Processing math: 0%

Your data matches 56 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001626: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 4
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 5
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 4
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 5
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 5
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
Description
The number of maximal proper sublattices of a lattice.
Matching statistic: St000145
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000145: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 3 = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> 2 = 3 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 2 = 3 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> 3 = 4 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 3 = 4 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 3 = 4 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 5 = 6 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> 3 = 4 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> 4 = 5 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> 3 = 4 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 3 = 4 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> 4 = 5 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> 4 = 5 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 6 = 7 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> 4 = 5 - 1
Description
The Dyson rank of a partition. This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences p(5n+4) \equiv 0 \pmod 5 and p(7n+6) \equiv 0 \pmod 7.
Matching statistic: St001389
Mp00263: Lattices join irreduciblesPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St001389: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> [2]
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3 = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5 = 6 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 4 = 5 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 3 = 4 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4 = 5 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> 4 = 5 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6 = 7 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 4 = 5 - 1
Description
The number of partitions of the same length below the given integer partition. For a partition \lambda_1 \geq \dots \lambda_k > 0, this number is \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.
Matching statistic: St000013
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 4
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 5
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 4
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 5
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 4
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 5
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> 7
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 5
Description
The height of a Dyck path. The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
Matching statistic: St001032
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001032: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 5
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 5
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 5
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 5
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1. The generating function is given in [1].
Matching statistic: St001816
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001816: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [[1,2]]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 3
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 4
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 4
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [[1,2,3,4,5,6]]
=> 6
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [[1,2,3,4,5],[6]]
=> 4
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 5
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 4
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 5
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 4
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 5
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 7
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [[1,2,3,4,5,6],[7]]
=> 5
Description
Eigenvalues of the top-to-random operator acting on a simple module. These eigenvalues are given in [1] and [3]. The simple module of the symmetric group indexed by a partition \lambda has dimension equal to the number of standard tableaux of shape \lambda. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape \lambda; this statistic gives all the eigenvalues of the operator acting on the module. This statistic bears different names, such as the type in [2] or eig in [3]. Similarly, the eigenvalues of the random-to-random operator acting on a simple module is [[St000508]].
Matching statistic: St000439
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 5 = 4 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4 = 3 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4 = 3 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4 = 3 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5 = 4 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5 = 4 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5 = 4 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5 = 4 + 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4 = 3 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 7 = 6 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5 = 4 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 6 = 5 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5 = 4 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5 = 4 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 6 = 5 + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5 = 4 + 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 6 = 5 + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> 8 = 7 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 6 = 5 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000822
Mp00263: Lattices join irreduciblesPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000822: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> ([],2)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 4 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
Description
The Hadwiger number of the graph. Also known as clique contraction number, this is the size of the largest complete minor.
Matching statistic: St000877
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000877: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 100 => 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 1000 => 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 10000 => 3 = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> 100010 => 2 = 3 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 100010 => 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 100000 => 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 100010 => 2 = 3 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 100100 => 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1000000 => 5 = 6 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> 1000100 => 3 = 4 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 1000100 => 3 = 4 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> 1000100 => 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 10000000 => 6 = 7 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
Description
The depth of the binary word interpreted as a path. This is the maximal value of the number of zeros minus the number of ones occurring in a prefix of the binary word, see [1, sec.9.1.2]. The number of binary words of length n with depth k is \binom{n}{\lfloor\frac{(n+1) - (-1)^{n-k}(k+1)}{2}\rfloor}, see [2].
Matching statistic: St000885
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000885: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 100 => 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 1000 => 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 10000 => 3 = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> 100010 => 2 = 3 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 100010 => 2 = 3 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 100000 => 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 100010 => 2 = 3 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 100100 => 2 = 3 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1000000 => 5 = 6 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> 1000010 => 3 = 4 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> 1000100 => 3 = 4 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 1000100 => 3 = 4 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> 1000100 => 3 = 4 - 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 10000000 => 6 = 7 - 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> 10000010 => 4 = 5 - 1
Description
The number of critical steps in the Catalan decomposition of a binary word. Every binary word can be written in a unique way as (\mathcal D 0)^\ell \mathcal D (1 \mathcal D)^m, where \mathcal D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2]. This statistic records the number of critical steps \ell + m in the Catalan factorisation. The distribution of this statistic on words of length n is (n+1)q^n+\sum_{\substack{k=0\\\text{k even}}}^{n-2} \frac{(n-1-k)^2}{1+k/2}\binom{n}{k/2}q^{n-2-k}.
The following 46 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001091The number of parts in an integer partition whose next smaller part has the same size. St001116The game chromatic number of a graph. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St001883The mutual visibility number of a graph. St001955The number of natural descents for set-valued two row standard Young tableaux. St001963The tree-depth of a graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000536The pathwidth of a graph. St001176The size of a partition minus its first part. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001644The dimension of a graph. St001962The proper pathwidth of a graph. St000025The number of initial rises of a Dyck path. St000444The length of the maximal rise of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001498The normalised height of a Nakayama algebra with magnitude 1. St001809The index of the step at the first peak of maximal height in a Dyck path. St000024The number of double up and double down steps of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000874The position of the last double rise in a Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001668The number of points of the poset minus the width of the poset. St000120The number of left tunnels of a Dyck path. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001875The number of simple modules with projective dimension at most 1. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001631The number of simple modules S with dim Ext^1(S,A)=1 in the incidence algebra A of the poset. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset.