searching the database
Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001880
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00223: Permutations —runsort⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[.,[[[.,.],[[.,.],.]],.]]
=> [2,4,5,3,6,1] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[.,[[[[.,.],.],[.,.]],.]]
=> [2,3,5,4,6,1] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[.,[[[[.,.],[.,.]],.],.]]
=> [2,4,3,5,6,1] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[.,.],[[.,[[.,.],.]],.]]
=> [1,4,5,3,6,2] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 4
[[.,.],[[[.,.],[.,.]],.]]
=> [1,3,5,4,6,2] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[[.,.],[[[.,[.,.]],.],.]]
=> [1,4,3,5,6,2] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[[.,.],.],[[.,[.,.]],.]]
=> [1,2,5,4,6,3] => [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[[[.,.],[[[.,.],.],.]],.]
=> [1,3,4,5,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[[.,[.,.]],[[.,.],.]],.]
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 4
[[[[.,.],.],[[.,.],.]],.]
=> [1,2,4,5,3,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [3,2,1,5,4,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[[.,[[.,.],.]],[.,.]],.]
=> [2,3,1,5,4,6] => [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[[[.,[.,.]],.],[.,.]],.]
=> [2,1,3,5,4,6] => [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[[[[[.,.],.],.],[.,.]],.]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[[[[.,.],[[.,.],.]],.],.]
=> [1,3,4,2,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[[[[.,[.,.]],[.,.]],.],.]
=> [2,1,4,3,5,6] => [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[[[[[.,.],.],[.,.]],.],.]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[[[[[.,.],[.,.]],.],.],.]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001004
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 76% ●values known / values provided: 76%●distinct values known / distinct values provided: 100%
Mp00223: Permutations —runsort⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St001004: Permutations ⟶ ℤResult quality: 76% ●values known / values provided: 76%●distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 3
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [1,2,3] => 3
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 3
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 4
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [1,2,3,4] => 4
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 4
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 4
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,2,4,3,5] => [1,2,4,3,5] => 5
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,4,2,3,5] => [1,4,3,2,5] => 4
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => 4
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [1,4,2,3,5] => [1,4,3,2,5] => 4
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 5
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 5
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 6
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => [1,2,5,3,4,6] => [1,2,5,4,3,6] => 5
[.,[[[.,.],[[.,.],.]],.]]
=> [2,4,5,3,6,1] => [1,2,4,5,3,6] => [1,2,5,4,3,6] => 5
[.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => [1,2,5,3,4,6] => [1,2,5,4,3,6] => 5
[.,[[[[.,.],.],[.,.]],.]]
=> [2,3,5,4,6,1] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 6
[.,[[[[.,.],[.,.]],.],.]]
=> [2,4,3,5,6,1] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 6
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => [1,5,2,3,4,6] => [1,5,3,4,2,6] => 4
[[.,.],[[.,[[.,.],.]],.]]
=> [1,4,5,3,6,2] => [1,4,5,2,3,6] => [1,5,4,3,2,6] => 4
[[.,.],[[[.,.],[.,.]],.]]
=> [1,3,5,4,6,2] => [1,3,5,2,4,6] => [1,4,5,2,3,6] => 6
[[.,.],[[[.,[.,.]],.],.]]
=> [1,4,3,5,6,2] => [1,4,2,3,5,6] => [1,4,3,2,5,6] => 5
[[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => [1,5,2,3,4,6] => [1,5,3,4,2,6] => 4
[[[.,.],.],[[.,[.,.]],.]]
=> [1,2,5,4,6,3] => [1,2,5,3,4,6] => [1,2,5,4,3,6] => 5
[[[.,.],[[[.,.],.],.]],.]
=> [1,3,4,5,2,6] => [1,3,4,5,2,6] => [1,5,3,4,2,6] => 4
[[[.,[.,.]],[[.,.],.]],.]
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => [1,5,4,3,2,6] => 4
[[[[.,.],.],[[.,.],.]],.]
=> [1,2,4,5,3,6] => [1,2,4,5,3,6] => [1,2,5,4,3,6] => 5
[[[.,[.,[.,.]]],[.,.]],.]
=> [3,2,1,5,4,6] => [1,5,2,3,4,6] => [1,5,3,4,2,6] => 4
[[[.,[[.,.],.]],[.,.]],.]
=> [2,3,1,5,4,6] => [1,5,2,3,4,6] => [1,5,3,4,2,6] => 4
[[[[.,[.,.]],.],[.,.]],.]
=> [2,1,3,5,4,6] => [1,3,5,2,4,6] => [1,4,5,2,3,6] => 6
[[[[[.,.],.],.],[.,.]],.]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => 6
[[[[.,.],[[.,.],.]],.],.]
=> [1,3,4,2,5,6] => [1,3,4,2,5,6] => [1,4,3,2,5,6] => 5
[[[[.,[.,.]],[.,.]],.],.]
=> [2,1,4,3,5,6] => [1,4,2,3,5,6] => [1,4,3,2,5,6] => 5
[[[[[.,.],.],[.,.]],.],.]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => 6
[[[[[.,.],[.,.]],.],.],.]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => 6
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => 6
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 7
[[.,.],[.,[.,[[.,[.,.]],.]]]]
=> [1,6,5,7,4,3,2] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[.,.],[.,[[.,[[.,.],.]],.]]]
=> [1,5,6,4,7,3,2] => [1,5,6,2,3,4,7] => [1,6,5,4,3,2,7] => ? = 4
[[.,.],[.,[[[.,.],[.,.]],.]]]
=> [1,4,6,5,7,3,2] => [1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => ? = 6
[[.,.],[.,[[[.,[.,.]],.],.]]]
=> [1,5,4,6,7,3,2] => [1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => ? = 5
[[.,.],[[.,[[[.,.],.],.]],.]]
=> [1,4,5,6,3,7,2] => [1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => ? = 4
[[.,.],[[[.,.],[[.,.],.]],.]]
=> [1,3,5,6,4,7,2] => [1,3,5,6,2,4,7] => [1,5,6,4,2,3,7] => ? = 6
[[.,.],[[[[.,.],.],[.,.]],.]]
=> [1,3,4,6,5,7,2] => [1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => ? = 6
[[.,.],[[[.,[[.,.],.]],.],.]]
=> [1,4,5,3,6,7,2] => [1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => ? = 5
[[.,[.,.]],[.,[[.,[.,.]],.]]]
=> [2,1,6,5,7,4,3] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[.,[.,.]],[[.,[[.,.],.]],.]]
=> [2,1,5,6,4,7,3] => [1,5,6,2,3,4,7] => [1,6,5,4,3,2,7] => ? = 4
[[.,[.,.]],[[[.,.],[.,.]],.]]
=> [2,1,4,6,5,7,3] => [1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => ? = 6
[[.,[.,.]],[[[.,[.,.]],.],.]]
=> [2,1,5,4,6,7,3] => [1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => ? = 5
[[.,[.,[.,.]]],[[.,[.,.]],.]]
=> [3,2,1,6,5,7,4] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[.,[[.,.],.]],[[.,[.,.]],.]]
=> [2,3,1,6,5,7,4] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[[.,.],[[[[.,.],.],.],.]],.]
=> [1,3,4,5,6,2,7] => [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? = 4
[[[.,[.,.]],[[[.,.],.],.]],.]
=> [2,1,4,5,6,3,7] => [1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => ? = 4
[[[.,[.,[.,.]]],[[.,.],.]],.]
=> [3,2,1,5,6,4,7] => [1,5,6,2,3,4,7] => [1,6,5,4,3,2,7] => ? = 4
[[[.,[[.,.],.]],[[.,.],.]],.]
=> [2,3,1,5,6,4,7] => [1,5,6,2,3,4,7] => [1,6,5,4,3,2,7] => ? = 4
[[[[.,[.,.]],.],[[.,.],.]],.]
=> [2,1,3,5,6,4,7] => [1,3,5,6,2,4,7] => [1,5,6,4,2,3,7] => ? = 6
[[[.,[.,[.,[.,.]]]],[.,.]],.]
=> [4,3,2,1,6,5,7] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[[.,[.,[[.,.],.]]],[.,.]],.]
=> [3,4,2,1,6,5,7] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[[.,[[.,.],[.,.]]],[.,.]],.]
=> [2,4,3,1,6,5,7] => [1,6,2,4,3,5,7] => [1,6,3,5,4,2,7] => ? = 4
[[[.,[[.,[.,.]],.]],[.,.]],.]
=> [3,2,4,1,6,5,7] => [1,6,2,4,3,5,7] => [1,6,3,5,4,2,7] => ? = 4
[[[.,[[[.,.],.],.]],[.,.]],.]
=> [2,3,4,1,6,5,7] => [1,6,2,3,4,5,7] => [1,6,3,4,5,2,7] => ? = 4
[[[[.,[.,[.,.]]],.],[.,.]],.]
=> [3,2,1,4,6,5,7] => [1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => ? = 6
[[[[.,[[.,.],.]],.],[.,.]],.]
=> [2,3,1,4,6,5,7] => [1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => ? = 6
[[[[[.,[.,.]],.],.],[.,.]],.]
=> [2,1,3,4,6,5,7] => [1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => ? = 6
[[[[.,.],[[[.,.],.],.]],.],.]
=> [1,3,4,5,2,6,7] => [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 5
[[[[.,[.,.]],[[.,.],.]],.],.]
=> [2,1,4,5,3,6,7] => [1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => ? = 5
[[[[.,[.,[.,.]]],[.,.]],.],.]
=> [3,2,1,5,4,6,7] => [1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => ? = 5
[[[[.,[[.,.],.]],[.,.]],.],.]
=> [2,3,1,5,4,6,7] => [1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => ? = 5
Description
The number of indices that are either left-to-right maxima or right-to-left minima.
The (bivariate) generating function for this statistic is (essentially) given in [1], the mid points of a $321$ pattern in the permutation are those elements which are neither left-to-right maxima nor a right-to-left minima, see [[St000371]] and [[St000372]].
Matching statistic: St001879
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 100%
St001879: Posets ⟶ ℤResult quality: 19% ●values known / values provided: 19%●distinct values known / distinct values provided: 100%
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 4 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 5 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 5 - 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[.,[[[[.,.],.],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 - 1
[[.,.],[[.,[[.,.],.]],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 - 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 6 - 1
[[.,.],[[[.,[.,.]],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 - 1
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 4 - 1
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 1
[[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 4 - 1
[[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ? = 5 - 1
[[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 1
[[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 6 - 1
[[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 5 - 1
[[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ? = 6 - 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ? = 6 - 1
[[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 7 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 6 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 7 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 7 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 5 - 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 5 - 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 7 - 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 6 - 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 5 - 1
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 6 - 1
[.,[[[.,.],[[[.,.],.],.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 5 - 1
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 5 - 1
[.,[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 6 - 1
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 5 - 1
[.,[[[.,[[.,.],.]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 5 - 1
[.,[[[[.,[.,.]],.],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 7 - 1
[.,[[[[[.,.],.],.],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 7 - 1
[.,[[[[.,.],[[.,.],.]],.],.]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 6 - 1
[.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001330
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[.,[[[[.,.],.],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[.,.],[[.,[[.,.],.]],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[.,.],[[[.,[.,.]],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[[[.,.],[[[.,.],.],.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[[.,[[.,.],.]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[.,[[[[.,[.,.]],.],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[[[[[.,.],.],.],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 7
[.,[[[[.,.],[[.,.],.]],.],.]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[.,[[[[[[.,.],.],.],.],.],.]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
[[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St001623
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 2 = 3 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3 = 4 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3 = 4 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 3 = 4 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4 = 5 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4 = 5 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 4 = 5 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4 = 5 - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 4 = 5 - 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 5 = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 5 = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 5 = 6 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 5 = 6 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 5 - 1
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 - 1
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 - 1
[.,[[[[.,.],.],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 - 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 - 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 5 = 6 - 1
[[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 - 1
[[.,.],[[.,[[.,.],.]],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 - 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 6 - 1
[[.,.],[[[.,[.,.]],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 5 - 1
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 - 1
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5 - 1
[[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 - 1
[[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 4 - 1
[[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5 - 1
[[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 - 1
[[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 - 1
[[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 - 1
[[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 - 1
[[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 - 1
[[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 - 1
[[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 - 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 - 1
[[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 5 = 6 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 6 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 7 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 - 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 - 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([(0,3),(0,4),(0,5),(1,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(7,1),(7,11),(8,13),(9,13),(10,7),(10,13),(11,12),(12,6),(13,11)],14)
=> ? = 7 - 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 6 - 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 5 - 1
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 6 - 1
[.,[[[.,.],[[[.,.],.],.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 - 1
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 5 - 1
[.,[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 6 - 1
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 - 1
[.,[[[.,[[.,.],.]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 - 1
[.,[[[[.,[.,.]],.],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 7 - 1
Description
The number of doubly irreducible elements of a lattice.
An element $d$ of a lattice $L$ is '''doubly irreducible''' if it is both join and meet irreducible. That means, $d$ is neither the least nor the greatest element of $L$ and if $d=x\vee y$ or $d=x\wedge y$, then $d\in\{x,y\}$ for all $x,y\in L$.
In a finite lattice, the doubly irreducible elements are those which cover and are covered by a unique element.
Matching statistic: St001875
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5 = 4 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 6 = 5 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4 + 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 6 = 5 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 5 + 1
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[.,[[[[.,.],.],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 + 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[[.,.],[[.,[[.,.],.]],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 6 + 1
[[.,.],[[[.,[.,.]],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 5 + 1
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 1
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5 + 1
[[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 4 + 1
[[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5 + 1
[[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 + 1
[[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 + 1
[[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 + 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 6 + 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 + 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 + 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 7 + 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 + 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 + 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([(0,3),(0,4),(0,5),(1,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(7,1),(7,11),(8,13),(9,13),(10,7),(10,13),(11,12),(12,6),(13,11)],14)
=> ? = 7 + 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 6 + 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 5 + 1
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 6 + 1
[.,[[[.,.],[[[.,.],.],.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 5 + 1
[.,[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 6 + 1
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
[.,[[[.,[[.,.],.]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
[.,[[[[.,[.,.]],.],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 7 + 1
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000528
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5 = 4 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4 + 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 5 + 1
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[.,[[[[.,.],.],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 + 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[[.,.],[[.,[[.,.],.]],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 6 + 1
[[.,.],[[[.,[.,.]],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 5 + 1
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 1
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5 + 1
[[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 4 + 1
[[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5 + 1
[[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 + 1
[[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 + 1
[[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 + 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 6 + 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 + 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 + 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 7 + 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 + 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 + 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([(0,3),(0,4),(0,5),(1,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(7,1),(7,11),(8,13),(9,13),(10,7),(10,13),(11,12),(12,6),(13,11)],14)
=> ([(0,3),(0,4),(0,5),(1,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(7,1),(7,11),(8,13),(9,13),(10,7),(10,13),(11,12),(12,6),(13,11)],14)
=> ? = 7 + 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 6 + 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 5 + 1
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 6 + 1
[.,[[[.,.],[[[.,.],.],.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 5 + 1
[.,[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 6 + 1
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
Description
The height of a poset.
This equals the rank of the poset [[St000080]] plus one.
Matching statistic: St000912
Values
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 5 = 4 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 4 + 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 + 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 5 + 1
[.,[[[.,.],[[.,.],.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[.,[[[.,[.,.]],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[.,[[[[.,.],.],[.,.]],.]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 + 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[[.,.],[[.,[[.,.],.]],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 6 + 1
[[.,.],[[[.,[.,.]],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 5 + 1
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 1
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 5 + 1
[[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 4 + 1
[[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 5 + 1
[[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 + 1
[[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 6 + 1
[[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 5 + 1
[[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 6 + 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 6 + 1
[[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 6 + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 6 + 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 + 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 6 + 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ([(0,3),(0,7),(2,9),(3,8),(4,6),(5,4),(6,1),(7,2),(7,8),(8,9),(9,5)],10)
=> ? = 7 + 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> ? = 7 + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 7 + 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 + 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 5 + 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([(0,3),(0,4),(0,5),(1,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(7,1),(7,11),(8,13),(9,13),(10,7),(10,13),(11,12),(12,6),(13,11)],14)
=> ([(0,3),(0,4),(0,5),(1,12),(3,8),(3,9),(4,9),(4,10),(5,8),(5,10),(6,2),(7,1),(7,11),(8,13),(9,13),(10,7),(10,13),(11,12),(12,6),(13,11)],14)
=> ? = 7 + 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ([(0,3),(0,7),(2,11),(3,8),(4,1),(5,6),(5,10),(6,2),(6,9),(7,5),(7,8),(8,10),(9,11),(10,9),(11,4)],12)
=> ? = 6 + 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 5 + 1
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ([(0,6),(0,7),(2,9),(3,10),(4,1),(5,3),(5,11),(6,5),(6,8),(7,2),(7,8),(8,9),(8,11),(9,12),(10,13),(11,10),(11,12),(12,13),(13,4)],14)
=> ? = 6 + 1
[.,[[[.,.],[[[.,.],.],.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 5 + 1
[.,[[[[.,.],.],[[.,.],.]],.]]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ([(0,6),(0,7),(2,10),(3,9),(4,1),(5,4),(6,3),(6,8),(7,2),(7,8),(8,9),(8,10),(9,11),(10,11),(11,5)],12)
=> ? = 6 + 1
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ([(0,3),(0,7),(2,10),(3,8),(4,5),(5,1),(6,2),(6,9),(7,6),(7,8),(8,9),(9,10),(10,4)],11)
=> ? = 5 + 1
Description
The number of maximal antichains in a poset.
Matching statistic: St001514
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001514: Dyck paths ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 60%
Mp00223: Permutations —runsort⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001514: Dyck paths ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 60%
Values
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 3 - 1
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 3 - 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 - 1
[.,[[[.,.],[[.,.],.]],.]]
=> [2,4,5,3,6,1] => [1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 5 - 1
[.,[[[.,[.,.]],[.,.]],.]]
=> [3,2,5,4,6,1] => [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 - 1
[.,[[[[.,.],.],[.,.]],.]]
=> [2,3,5,4,6,1] => [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[.,[[[[.,.],[.,.]],.],.]]
=> [2,4,3,5,6,1] => [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 - 1
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => [1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
[[.,.],[[.,[[.,.],.]],.]]
=> [1,4,5,3,6,2] => [1,4,5,2,3,6] => [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[[.,.],[[[.,.],[.,.]],.]]
=> [1,3,5,4,6,2] => [1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 6 - 1
[[.,.],[[[.,[.,.]],.],.]]
=> [1,4,3,5,6,2] => [1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 5 - 1
[[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => [1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
[[[.,.],.],[[.,[.,.]],.]]
=> [1,2,5,4,6,3] => [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 5 - 1
[[[.,.],[[[.,.],.],.]],.]
=> [1,3,4,5,2,6] => [1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 4 - 1
[[[.,[.,.]],[[.,.],.]],.]
=> [2,1,4,5,3,6] => [1,4,5,2,3,6] => [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[[[[.,.],.],[[.,.],.]],.]
=> [1,2,4,5,3,6] => [1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 5 - 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [3,2,1,5,4,6] => [1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
[[[.,[[.,.],.]],[.,.]],.]
=> [2,3,1,5,4,6] => [1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
[[[[.,[.,.]],.],[.,.]],.]
=> [2,1,3,5,4,6] => [1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 6 - 1
[[[[[.,.],.],.],[.,.]],.]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 6 - 1
[[[[.,.],[[.,.],.]],.],.]
=> [1,3,4,2,5,6] => [1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 5 - 1
[[[[.,[.,.]],[.,.]],.],.]
=> [2,1,4,3,5,6] => [1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 5 - 1
[[[[[.,.],.],[.,.]],.],.]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 6 - 1
[[[[[.,.],[.,.]],.],.],.]
=> [1,3,2,4,5,6] => [1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => [1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 7 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => [1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 6 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [3,5,6,4,7,2,1] => [1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => [1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 6 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => [1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 7 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [3,5,4,6,7,2,1] => [1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 7 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [2,6,5,7,4,3,1] => [1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5 - 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [2,5,6,4,7,3,1] => [1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 5 - 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [2,4,6,5,7,3,1] => [1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 7 - 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [2,5,4,6,7,3,1] => [1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6 - 1
[.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [3,2,6,5,7,4,1] => [1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5 - 1
[.,[[[.,.],.],[[.,[.,.]],.]]]
=> [2,3,6,5,7,4,1] => [1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 6 - 1
[.,[[[.,.],[[[.,.],.],.]],.]]
=> [2,4,5,6,3,7,1] => [1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 5 - 1
[.,[[[.,[.,.]],[[.,.],.]],.]]
=> [3,2,5,6,4,7,1] => [1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 5 - 1
[.,[[[[.,.],.],[[.,.],.]],.]]
=> [2,3,5,6,4,7,1] => [1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 6 - 1
[.,[[[.,[.,[.,.]]],[.,.]],.]]
=> [4,3,2,6,5,7,1] => [1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5 - 1
Description
The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule.
Matching statistic: St001637
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00141: Binary trees —pruning number to logarithmic height⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001637: Posets ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 60%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001637: Posets ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 60%
Values
[.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[[.,.],.],.]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
[[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 5 - 1
[.,[[[[.,.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 4 - 1
[[[.,.],[[.,.],.]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 4 - 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 4 - 1
[[[[.,.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 5 - 1
[[[[.,.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 5 - 1
[[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 6 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 6 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 6 - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 6 - 1
[.,[.,[[[[.,.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 6 - 1
[.,[[.,.],[[.,[.,.]],.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 5 - 1
[.,[[[.,.],[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 5 - 1
[.,[[[.,[.,.]],[.,.]],.]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 5 - 1
[.,[[[[.,.],.],[.,.]],.]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 6 - 1
[.,[[[[.,.],[.,.]],.],.]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 6 - 1
[.,[[[[[.,.],.],.],.],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 6 - 1
[[.,.],[.,[[.,[.,.]],.]]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 1
[[.,.],[[.,[[.,.],.]],.]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 4 - 1
[[.,.],[[[.,.],[.,.]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 6 - 1
[[.,.],[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 - 1
[[.,[.,.]],[[.,[.,.]],.]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 4 - 1
[[[.,.],.],[[.,[.,.]],.]]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 5 - 1
[[[.,.],[[[.,.],.],.]],.]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 4 - 1
[[[.,[.,.]],[[.,.],.]],.]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 4 - 1
[[[[.,.],.],[[.,.],.]],.]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 5 - 1
[[[.,[.,[.,.]]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 4 - 1
[[[.,[[.,.],.]],[.,.]],.]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 4 - 1
[[[[.,[.,.]],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 6 - 1
[[[[[.,.],.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 6 - 1
[[[[.,.],[[.,.],.]],.],.]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 5 - 1
[[[[.,[.,.]],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 5 - 1
[[[[[.,.],.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 6 - 1
[[[[[.,.],[.,.]],.],.],.]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 6 - 1
[[[[[[.,.],.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 6 - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 7 - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 7 - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 7 - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ? = 7 - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 7 - 1
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 - 1
[.,[.,[[[.,.],[[.,.],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 - 1
[.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9)
=> ? = 6 - 1
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,6),(4,1),(4,7),(5,3),(6,2),(6,4),(7,8)],9)
=> ? = 7 - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ? = 7 - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 7 - 1
[.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 5 - 1
[.,[[.,.],[[.,[[.,.],.]],.]]]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 5 - 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> ? = 7 - 1
[.,[[.,.],[[[.,[.,.]],.],.]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 - 1
Description
The number of (upper) dissectors of a poset.
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001668The number of points of the poset minus the width of the poset. St000080The rank of the poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001434The number of negative sum pairs of a signed permutation. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001782The order of rowmotion on the set of order ideals of a poset. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!