Processing math: 100%

Your data matches 56 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00072: Permutations binary search tree: left to rightBinary trees
St001554: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> 1
[1,2] => [.,[.,.]]
=> 2
[2,1] => [[.,.],.]
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> 3
[1,3,2] => [.,[[.,.],.]]
=> 3
[2,1,3] => [[.,.],[.,.]]
=> 2
[2,3,1] => [[.,.],[.,.]]
=> 2
[3,1,2] => [[.,[.,.]],.]
=> 3
[3,2,1] => [[[.,.],.],.]
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> 4
Description
The number of distinct nonempty subtrees of a binary tree.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
St000528: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
Description
The height of a poset. This equals the rank of the poset [[St000080]] plus one.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
St000912: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
Description
The number of maximal antichains in a poset.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
St001343: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 4
Description
The dimension of the reduced incidence algebra of a poset. The reduced incidence algebra of a poset is the subalgebra of the incidence algebra consisting of the elements which assign the same value to any two intervals that are isomorphic to each other as posets. Thus, this statistic returns the number of non-isomorphic intervals of the poset.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> ([],1)
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 4
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number α(G) of G.
Matching statistic: St000147
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> [1]
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
Description
The largest part of an integer partition.
Matching statistic: St000184
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000184: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> [1]
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
Description
The size of the centralizer of any permutation of given cycle type. The centralizer (or commutant, equivalently normalizer) of an element g of a group G is the set of elements of G that commute with g: Cg={hG:hgh1=g}. Its size thus depends only on the conjugacy class of g. The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type λ=(1a1,2a2,) is |C|=Πjajaj! For example, for any permutation with cycle type λ=(3,2,2,1), |C|=(311!)(222!)(111!)=24. There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is 1.
Matching statistic: St000384
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> [1]
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> [2]
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> 4
Description
The maximal part of the shifted composition of an integer partition. A partition λ=(λ1,,λk) is shifted into a composition by adding i1 to the i-th part. The statistic is then maxi{λi+i1}. See also [[St000380]].
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000393: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1]]
=> [1] => 1 => 1
[1,2] => [[1,2]]
=> [2] => 10 => 2
[2,1] => [[1],[2]]
=> [2] => 10 => 2
[1,2,3] => [[1,2,3]]
=> [3] => 100 => 3
[1,3,2] => [[1,2],[3]]
=> [3] => 100 => 3
[2,1,3] => [[1,3],[2]]
=> [2,1] => 101 => 2
[2,3,1] => [[1,3],[2]]
=> [2,1] => 101 => 2
[3,1,2] => [[1,2],[3]]
=> [3] => 100 => 3
[3,2,1] => [[1],[2],[3]]
=> [3] => 100 => 3
[1,2,3,4] => [[1,2,3,4]]
=> [4] => 1000 => 4
[1,2,4,3] => [[1,2,3],[4]]
=> [4] => 1000 => 4
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => 1001 => 3
[1,3,4,2] => [[1,2,4],[3]]
=> [3,1] => 1001 => 3
[1,4,2,3] => [[1,2,3],[4]]
=> [4] => 1000 => 4
[1,4,3,2] => [[1,2],[3],[4]]
=> [4] => 1000 => 4
[2,1,3,4] => [[1,3,4],[2]]
=> [2,2] => 1010 => 3
[2,1,4,3] => [[1,3],[2,4]]
=> [2,2] => 1010 => 3
[2,3,1,4] => [[1,3,4],[2]]
=> [2,2] => 1010 => 3
[2,3,4,1] => [[1,3,4],[2]]
=> [2,2] => 1010 => 3
[2,4,1,3] => [[1,3],[2,4]]
=> [2,2] => 1010 => 3
[2,4,3,1] => [[1,3],[2],[4]]
=> [2,2] => 1010 => 3
[3,1,2,4] => [[1,2,4],[3]]
=> [3,1] => 1001 => 3
[3,1,4,2] => [[1,2],[3,4]]
=> [3,1] => 1001 => 3
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => 1001 => 3
[3,2,4,1] => [[1,4],[2],[3]]
=> [3,1] => 1001 => 3
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => 1001 => 3
[3,4,2,1] => [[1,4],[2],[3]]
=> [3,1] => 1001 => 3
[4,1,2,3] => [[1,2,3],[4]]
=> [4] => 1000 => 4
[4,1,3,2] => [[1,2],[3],[4]]
=> [4] => 1000 => 4
[4,2,1,3] => [[1,3],[2],[4]]
=> [2,2] => 1010 => 3
[4,2,3,1] => [[1,3],[2],[4]]
=> [2,2] => 1010 => 3
[4,3,1,2] => [[1,2],[3],[4]]
=> [4] => 1000 => 4
[4,3,2,1] => [[1],[2],[3],[4]]
=> [4] => 1000 => 4
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [5] => 10000 => 5
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5] => 10000 => 5
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => 10001 => 4
[1,2,4,5,3] => [[1,2,3,5],[4]]
=> [4,1] => 10001 => 4
[1,2,5,3,4] => [[1,2,3,4],[5]]
=> [5] => 10000 => 5
[1,2,5,4,3] => [[1,2,3],[4],[5]]
=> [5] => 10000 => 5
[1,3,2,4,5] => [[1,2,4,5],[3]]
=> [3,2] => 10010 => 4
[1,3,2,5,4] => [[1,2,4],[3,5]]
=> [3,2] => 10010 => 4
[1,3,4,2,5] => [[1,2,4,5],[3]]
=> [3,2] => 10010 => 4
[1,3,4,5,2] => [[1,2,4,5],[3]]
=> [3,2] => 10010 => 4
[1,3,5,2,4] => [[1,2,4],[3,5]]
=> [3,2] => 10010 => 4
[1,3,5,4,2] => [[1,2,4],[3],[5]]
=> [3,2] => 10010 => 4
[1,4,2,3,5] => [[1,2,3,5],[4]]
=> [4,1] => 10001 => 4
[1,4,2,5,3] => [[1,2,3],[4,5]]
=> [4,1] => 10001 => 4
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => 10001 => 4
[1,4,3,5,2] => [[1,2,5],[3],[4]]
=> [4,1] => 10001 => 4
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => 10001 => 4
Description
The number of strictly increasing runs in a binary word.
Matching statistic: St000550
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
Mp00205: Posets maximal antichainsLattices
St000550: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> ([],1)
=> ([],1)
=> 1
[1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
Description
The number of modular elements of a lattice. A pair (x,y) of elements of a lattice L is a modular pair if for every zy we have that (yx)z=y(xz). An element x is left-modular if (x,y) is a modular pair for every yL, and is modular if both (x,y) and (y,x) are modular pairs for every yL.
The following 46 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000551The number of left modular elements of a lattice. St000636The hull number of a graph. St000784The maximum of the length and the largest part of the integer partition. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001286The annihilation number of a graph. St001315The dissociation number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001389The number of partitions of the same length below the given integer partition. St001616The number of neutral elements in a lattice. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001720The minimal length of a chain of small intervals in a lattice. St001820The size of the image of the pop stack sorting operator. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St001176The size of a partition minus its first part. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001619The number of non-isomorphic sublattices of a lattice. St001622The number of join-irreducible elements of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St001651The Frankl number of a lattice. St001875The number of simple modules with projective dimension at most 1. St000672The number of minimal elements in Bruhat order not less than the permutation. St001717The largest size of an interval in a poset. St000050The depth or height of a binary tree. St000863The length of the first row of the shifted shape of a permutation. St000553The number of blocks of a graph. St000080The rank of the poset. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St000013The height of a Dyck path. St001322The size of a minimal independent dominating set in a graph. St000864The number of circled entries of the shifted recording tableau of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001668The number of points of the poset minus the width of the poset. St001626The number of maximal proper sublattices of a lattice. St001060The distinguishing index of a graph. St001773The number of minimal elements in Bruhat order not less than the signed permutation.