searching the database
Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001624
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => 1
([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Matching statistic: St000544
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
 => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
 => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
 => 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
 => 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
 => 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
Description
The cop number of a graph.
This is the minimal number of cops needed to catch the robber.  The algorithm is from  [2].
Matching statistic: St000535
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([],4)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([],5)
 => 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(4,5)],6)
 => 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(4,5)],6)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(4,5)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => 1 = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([],6)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(5,6)],7)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(3,6),(4,5)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
Description
The rank-width of a graph.
Matching statistic: St001331
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 1 = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
 => 1 = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
Description
The size of the minimal feedback vertex set.
A feedback vertex set is a set of vertices whose removal results in an acyclic graph.
Matching statistic: St001335
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(1,2),(2,3)],4)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 1 = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(1,3),(2,3),(2,4)],5)
 => 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
 => 1 = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(1,2)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 1 = 2 - 1
Description
The cardinality of a minimal cycle-isolating set of a graph.
Let $\mathcal F$ be a set of graphs.  A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains all cycles.
Matching statistic: St000298
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(4,7),(5,4),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,6),(1,7),(2,7),(3,7),(5,3),(6,1),(6,2),(6,5),(7,4)],8)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,1),(4,3),(4,6),(5,2),(5,4),(6,7)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,2),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,6),(2,7),(3,7),(4,3),(5,1),(6,2),(6,4),(7,5)],8)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,4),(4,1),(4,6),(5,2),(5,3),(6,7)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(1,7),(3,6),(4,3),(5,1),(5,6),(6,7),(7,2)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,3),(0,5),(2,7),(3,6),(4,2),(5,4),(5,6),(6,7),(7,1)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,4),(0,5),(1,6),(3,6),(4,7),(5,1),(5,7),(6,2),(7,3)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,1),(5,2),(5,7),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,5),(1,7),(2,7),(3,6),(4,1),(5,3),(6,2),(6,4)],8)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ? = 2
([(0,3),(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(7,5)],8)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ? = 2
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,8),(4,8),(5,1),(6,5),(6,8),(8,2)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,6),(1,7),(2,8),(3,8),(4,5),(5,1),(6,4),(6,8),(8,7)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,7),(1,8),(2,8),(3,8),(5,3),(6,2),(7,1),(7,5),(7,6),(8,4)],9)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(2,8),(3,8),(4,8),(5,1),(5,2),(6,7),(8,7)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,8),(4,8),(5,1),(5,8),(6,5),(8,2)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,6),(1,7),(2,8),(3,8),(4,1),(5,4),(5,8),(6,5),(8,7)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,3),(0,4),(0,7),(2,8),(3,8),(4,8),(5,2),(6,1),(7,5),(8,6)],9)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ? = 2
([(0,2),(0,3),(0,6),(1,7),(2,8),(3,8),(4,5),(5,1),(5,8),(6,4),(8,7)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,8),(4,8),(5,2),(6,1),(6,8),(8,5)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,7),(1,8),(2,8),(3,8),(5,6),(6,3),(7,1),(7,2),(7,5),(8,4)],9)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,7),(4,5),(4,8),(5,3),(6,1),(6,4),(8,2)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,7),(4,5),(5,3),(5,8),(6,1),(6,4),(8,2)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,7),(4,1),(5,3),(5,8),(6,4),(6,5),(8,2)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,7),(2,8),(3,8),(4,5),(5,3),(6,1),(7,2),(7,4),(8,6)],9)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,5),(4,3),(5,1),(5,7),(6,2),(6,4),(7,8)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(2,6),(3,6),(3,7),(4,7),(5,2),(5,3),(6,8),(7,8),(8,1)],9)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,5),(1,7),(2,8),(3,1),(3,6),(4,2),(4,6),(5,3),(5,4),(6,8),(8,7)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,6),(1,7),(2,8),(3,7),(4,3),(4,8),(5,1),(6,2),(6,4),(8,5)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,7),(2,8),(3,8),(4,3),(5,2),(6,1),(7,4),(7,5),(8,6)],9)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,5),(4,1),(5,4),(5,7),(6,2),(6,3),(7,8)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,4),(4,1),(5,3),(5,7),(6,2),(6,5),(7,8)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,6),(1,8),(2,7),(3,2),(4,3),(5,1),(5,7),(6,4),(6,5),(7,8)],9)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ? = 2
([(0,5),(0,6),(1,8),(3,7),(4,3),(5,4),(6,1),(6,7),(7,8),(8,2)],9)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
([(0,3),(0,5),(0,6),(1,8),(2,7),(3,8),(4,2),(5,1),(6,4),(6,8),(8,7)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ? = 2
([(0,4),(0,6),(1,7),(3,7),(4,8),(5,1),(6,5),(6,8),(7,2),(8,3)],9)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ? = 2
Description
The order dimension or Dushnik-Miller dimension of a poset.
This is the minimal number of linear orderings whose intersection is the given poset.
Matching statistic: St001734
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([],4)
 => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 2
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([],5)
 => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(4,5)],6)
 => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(4,5)],6)
 => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(4,5)],6)
 => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([],6)
 => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(3,6),(4,5)],7)
 => ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 2
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([],7)
 => ? = 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(3,6),(4,5)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(4,7),(5,4),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,4),(5,6),(6,7)],8)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,6),(6,3)],8)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,6),(1,7),(2,7),(3,7),(5,3),(6,1),(6,2),(6,5),(7,4)],8)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(1,7),(2,7),(3,6),(4,3),(5,1),(5,2),(5,6),(6,7)],8)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,1),(4,3),(4,6),(5,2),(5,4),(6,7)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,2),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,6),(2,7),(3,7),(4,3),(5,1),(6,2),(6,4),(7,5)],8)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,6),(3,4),(4,1),(4,6),(5,2),(5,3),(6,7)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(1,7),(3,6),(4,3),(5,1),(5,6),(6,7),(7,2)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(7,2),(7,3)],8)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(3,6),(4,5)],7)
 => ? = 2
([(0,5),(1,7),(2,7),(3,7),(4,3),(5,6),(6,1),(6,2),(6,4)],8)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(1,7),(2,7),(3,6),(4,5),(5,1),(5,2),(5,6),(6,7)],8)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,5),(2,7),(3,6),(4,2),(5,4),(5,6),(6,7),(7,1)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,4),(0,5),(1,6),(3,6),(4,7),(5,1),(5,7),(6,2),(7,3)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(1,7),(2,6),(3,7),(4,1),(5,2),(5,7),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,7),(3,6),(4,1),(5,3),(6,2),(6,4)],8)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,3),(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(7,5)],8)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,5),(1,7),(2,7),(4,2),(5,6),(6,1),(6,4),(7,3)],8)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(5,6)],7)
 => ? = 2
([(0,7),(1,8),(2,8),(3,8),(4,8),(5,4),(6,3),(7,1),(7,2),(7,5),(7,6)],9)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,4),(0,5),(0,7),(1,8),(2,8),(3,8),(4,8),(5,8),(6,1),(7,6)],9)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,5),(0,7),(1,8),(3,8),(4,8),(5,8),(6,1),(7,6),(8,2)],9)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,8),(4,8),(5,1),(6,5),(6,8),(8,2)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,2),(0,3),(0,6),(1,7),(2,8),(3,8),(4,5),(5,1),(6,4),(6,8),(8,7)],9)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2
([(0,7),(1,8),(2,8),(3,8),(5,3),(6,2),(7,1),(7,5),(7,6),(8,4)],9)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2
Description
The lettericity of a graph.
Let $D$ be a digraph on $k$ vertices, possibly with loops and let $w$ be a word of length $n$ whose letters are vertices of $D$.
The letter graph corresponding to $D$ and $w$ is the graph with vertex set $\{1,\dots,n\}$ whose edges are the pairs $(i,j)$ with $i < j$ sucht that $(w_i, w_j)$ is a (directed) edge of $D$.
Matching statistic: St001738
Values
([],1)
 => ([],1)
 => ([],1)
 => ([],1)
 => 2 = 1 + 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([],4)
 => 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3 = 2 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([],5)
 => 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ? = 2 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([],6)
 => ? = 1 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 2 = 1 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(5,6)],7)
 => ? = 2 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3 = 2 + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(3,6),(4,5)],7)
 => ? = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([],1)
 => 2 = 1 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ? = 2 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ? = 2 + 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3 = 2 + 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ? = 2 + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([],7)
 => ? = 1 + 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(3,4)],5)
 => 3 = 2 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
 => ([],1)
 => ([],1)
 => ([],1)
 => 2 = 1 + 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
 => ([],1)
 => ([],1)
 => ([],1)
 => 2 = 1 + 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([],3)
 => 2 = 1 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2 = 1 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(3,6),(4,5),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(3,6),(4,5)],7)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,6),(1,7),(2,7),(4,2),(5,1),(6,4),(6,5),(7,3)],8)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(4,7),(5,4),(7,6)],8)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
([(0,3),(0,4),(0,6),(1,7),(3,7),(4,7),(5,1),(6,5),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,5),(1,6),(2,6),(3,7),(4,2),(5,4),(5,7),(7,1)],8)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(2,5),(3,4),(4,5)],6)
 => ? = 2 + 1
([(0,3),(0,5),(1,7),(2,7),(3,6),(4,2),(5,1),(5,4),(5,6),(6,7)],8)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
 => ? = 2 + 1
Description
The minimal order of a graph which is not an induced subgraph of the given graph.
For example, the graph with two isolated vertices is not an induced subgraph of the complete graph on three vertices.
By contrast, the minimal number of vertices of a graph which is not a subgraph of a graph is one plus the clique number [[St000097]].
Matching statistic: St001876
Values
([],1)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ?
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
 => ? = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,7),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,5)],12)
 => ? = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
 => ? = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
 => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
 => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
 => ? = 2 - 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => 1 = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => 1 = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => 1 = 2 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
 => 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ?
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
 => ? = 2 - 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? = 2 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,1),(6,2)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(6,7)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,6),(6,7)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001877
Values
([],1)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ?
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
 => ? = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,7),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,5)],12)
 => ? = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
 => ? = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
 => ? = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
 => ([(0,6),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,7),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,1)],12)
 => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
 => ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
 => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
 => ([(0,7),(2,9),(2,10),(3,8),(3,10),(4,8),(4,9),(5,1),(6,5),(7,2),(7,3),(7,4),(8,11),(9,11),(10,11),(11,6)],12)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
 => ([(0,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,1),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,6)],19)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
 => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
 => ([(0,7),(1,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,3),(6,9),(6,10),(7,4),(7,5),(7,6),(8,15),(9,11),(9,15),(10,12),(10,15),(11,14),(12,14),(13,2),(14,13),(15,1),(15,14)],16)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
 => ([(0,6),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,5)],11)
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
 => ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
 => ([(0,7),(2,13),(3,11),(3,12),(4,8),(4,10),(5,8),(5,9),(6,4),(6,5),(6,13),(7,2),(7,6),(8,14),(9,11),(9,14),(10,12),(10,14),(11,15),(12,15),(13,3),(13,9),(13,10),(14,15),(15,1)],16)
 => ? = 2 - 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
 => ? = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
 => ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
 => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
 => ? = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
 => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
 => ? = 2 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
 => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
 => ? = 2 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
 => ? = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
 => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
 => 1 = 2 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
 => ?
 => ? = 2 - 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
 => ([(0,6),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,7),(7,2),(7,3),(7,4),(7,5),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1)],19)
 => ? = 2 - 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(1,3),(2,3)],4)
 => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
 => 1 = 2 - 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
 => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
 => 1 = 2 - 1
([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,3),(2,1),(3,2)],4)
 => ([(0,4),(2,3),(3,1),(4,2)],5)
 => 0 = 1 - 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
 => ([(0,2),(2,1)],3)
 => ([(0,2),(2,1)],3)
 => ([(0,3),(2,1),(3,2)],4)
 => 0 = 1 - 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
 => ([(0,5),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,6),(6,2),(6,3),(6,4),(7,10),(8,10),(9,10),(10,1)],11)
 => ? = 2 - 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
 => ([],1)
 => ([],1)
 => ([(0,1)],2)
 => ? = 1 - 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,2),(2,1)],3)
 => 0 = 1 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
 => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
 => ? = 2 - 1
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
 => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
 => ? = 2 - 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
 => ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
 => ? = 2 - 1
Description
Number of indecomposable injective modules with projective dimension 2.
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000264The girth of a graph, which is not a tree. St000455The second largest eigenvalue of a graph if it is integral. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!