Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00263: Lattices join irreduciblesPosets
Mp00205: Posets maximal antichainsLattices
St001876: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Mp00263: Lattices join irreduciblesPosets
Mp00205: Posets maximal antichainsLattices
St001877: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> 0
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St000100
Mp00193: Lattices to posetPosets
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
St000100: Posets ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 67%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 1 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1 + 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2 + 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1 + 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
=> ([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(3,7),(4,7),(5,1),(5,7),(6,2),(7,6)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(3,7),(4,7),(5,1),(5,7),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,5),(1,7),(2,6),(3,6),(4,2),(5,1),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,6),(4,2),(5,1),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(4,2),(5,1),(6,4),(6,5),(7,3)],8)
=> ([(0,6),(1,7),(2,7),(4,2),(5,1),(6,4),(6,5),(7,3)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
([(0,4),(0,6),(1,7),(2,7),(4,7),(5,2),(6,1),(6,5),(7,3)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(4,7),(5,2),(6,1),(6,5),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(5,2),(5,3),(6,1),(6,5),(7,4)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(5,2),(5,3),(6,1),(6,5),(7,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(4,7),(5,7),(6,1),(6,2),(7,3)],8)
=> ([(0,4),(0,5),(0,6),(1,7),(2,7),(4,7),(5,7),(6,1),(6,2),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
=> ([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 1 = 0 + 1
Description
The number of linear extensions of a poset.
Matching statistic: St000307
Mp00193: Lattices to posetPosets
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
St000307: Posets ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 67%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 1 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0 + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1 + 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2 + 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1 + 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
=> ([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(3,7),(4,7),(5,1),(5,7),(6,2),(7,6)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(3,7),(4,7),(5,1),(5,7),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,5),(1,7),(2,6),(3,6),(4,2),(5,1),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,6),(4,2),(5,1),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(4,2),(5,1),(6,4),(6,5),(7,3)],8)
=> ([(0,6),(1,7),(2,7),(4,2),(5,1),(6,4),(6,5),(7,3)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 1 + 1
([(0,4),(0,6),(1,7),(2,7),(4,7),(5,2),(6,1),(6,5),(7,3)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(4,7),(5,2),(6,1),(6,5),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(5,2),(5,3),(6,1),(6,5),(7,4)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(5,2),(5,3),(6,1),(6,5),(7,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(0,6),(1,7),(2,7),(4,7),(5,7),(6,1),(6,2),(7,3)],8)
=> ([(0,4),(0,5),(0,6),(1,7),(2,7),(4,7),(5,7),(6,1),(6,2),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
=> ([(0,3),(0,4),(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
Description
The number of rowmotion orbits of a poset. Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St001964
Mp00193: Lattices to posetPosets
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
St001964: Posets ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 33%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1
([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
=> ([(0,2),(0,3),(0,5),(1,6),(2,7),(3,7),(4,1),(5,4),(5,7),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,6),(3,7),(4,7),(5,1),(5,7),(6,2),(7,6)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(3,7),(4,7),(5,1),(5,7),(6,2),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(0,5),(1,7),(2,6),(3,6),(4,2),(5,1),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,6),(4,2),(5,1),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St000752
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000752: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 67%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [6,4]
=> [2,2,2,2,1,1]
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> [3,3,3,1,1]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [9,6]
=> [2,2,2,2,2,2,1,1,1]
=> ? = 0
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [6,2,2,2]
=> [4,4,1,1,1,1]
=> 0
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [9,2,2]
=> [3,3,1,1,1,1,1,1,1]
=> ? = 0
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 0
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [6,3,3]
=> [3,3,3,1,1,1]
=> 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> [2,2,2,2,2,1]
=> 0
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [6,4,4,4]
=> [4,4,4,4,1,1]
=> ? = 0
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [6,4,2,2]
=> [4,4,2,2,1,1]
=> ? = 0
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [6,2,2,2]
=> [4,4,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [6,2,2,2]
=> [4,4,1,1,1,1]
=> 0
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 0
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [9,6]
=> [2,2,2,2,2,2,1,1,1]
=> ? = 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [8,6,6]
=> [3,3,3,3,3,3,1,1]
=> ? = 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> ? = 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> [2,2,2,2,2,1]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [6,5,3,3]
=> [4,4,4,2,2,1]
=> ? = 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [7,4]
=> [2,2,2,2,1,1,1]
=> 0
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [9,2,2]
=> [3,3,1,1,1,1,1,1,1]
=> ? = 0
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [8,5,2]
=> [3,3,2,2,2,1,1,1]
=> ? = 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> ? = 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> 0
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 0
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 0
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> 0
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [6,3,3]
=> [3,3,3,1,1,1]
=> 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [7,4]
=> [2,2,2,2,1,1,1]
=> 0
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ?
=> ?
=> ? = 0
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1
([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,7),(6,1),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,7),(4,7),(5,1),(6,5),(7,6)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ([(0,2),(0,3),(0,4),(2,7),(3,6),(4,6),(5,1),(6,7),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1)],8)
=> ?
=> ?
=> ? = 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,2),(7,1),(7,5)],8)
=> ?
=> ?
=> ? = 0
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,7),(7,2)],8)
=> ?
=> ?
=> ? = 0
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [7,5]
=> [2,2,2,2,2,1,1]
=> 0
Description
The Grundy value for the game 'Couples are forever' on an integer partition. Two players alternately choose a part of the partition greater than two, and split it into two parts. The player facing a partition with all parts at most two looses.
Matching statistic: St001571
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001571: Integer partitions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 67%
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> 1 = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 1 = 0 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [6,4]
=> [2,2,2,2,1,1]
=> 1 = 0 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 1 = 0 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> [3,3,3,1,1]
=> 2 = 1 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [9,6]
=> [2,2,2,2,2,2,1,1,1]
=> ? = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [6,2,2,2]
=> [4,4,1,1,1,1]
=> ? = 0 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [16]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [9,2,2]
=> [3,3,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [6,3,3]
=> [3,3,3,1,1,1]
=> ? = 1 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> [2,2,2,2,2,1]
=> 1 = 0 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [6,4,4,4]
=> [4,4,4,4,1,1]
=> ? = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [6,4,2,2]
=> [4,4,2,2,1,1]
=> ? = 0 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [6,2,2,2]
=> [4,4,1,1,1,1]
=> ? = 0 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [6,2,2,2]
=> [4,4,1,1,1,1]
=> ? = 0 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 1 = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [9,6]
=> [2,2,2,2,2,2,1,1,1]
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [8,6,6]
=> [3,3,3,3,3,3,1,1]
=> ? = 1 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> [2,2,2,2,2,1]
=> 1 = 0 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> [6,5,3,3]
=> [4,4,4,2,2,1]
=> ? = 1 + 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [7,4]
=> [2,2,2,2,1,1,1]
=> 1 = 0 + 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> [9,2,2]
=> [3,3,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> [8,5,2]
=> [3,3,2,2,2,1,1,1]
=> ? = 1 + 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> [10,3]
=> [2,2,2,1,1,1,1,1,1,1]
=> ? = 1 + 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 1 = 0 + 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 2 + 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> ? = 0 + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 0 + 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [6,3,3]
=> [3,3,3,1,1,1]
=> ? = 1 + 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [7,4]
=> [2,2,2,2,1,1,1]
=> 1 = 0 + 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 1 = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(6,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,7),(5,1),(6,2),(6,3),(6,4),(7,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,3),(4,7),(5,1),(5,2),(5,4),(7,6)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,6),(5,2),(5,3),(5,4),(6,7),(7,1)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,4),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,2),(6,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ([(0,3),(0,6),(1,7),(2,7),(3,7),(4,2),(5,1),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ([(0,3),(0,5),(1,7),(2,6),(3,7),(4,1),(4,6),(5,2),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ([(0,6),(1,7),(2,7),(3,7),(4,3),(5,1),(5,2),(6,4),(6,5)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ([(0,5),(1,7),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7)],8)
=> ?
=> ?
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ([(0,2),(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,1),(6,5)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ([(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(6,1),(6,2),(6,3),(6,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ([(0,2),(0,3),(0,6),(1,7),(2,7),(3,7),(4,5),(5,1),(6,4)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ([(0,3),(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2)],8)
=> ?
=> ?
=> ? = 0 + 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ?
=> ?
=> ? = 0 + 1
Description
The Cartan determinant of the integer partition. Let $p=[p_1,...,p_r]$ be a given integer partition with highest part t. Let $A=K[x]/(x^t)$ be the finite dimensional algebra over the field $K$ and $M$ the direct sum of the indecomposable $A$-modules of vector space dimension $p_i$ for each $i$. Then the Cartan determinant of $p$ is the Cartan determinant of the endomorphism algebra of $M$ over $A$. Explicitly, this is the determinant of the matrix $\left(\min(\bar p_i, \bar p_j)\right)_{i,j}$, where $\bar p$ is the set of distinct parts of the partition.