,119),(15,57),(15,58),(15,65),(15,87),(15,89),(15,119),(16,70),(16,76),(16,78),(16,98),(16,101),(16,119),(17,71),(17,77),(17,79),(17,99),(17,100),(17,119),(18,76),(18,87),(18,97),(18,102),(18,117),(19,77),(19,86),(19,96),(19,103),(19,117),(20,78),(20,88),(20,94),(20,104),(20,118),(21,79),(21,89),(21,95),(21,105),(21,118),(22,57),(22,66),(22,98),(22,117),(22,125),(23,56),(23,67),(23,99),(23,117),(23,124),(24,58),(24,68),(24,100),(24,118),(24,122),(25,59),(25,69),(25,101),(25,118),(25,123),(26,54),(26,60),(26,72),(26,87),(26,91),(26,98),(27,54),(27,61),(27,73),(27,86),(27,90),(27,99),(28,55),(28,62),(28,74),(28,88),(28,92),(28,101),(29,55),(29,63),(29,75),(29,89),(29,93),(29,100),(30,49),(30,60),(30,65),(30,70),(30,102),(30,125),(31,49),(31,61),(31,64),(31,71),(31,103),(31,124),(32,50),(32,62),(32,64),(32,70),(32,104),(32,123),(33,50),(33,63),(33,65),(33,71),(33,105),(33,122),(34,58),(34,66),(34,72),(34,78),(34,102),(34,121),(35,59),(35,67),(35,73),(35,79),(35,103),(35,121),(36,56),(36,69),(36,74),(36,76),(36,104),(36,120),(37,57),(37,68),(37,75),(37,77),(37,105),(37,120),(38,52),(38,116),(38,118),(38,121),(39,53),(39,116),(39,117),(39,120),(40,51),(40,90),(40,91),(40,92),(40,93),(41,52),(41,72),(41,90),(41,94),(41,122),(42,52),(42,73),(42,91),(42,95),(42,123),(43,53),(43,75),(43,92),(43,96),(43,125),(44,53),(44,74),(44,93),(44,97),(44,124),(45,66),(45,68),(45,94),(45,96),(45,116),(46,67),(46,69),(46,95),(46,97),(46,116),(47,51),(47,60),(47,61),(47,122),(47,123),(48,51),(48,62),(48,63),(48,124),(48,125),(49,106),(49,134),(49,140),(50,107),(50,134),(50,139),(51,135),(51,136),(52,128),(52,139),(53,129),(53,140),(54,106),(54,128),(54,137),(55,107),(55,129),(55,138),(56,109),(56,132),(56,137),(57,108),(57,133),(57,137),(58,108),(58,130),(58,138),(59,109),(59,131),(59,138),(60,106),(60,130),(60,136),(61,106),(61,131),(61,135),(62,107),(62,132),(62,136),(63,107),(63,133),(63,135),(64,131),(64,132),(64,134),(65,130),(65,133),(65,134),(66,108),(66,112),(66,140),(67,109),(67,113),(67,140),(68,108),(68,114),(68,139),(69,109),(69,115),(69,139),(70,110),(70,134),(70,136),(71,111),(71,134),(71,135),(72,112),(72,128),(72,130),(73,113),(73,128),(73,131),(74,115),(74,129),(74,132),(75,114),(75,129),(75,133),(76,110),(76,115),(76,137),(77,111),(77,114),(77,137),(78,110),(78,112),(78,138),(79,111),(79,113),(79,138),(80,86),(80,92),(80,94),(80,98),(80,120),(80,123),(81,87),(81,93),(81,95),(81,99),(81,120),(81,122),(82,88),(82,90),(82,96),(82,100),(82,121),(82,124),(83,89),(83,91),(83,97),(83,101),(83,121),(83,125),(84,102),(84,104),(84,116),(84,122),(84,124),(85,103),(85,105),(85,116),(85,123),(85,125),(86,126),(86,131),(86,137),(87,127),(87,130),(87,137),(88,126),(88,132),(88,138),(89,127),(89,133),(89,138),(90,126),(90,128),(90,135),(91,127),(91,128),(91,136),(92,126),(92,129),(92,136),(93,127),(93,129),(93,135),(94,112),(94,126),(94,139),(95,113),(95,127),(95,139),(96,114),(96,126),(96,140),(97,115),(97,127),(97,140),(98,112),(98,136),(98,137),(99,113),(99,135),(99,137),(100,114),(100,135),(100,138),(101,115),(101,136),(101,138),(102,110),(102,130),(102,140),(103,111),(103,131),(103,140),(104,110),(104,132),(104,139),(105,111),(105,133),(105,139),(106,141),(107,141),(108,141),(109,141),(110,141),(111,141),(112,141),(113,141),(114,141),(115,141),(116,139),(116,140),(117,137),(117,140),(118,138),(118,139),(119,134),(119,137),(119,138),(120,129),(120,137),(120,139),(121,128),(121,138),(121,140),(122,130),(122,135),(122,139),(123,131),(123,136),(123,139),(124,132),(124,135),(124,140),(125,133),(125,136),(125,140),(126,141),(127,141),(128,141),(129,141),(130,141),(131,141),(132,141),(133,141),(134,141),(135,141),(136,141),(137,141),(138,141),(139,141),(140,141)],142)
=> ?
=> ? = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,15),(1,21),(1,29),(1,30),(1,35),(1,36),(1,44),(1,45),(1,93),(2,14),(2,20),(2,26),(2,28),(2,32),(2,34),(2,43),(2,45),(2,92),(3,13),(3,19),(3,25),(3,27),(3,31),(3,33),(3,43),(3,44),(3,91),(4,16),(4,19),(4,28),(4,29),(4,37),(4,39),(4,46),(4,48),(4,90),(5,17),(5,20),(5,27),(5,30),(5,38),(5,40),(5,47),(5,48),(5,89),(6,18),(6,21),(6,25),(6,26),(6,41),(6,42),(6,46),(6,47),(6,88),(7,22),(7,23),(7,33),(7,34),(7,37),(7,38),(7,88),(7,93),(8,22),(8,24),(8,31),(8,35),(8,39),(8,41),(8,89),(8,92),(9,23),(9,24),(9,32),(9,36),(9,40),(9,42),(9,90),(9,91),(10,12),(10,16),(10,17),(10,18),(10,91),(10,92),(10,93),(11,12),(11,13),(11,14),(11,15),(11,88),(11,89),(11,90),(12,120),(12,121),(12,122),(13,52),(13,53),(13,99),(13,101),(13,120),(14,52),(14,54),(14,100),(14,102),(14,121),(15,53),(15,54),(15,103),(15,104),(15,122),(16,55),(16,57),(16,108),(16,109),(16,120),(17,56),(17,57),(17,107),(17,110),(17,121),(18,55),(18,56),(18,105),(18,106),(18,122),(19,64),(19,66),(19,117),(19,118),(19,120),(20,65),(20,67),(20,117),(20,119),(20,121),(21,68),(21,69),(21,118),(21,119),(21,122),(22,51),(22,70),(22,73),(22,124),(22,128),(23,51),(23,71),(23,74),(23,123),(23,127),(24,51),(24,72),(24,75),(24,125),(24,126),(25,58),(25,61),(25,76),(25,101),(25,105),(25,118),(26,58),(26,62),(26,77),(26,102),(26,106),(26,119),(27,59),(27,61),(27,78),(27,99),(27,107),(27,117),(28,60),(28,62),(28,79),(28,100),(28,108),(28,117),(29,60),(29,63),(29,80),(29,104),(29,109),(29,118),(30,59),(30,63),(30,81),(30,103),(30,110),(30,119),(31,66),(31,70),(31,76),(31,83),(31,99),(31,126),(32,67),(32,71),(32,77),(32,84),(32,100),(32,126),(33,64),(33,70),(33,78),(33,82),(33,101),(33,127),(34,65),(34,71),(34,79),(34,82),(34,102),(34,128),(35,69),(35,72),(35,80),(35,83),(35,103),(35,128),(36,68),(36,72),(36,81),(36,84),(36,104),(36,127),(37,64),(37,73),(37,79),(37,87),(37,109),(37,123),(38,65),(38,74),(38,78),(38,87),(38,110),(38,124),(39,66),(39,73),(39,80),(39,85),(39,108),(39,125),(40,67),(40,74),(40,81),(40,86),(40,107),(40,125),(41,69),(41,75),(41,76),(41,85),(41,106),(41,124),(42,68),(42,75),(42,77),(42,86),(42,105),(42,123),(43,49),(43,52),(43,58),(43,82),(43,117),(43,126),(44,49),(44,53),(44,59),(44,83),(44,118),(44,127),(45,49),(45,54),(45,60),(45,84),(45,119),(45,128),(46,50),(46,55),(46,62),(46,85),(46,118),(46,123),(47,50),(47,56),(47,61),(47,86),(47,119),(47,124),(48,50),(48,57),(48,63),(48,87),(48,117),(48,125),(49,97),(49,139),(49,140),(50,98),(50,138),(50,140),(51,138),(51,139),(52,97),(52,113),(52,143),(53,97),(53,111),(53,141),(54,97),(54,112),(54,142),(55,98),(55,115),(55,141),(56,98),(56,114),(56,142),(57,98),(57,116),(57,143),(58,113),(58,137),(58,140),(59,111),(59,135),(59,140),(60,112),(60,136),(60,140),(61,114),(61,132),(61,140),(62,115),(62,133),(62,140),(63,116),(63,134),(63,140),(64,94),(64,129),(64,141),(65,95),(65,129),(65,142),(66,94),(66,130),(66,143),(67,95),(67,131),(67,143),(68,96),(68,131),(68,141),(69,96),(69,130),(69,142),(70,94),(70,132),(70,139),(71,95),(71,133),(71,139),(72,96),(72,134),(72,139),(73,94),(73,136),(73,138),(74,95),(74,135),(74,138),(75,96),(75,137),(75,138),(76,130),(76,132),(76,137),(77,131),(77,133),(77,137),(78,129),(78,132),(78,135),(79,129),(79,133),(79,136),(80,130),(80,134),(80,136),(81,131),(81,134),(81,135),(82,113),(82,129),(82,139),(83,111),(83,130),(83,139),(84,112),(84,131),(84,139),(85,115),(85,130),(85,138),(86,114),(86,131),(86,138),(87,116),(87,129),(87,138),(88,101),(88,102),(88,122),(88,123),(88,124),(89,99),(89,103),(89,121),(89,124),(89,125),(90,100),(90,104),(90,120),(90,123),(90,125),(91,105),(91,107),(91,120),(91,126),(91,127),(92,106),(92,108),(92,121),(92,126),(92,128),(93,109),(93,110),(93,122),(93,127),(93,128),(94,144),(95,144),(96,144),(97,144),(98,144),(99,111),(99,132),(99,143),(100,112),(100,133),(100,143),(101,113),(101,132),(101,141),(102,113),(102,133),(102,142),(103,111),(103,134),(103,142),(104,112),(104,134),(104,141),(105,114),(105,137),(105,141),(106,115),(106,137),(106,142),(107,114),(107,135),(107,143),(108,115),(108,136),(108,143),(109,116),(109,136),(109,141),(110,116),(110,135),(110,142),(111,144),(112,144),(113,144),(114,144),(115,144),(116,144),(117,129),(117,140),(117,143),(118,130),(118,140),(118,141),(119,131),(119,140),(119,142),(120,141),(120,143),(121,142),(121,143),(122,141),(122,142),(123,133),(123,138),(123,141),(124,132),(124,138),(124,142),(125,134),(125,138),(125,143),(126,137),(126,139),(126,143),(127,135),(127,139),(127,141),(128,136),(128,139),(128,142),(129,144),(130,144),(131,144),(132,144),(133,144),(134,144),(135,144),(136,144),(137,144),(138,144),(139,144),(140,144),(141,144),(142,144),(143,144)],145)
=> ?
=> ? = 0 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,15),(1,22),(1,24),(1,32),(1,34),(1,37),(1,38),(1,69),(2,14),(2,22),(2,23),(2,31),(2,33),(2,35),(2,36),(2,68),(3,19),(3,21),(3,26),(3,28),(3,36),(3,38),(3,40),(3,71),(4,18),(4,20),(4,25),(4,27),(4,35),(4,37),(4,39),(4,71),(5,11),(5,29),(5,30),(5,33),(5,34),(5,39),(5,40),(5,70),(6,11),(6,12),(6,13),(6,14),(6,15),(6,41),(6,71),(7,12),(7,17),(7,18),(7,19),(7,31),(7,69),(7,70),(8,13),(8,16),(8,20),(8,21),(8,32),(8,68),(8,70),(9,16),(9,23),(9,25),(9,26),(9,29),(9,41),(9,69),(10,17),(10,24),(10,27),(10,28),(10,30),(10,41),(10,68),(11,76),(11,81),(11,88),(11,97),(12,48),(12,76),(12,79),(12,100),(13,49),(13,76),(13,80),(13,99),(14,48),(14,77),(14,97),(14,99),(15,49),(15,78),(15,97),(15,100),(16,50),(16,51),(16,99),(16,102),(17,52),(17,53),(17,100),(17,101),(18,52),(18,54),(18,79),(18,82),(18,86),(19,53),(19,55),(19,79),(19,83),(19,87),(20,50),(20,56),(20,80),(20,82),(20,84),(21,51),(21,57),(21,80),(21,83),(21,85),(22,42),(22,43),(22,89),(22,90),(22,97),(23,62),(23,63),(23,66),(23,89),(23,99),(24,64),(24,65),(24,67),(24,90),(24,100),(25,50),(25,58),(25,62),(25,86),(25,103),(26,51),(26,59),(26,63),(26,87),(26,103),(27,52),(27,60),(27,64),(27,84),(27,103),(28,53),(28,61),(28,65),(28,85),(28,103),(29,58),(29,59),(29,66),(29,88),(29,102),(30,60),(30,61),(30,67),(30,88),(30,101),(31,48),(31,54),(31,55),(31,89),(31,101),(32,49),(32,56),(32,57),(32,90),(32,102),(33,44),(33,45),(33,66),(33,97),(33,101),(34,46),(34,47),(34,67),(34,97),(34,102),(35,42),(35,44),(35,54),(35,62),(35,77),(35,84),(36,43),(36,45),(36,55),(36,63),(36,77),(36,85),(37,42),(37,46),(37,56),(37,64),(37,78),(37,86),(38,43),(38,47),(38,57),(38,65),(38,78),(38,87),(39,44),(39,46),(39,58),(39,60),(39,81),(39,82),(40,45),(40,47),(40,59),(40,61),(40,81),(40,83),(41,88),(41,99),(41,100),(41,103),(42,91),(42,93),(42,111),(43,92),(43,94),(43,111),(44,72),(44,105),(44,111),(45,73),(45,106),(45,111),(46,74),(46,107),(46,111),(47,75),(47,108),(47,111),(48,95),(48,112),(49,96),(49,112),(50,107),(50,109),(51,108),(51,109),(52,105),(52,110),(53,106),(53,110),(54,91),(54,95),(54,105),(55,92),(55,95),(55,106),(56,93),(56,96),(56,107),(57,94),(57,96),(57,108),(58,72),(58,104),(58,107),(59,73),(59,104),(59,108),(60,74),(60,104),(60,105),(61,75),(61,104),(61,106),(62,72),(62,91),(62,109),(63,73),(63,92),(63,109),(64,74),(64,93),(64,110),(65,75),(65,94),(65,110),(66,72),(66,73),(66,112),(67,74),(67,75),(67,112),(68,84),(68,85),(68,90),(68,99),(68,101),(69,86),(69,87),(69,89),(69,100),(69,102),(70,76),(70,82),(70,83),(70,101),(70,102),(71,77),(71,78),(71,79),(71,80),(71,81),(71,103),(72,113),(73,113),(74,113),(75,113),(76,98),(76,112),(77,95),(77,109),(77,111),(78,96),(78,110),(78,111),(79,95),(79,98),(79,110),(80,96),(80,98),(80,109),(81,98),(81,104),(81,111),(82,98),(82,105),(82,107),(83,98),(83,106),(83,108),(84,93),(84,105),(84,109),(85,94),(85,106),(85,109),(86,91),(86,107),(86,110),(87,92),(87,108),(87,110),(88,104),(88,112),(89,91),(89,92),(89,112),(90,93),(90,94),(90,112),(91,113),(92,113),(93,113),(94,113),(95,113),(96,113),(97,111),(97,112),(98,113),(99,109),(99,112),(100,110),(100,112),(101,105),(101,106),(101,112),(102,107),(102,108),(102,112),(103,104),(103,109),(103,110),(104,113),(105,113),(106,113),(107,113),(108,113),(109,113),(110,113),(111,113),(112,113)],114)
=> ?
=> ? = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
Description
The size of the image of the pop stack sorting operator. The pop stack sorting operator is defined by $Pop_L^\downarrow(x) = x\wedge\bigwedge\{y\in L\mid y\lessdot x\}$. This statistic returns the size of $Pop_L^\downarrow(L)\}$.
Mp00259: Graphs vertex additionGraphs
Mp00318: Graphs dual on componentsGraphs
St000096: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The number of spanning trees of a graph. A subgraph $H \subseteq G$ is a spanning tree if $V(H)=V(G)$ and $H$ is a tree (i.e. $H$ is connected and contains no cycles).
Mp00259: Graphs vertex additionGraphs
Mp00318: Graphs dual on componentsGraphs
St000261: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The edge connectivity of a graph. This is the minimum number of edges that has to be removed to make the graph disconnected.
Mp00259: Graphs vertex additionGraphs
Mp00318: Graphs dual on componentsGraphs
St000262: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The vertex connectivity of a graph. For non-complete graphs, this is the minimum number of vertices that has to be removed to make the graph disconnected.
Mp00259: Graphs vertex additionGraphs
Mp00318: Graphs dual on componentsGraphs
St000274: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The number of perfect matchings of a graph. A matching of a graph $G$ is a subset $F \subset E(G)$ such that no two edges in $F$ share a vertex in common. A perfect matching $F'$ is then a matching such that every vertex in $V(G)$ is incident with exactly one edge in $F'$.
Mp00318: Graphs dual on componentsGraphs
Mp00203: Graphs coneGraphs
St000276: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The size of the preimage of the map 'to graph' from Ordered trees to Graphs.
Mp00259: Graphs vertex additionGraphs
Mp00318: Graphs dual on componentsGraphs
St000303: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 20%
Values
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(4,5)],6)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,5),(4,5)],6)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3)],6)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ? = 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$.
The following 237 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000379The number of Hamiltonian cycles in a graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000699The toughness times the least common multiple of 1,. St000948The chromatic discriminant of a graph. St001119The length of a shortest maximal path in a graph. St001281The normalized isoperimetric number of a graph. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001341The number of edges in the center of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001691The number of kings in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St001826The maximal number of leaves on a vertex of a graph. St001957The number of Hasse diagrams with a given underlying undirected graph. St000260The radius of a connected graph. St000273The domination number of a graph. St000544The cop number of a graph. St000553The number of blocks of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000916The packing number of a graph. St000917The open packing number of a graph. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001316The domatic number of a graph. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001342The number of vertices in the center of a graph. St001363The Euler characteristic of a graph according to Knill. St001368The number of vertices of maximal degree in a graph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001672The restrained domination number of a graph. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St001871The number of triconnected components of a graph. St000258The burning number of a graph. St000259The diameter of a connected graph. St000918The 2-limited packing number of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000264The girth of a graph, which is not a tree. St000387The matching number of a graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000221The number of strong fixed points of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000312The number of leaves in a graph. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000403The Szeged index minus the Wiener index of a graph. St000406The number of occurrences of the pattern 3241 in a permutation. St000448The number of pairs of vertices of a graph with distance 2. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000666The number of right tethers of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001305The number of induced cycles on four vertices in a graph. St001306The number of induced paths on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001308The number of induced paths on three vertices in a graph. St001310The number of induced diamond graphs in a graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St001374The Padmakar-Ivan index of a graph. St001381The fertility of a permutation. St001411The number of patterns 321 or 3412 in a permutation. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001479The number of bridges of a graph. St001513The number of nested exceedences of a permutation. St001520The number of strict 3-descents. St001521Half the total irregularity of a graph. St001522The total irregularity of a graph. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001556The number of inversions of the third entry of a permutation. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001570The minimal number of edges to add to make a graph Hamiltonian. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001647The number of edges that can be added without increasing the clique number. St001648The number of edges that can be added without increasing the chromatic number. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001689The number of celebrities in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St001708The number of pairs of vertices of different degree in a graph. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St001742The difference of the maximal and the minimal degree in a graph. St001764The number of non-convex subsets of vertices in a graph. St001793The difference between the clique number and the chromatic number of a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001799The number of proper separations of a graph. St001810The number of fixed points of a permutation smaller than its largest moved point. St001811The Castelnuovo-Mumford regularity of a permutation. St001835The number of occurrences of a 231 pattern in the restricted growth word of a perfect matching. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001847The number of occurrences of the pattern 1432 in a permutation. St001850The number of Hecke atoms of a permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000056The decomposition (or block) number of a permutation. St000093The cardinality of a maximal independent set of vertices of a graph. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St000349The number of different adjacency matrices of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000455The second largest eigenvalue of a graph if it is integral. St000486The number of cycles of length at least 3 of a permutation. St000535The rank-width of a graph. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000694The number of affine bounded permutations that project to a given permutation. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000785The number of distinct colouring schemes of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000864The number of circled entries of the shifted recording tableau of a permutation. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001057The Grundy value of the game of creating an independent set in a graph. St001081The number of minimal length factorizations of a permutation into star transpositions. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001256Number of simple reflexive modules that are 2-stable reflexive. St001271The competition number of a graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001352The number of internal nodes in the modular decomposition of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001393The induced matching number of a graph. St001461The number of topologically connected components of the chord diagram of a permutation. St001463The number of distinct columns in the nullspace of a graph. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001512The minimum rank of a graph. St001590The crossing number of a perfect matching. St001642The Prague dimension of a graph. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001665The number of pure excedances of a permutation. St001734The lettericity of a graph. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001765The number of connected components of the friends and strangers graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001890The maximum magnitude of the Möbius function of a poset. St001917The order of toric promotion on the set of labellings of a graph. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000542The number of left-to-right-minima of a permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001093The detour number of a graph. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001261The Castelnuovo-Mumford regularity of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001481The minimal height of a peak of a Dyck path. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001674The number of vertices of the largest induced star graph in the graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St000268The number of strongly connected orientations of a graph. St000344The number of strongly connected outdegree sequences of a graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001073The number of nowhere zero 3-flows of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St001060The distinguishing index of a graph. St001626The number of maximal proper sublattices of a lattice. St001618The cardinality of the Frattini sublattice of a lattice. St001720The minimal length of a chain of small intervals in a lattice.