Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001945
St001945: Finite Cartan types ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> 2
['A',2]
=> 4
['B',2]
=> 5
['G',2]
=> 7
['A',3]
=> 9
['B',3]
=> 16
['C',3]
=> 16
['A',4]
=> 16
['B',4]
=> 54
['C',4]
=> 54
['D',4]
=> 27
['F',4]
=> 78
['A',5]
=> 29
['B',5]
=> 140
['C',5]
=> 140
['D',5]
=> 78
['A',6]
=> 55
['A',7]
=> 137
['A',8]
=> 241
Description
The number of non-isomorphic subgroups of the Weyl group of a finite Cartan type. This statistic returns the number of non-isomorphic abstract groups. See [[St001155]] for the number of conjugacy classes of subgroups.
Matching statistic: St001218
Mp00148: Finite Cartan types to root posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001218: Dyck paths ⟶ ℤResult quality: 26% values known / values provided: 26%distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0]
=> 3 = 2 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 5 = 4 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 6 = 5 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 8 = 7 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 10 = 9 + 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 16 + 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 16 + 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 16 + 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 54 + 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 54 + 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 27 + 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [11,7,5,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 78 + 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? = 29 + 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 140 + 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [9,7,5,3,1]
=> [1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 140 + 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [7,5,4,3,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> ? = 78 + 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [6,5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 55 + 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 137 + 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 241 + 1
Description
Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. It returns zero in case there is no such k.
Matching statistic: St001317
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001317: Graphs ⟶ ℤResult quality: 26% values known / values provided: 26%distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 7 = 9 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 16 - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ([(0,8),(0,9),(1,7),(1,9),(2,6),(2,9),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 16 - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> ([(0,8),(0,10),(1,7),(1,10),(2,5),(2,6),(2,10),(3,7),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,10),(8,10),(9,10)],11)
=> ? = 16 - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 54 - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,15),(0,16),(1,11),(1,16),(2,10),(2,16),(3,13),(3,15),(3,16),(4,14),(4,15),(4,16),(5,10),(5,13),(5,16),(6,11),(6,14),(6,16),(7,8),(7,9),(7,12),(7,16),(8,10),(8,13),(8,16),(9,11),(9,14),(9,16),(10,16),(11,16),(12,13),(12,14),(12,15),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 54 - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,11),(0,12),(1,10),(1,12),(2,9),(2,12),(3,8),(3,12),(4,8),(4,9),(4,10),(4,12),(5,8),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 27 - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(0,15),(1,16),(2,9),(3,15),(3,22),(4,16),(4,22),(5,17),(5,19),(6,12),(6,17),(7,9),(7,12),(8,13),(8,18),(10,18),(10,19),(10,22),(11,20),(11,21),(11,23),(12,14),(13,14),(13,23),(14,17),(15,20),(16,21),(17,23),(18,20),(18,23),(19,21),(19,23),(20,22),(21,22)],24)
=> ([(0,15),(0,24),(1,16),(1,24),(2,9),(2,24),(3,15),(3,22),(3,24),(4,16),(4,22),(4,24),(5,17),(5,19),(5,24),(6,12),(6,17),(6,24),(7,9),(7,12),(7,24),(8,13),(8,18),(8,24),(9,24),(10,18),(10,19),(10,22),(10,24),(11,20),(11,21),(11,23),(11,24),(12,14),(12,24),(13,14),(13,23),(13,24),(14,17),(14,24),(15,20),(15,24),(16,21),(16,24),(17,23),(17,24),(18,20),(18,23),(18,24),(19,21),(19,23),(19,24),(20,22),(20,24),(21,22),(21,24),(22,24),(23,24)],25)
=> ? = 78 - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,11),(0,15),(1,10),(1,15),(2,8),(2,9),(2,15),(3,10),(3,13),(3,15),(4,11),(4,14),(4,15),(5,13),(5,14),(5,15),(6,8),(6,10),(6,13),(6,15),(7,9),(7,11),(7,14),(7,15),(8,12),(8,15),(9,12),(9,15),(10,15),(11,15),(12,13),(12,14),(12,15),(13,15),(14,15)],16)
=> ? = 29 - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? = 140 - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(0,24),(1,15),(2,14),(3,20),(3,22),(4,21),(4,23),(5,20),(5,24),(6,21),(6,24),(7,14),(7,22),(8,15),(8,23),(9,12),(9,14),(9,22),(10,13),(10,15),(10,23),(11,12),(11,13),(11,17),(12,18),(13,19),(16,17),(16,20),(16,21),(16,24),(17,18),(17,19),(18,20),(18,22),(19,21),(19,23)],25)
=> ([(0,24),(0,25),(1,15),(1,25),(2,14),(2,25),(3,20),(3,22),(3,25),(4,21),(4,23),(4,25),(5,20),(5,24),(5,25),(6,21),(6,24),(6,25),(7,14),(7,22),(7,25),(8,15),(8,23),(8,25),(9,12),(9,14),(9,22),(9,25),(10,13),(10,15),(10,23),(10,25),(11,12),(11,13),(11,17),(11,25),(12,18),(12,25),(13,19),(13,25),(14,25),(15,25),(16,17),(16,20),(16,21),(16,24),(16,25),(17,18),(17,19),(17,25),(18,20),(18,22),(18,25),(19,21),(19,23),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25)],26)
=> ? = 140 - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(0,17),(1,16),(2,11),(3,10),(4,10),(4,18),(5,11),(5,19),(6,16),(6,17),(6,18),(7,16),(7,17),(7,19),(8,12),(8,13),(8,14),(9,12),(9,13),(9,15),(10,12),(11,13),(12,18),(13,19),(14,16),(14,18),(14,19),(15,17),(15,18),(15,19)],20)
=> ([(0,17),(0,20),(1,16),(1,20),(2,11),(2,20),(3,10),(3,20),(4,10),(4,18),(4,20),(5,11),(5,19),(5,20),(6,16),(6,17),(6,18),(6,20),(7,16),(7,17),(7,19),(7,20),(8,12),(8,13),(8,14),(8,20),(9,12),(9,13),(9,15),(9,20),(10,12),(10,20),(11,13),(11,20),(12,18),(12,20),(13,19),(13,20),(14,16),(14,18),(14,19),(14,20),(15,17),(15,18),(15,19),(15,20),(16,20),(17,20),(18,20),(19,20)],21)
=> ? = 78 - 2
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,11),(4,12),(5,13),(5,18),(6,14),(6,19),(7,9),(7,13),(7,18),(8,10),(8,14),(8,19),(9,11),(9,15),(10,12),(10,16),(11,17),(12,17),(15,17),(15,18),(15,20),(16,17),(16,19),(16,20)],21)
=> ([(0,14),(0,21),(1,13),(1,21),(2,18),(2,20),(2,21),(3,19),(3,20),(3,21),(4,11),(4,12),(4,21),(5,13),(5,18),(5,21),(6,14),(6,19),(6,21),(7,9),(7,13),(7,18),(7,21),(8,10),(8,14),(8,19),(8,21),(9,11),(9,15),(9,21),(10,12),(10,16),(10,21),(11,17),(11,21),(12,17),(12,21),(13,21),(14,21),(15,17),(15,18),(15,20),(15,21),(16,17),(16,19),(16,20),(16,21),(17,21),(18,21),(19,21),(20,21)],22)
=> ? = 55 - 2
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 137 - 2
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 241 - 2
Description
The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. A graph is a forest if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,c)$ and $(b,c)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001798
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St001798: Graphs ⟶ ℤResult quality: 26% values known / values provided: 26%distinct values known / distinct values provided: 36%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 9 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 16 - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 16 - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 16 - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? = 54 - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? = 54 - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 27 - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? = 78 - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 29 - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? = 140 - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? = 140 - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? = 78 - 2
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ([(0,21),(1,2),(1,7),(1,16),(1,18),(1,20),(1,21),(2,6),(2,15),(2,17),(2,19),(2,21),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(3,21),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(4,21),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(5,21),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(6,21),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(7,21),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(11,21),(12,13),(12,16),(12,18),(12,19),(12,20),(12,21),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(15,16),(15,18),(15,20),(15,21),(16,17),(16,19),(16,21),(17,18),(17,20),(17,21),(18,19),(18,21),(19,20),(19,21),(20,21)],22)
=> ? = 55 - 2
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 137 - 2
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 241 - 2
Description
The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. Let $n(G)$ be the number of vertices of a graph $G$, $m(G)$ be its number of edges and let $\alpha(G)$ be its independence number, [[St000093]]. Turán's theorem is that $m(G) \geq m(T^c(n(G), \alpha(G)))$ where $T^c(n, r)$ is the complement of the Turán graph. This statistic records the difference.
Mp00148: Finite Cartan types to root posetPosets
St000643: Posets ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
['A',1]
=> ([],1)
=> ? = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> 3 = 4 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> 4 = 5 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 6 = 7 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> 8 = 9 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 16 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ? = 16 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ? = 16 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 54 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ? = 54 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ? = 27 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ? = 78 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ? = 29 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 140 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ? = 140 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ? = 78 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ? = 55 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ? = 137 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ? = 241 - 1
Description
The size of the largest orbit of antichains under Panyushev complementation.
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000870: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
['A',1]
=> ([],1)
=> [2]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 4
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 7
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 9
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 16
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 16
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 16
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 54
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 54
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? = 27
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? = 78
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? = 29
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 140
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 140
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? = 78
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> ? = 55
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 137
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 241
Description
The product of the hook lengths of the diagonal cells in an integer partition. For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.
Matching statistic: St000939
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000939: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
['A',1]
=> ([],1)
=> [2]
=> 1 = 2 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 3 = 4 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 4 = 5 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 6 = 7 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 9 - 1
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 16 - 1
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 16 - 1
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 16 - 1
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 54 - 1
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 54 - 1
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? = 27 - 1
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? = 78 - 1
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? = 29 - 1
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 140 - 1
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 140 - 1
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? = 78 - 1
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> ? = 55 - 1
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 137 - 1
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 241 - 1
Description
The number of characters of the symmetric group whose value on the partition is positive.
Matching statistic: St000506
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000506: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
['A',1]
=> ([],1)
=> [2]
=> 0 = 2 - 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> 2 = 4 - 2
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 3 = 5 - 2
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 5 = 7 - 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> ? = 9 - 2
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 16 - 2
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> ? = 16 - 2
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> ? = 16 - 2
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 54 - 2
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> ? = 54 - 2
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> ? = 27 - 2
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> ? = 78 - 2
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> ? = 29 - 2
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 140 - 2
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> ? = 140 - 2
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> ? = 78 - 2
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> ? = 55 - 2
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ? = 137 - 2
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ? = 241 - 2
Description
The number of standard desarrangement tableaux of shape equal to the given partition. A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation). This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also: * [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition * [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St000459
Mp00148: Finite Cartan types to root posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000459: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
['A',1]
=> ([],1)
=> [2]
=> [1,1]
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 4
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> 7
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [8,4,2]
=> [3,3,2,2,1,1,1,1]
=> ? = 9
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? = 16
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> [6,6,6,2]
=> [4,4,3,3,3,3]
=> ? = 16
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> [10,10,10,5,5,2]
=> [6,6,5,5,5,3,3,3,3,3]
=> ? = 16
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> [10,10,9,9,8,8,8,8]
=> ? = 54
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> [8,8,8,8,8,8,8,8,4,2]
=> [10,10,9,9,8,8,8,8]
=> ? = 54
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [6,6,6,6,6,6,6,3,3,2]
=> [10,10,9,7,7,7]
=> ? = 27
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> [12,12,12,12,12,12,12,12,4,3,2]
=> [11,11,10,9,8,8,8,8,8,8,8,8]
=> ? = 78
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [12,12,12,12,12,12,12,12,12,6,6,6,4,2]
=> [14,14,13,13,12,12,9,9,9,9,9,9]
=> ? = 29
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> [26,26,25,25,25,25,25,25,25,25]
=> ? = 140
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> [10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,2]
=> [26,26,25,25,25,25,25,25,25,25]
=> ? = 140
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> [16,16,16,16,16,16,16,8,8,8,8,8,8,8,8,4,2]
=> [17,17,16,16,15,15,15,15,7,7,7,7,7,7,7,7]
=> ? = 78
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> [14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,7,7,7,7,7,2]
=> [34,34,33,33,33,33,33,28,28,28,28,28,28,28]
=> ? = 55
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 137
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 241
Description
The hook length of the base cell of a partition. This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
Mp00148: Finite Cartan types to root posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St001725: Graphs ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 29%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 9
['B',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 16
['C',3]
=> ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(1,9),(2,7),(2,9),(3,5),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 16
['A',4]
=> ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,10),(1,2),(1,7),(1,9),(1,10),(2,6),(2,8),(2,10),(3,4),(3,6),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 16
['B',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? = 54
['C',4]
=> ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16)
=> ([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> ([(0,16),(1,16),(2,10),(2,16),(3,6),(3,10),(3,13),(3,16),(4,9),(4,11),(4,14),(4,15),(4,16),(5,12),(5,13),(5,14),(5,15),(5,16),(6,12),(6,14),(6,15),(6,16),(7,8),(7,9),(7,12),(7,14),(7,15),(7,16),(8,11),(8,13),(8,14),(8,15),(8,16),(9,11),(9,13),(9,15),(9,16),(10,12),(10,14),(10,15),(10,16),(11,12),(11,14),(11,15),(11,16),(12,13),(12,16),(13,14),(13,15),(13,16),(14,16),(15,16)],17)
=> ? = 54
['D',4]
=> ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> ([(0,12),(1,12),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,11),(3,12),(4,5),(4,7),(4,10),(4,12),(5,6),(5,9),(5,12),(6,7),(6,8),(6,10),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 27
['F',4]
=> ([(0,18),(1,19),(2,18),(2,22),(3,19),(3,22),(4,6),(6,5),(7,11),(8,16),(9,17),(10,13),(10,14),(11,4),(12,23),(13,8),(13,23),(14,9),(14,23),(15,11),(16,15),(17,7),(17,15),(18,20),(19,21),(20,12),(20,13),(21,12),(21,14),(22,10),(22,20),(22,21),(23,16),(23,17)],24)
=> ([(4,8),(5,20),(5,23),(6,7),(6,23),(7,8),(7,20),(8,23),(9,18),(9,19),(9,21),(9,22),(10,11),(10,18),(10,21),(10,22),(11,19),(11,21),(11,22),(12,15),(12,16),(12,17),(12,20),(12,23),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(14,15),(14,17),(14,18),(14,20),(14,21),(15,16),(15,19),(15,22),(15,23),(16,18),(16,20),(16,21),(17,18),(17,19),(17,21),(17,22),(18,19),(18,22),(18,23),(19,20),(19,21),(20,22),(20,23),(21,22),(21,23)],24)
=> ([(0,24),(1,24),(2,24),(3,24),(4,8),(4,24),(5,20),(5,23),(5,24),(6,7),(6,23),(6,24),(7,8),(7,20),(7,24),(8,23),(8,24),(9,18),(9,19),(9,21),(9,22),(9,24),(10,11),(10,18),(10,21),(10,22),(10,24),(11,19),(11,21),(11,22),(11,24),(12,15),(12,16),(12,17),(12,20),(12,23),(12,24),(13,14),(13,16),(13,17),(13,19),(13,22),(13,23),(13,24),(14,15),(14,17),(14,18),(14,20),(14,21),(14,24),(15,16),(15,19),(15,22),(15,23),(15,24),(16,18),(16,20),(16,21),(16,24),(17,18),(17,19),(17,21),(17,22),(17,24),(18,19),(18,22),(18,23),(18,24),(19,20),(19,21),(19,24),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24),(22,24),(23,24)],25)
=> ? = 78
['A',5]
=> ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(1,2),(1,10),(1,12),(1,14),(2,9),(2,11),(2,13),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,10),(8,12),(8,13),(8,14),(9,10),(9,12),(9,14),(10,11),(10,13),(11,12),(11,14),(12,13),(13,14)],15)
=> ([(0,15),(1,2),(1,10),(1,12),(1,14),(1,15),(2,9),(2,11),(2,13),(2,15),(3,7),(3,8),(3,11),(3,12),(3,13),(3,14),(3,15),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,10),(6,11),(6,12),(6,13),(6,14),(6,15),(7,8),(7,9),(7,11),(7,13),(7,14),(7,15),(8,10),(8,12),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,14),(11,15),(12,13),(12,15),(13,14),(13,15),(14,15)],16)
=> ? = 29
['B',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? = 140
['C',5]
=> ([(0,18),(1,17),(2,18),(2,24),(3,23),(3,24),(4,17),(4,23),(6,15),(7,16),(8,9),(9,5),(10,12),(11,13),(12,11),(13,14),(14,9),(15,7),(15,21),(16,8),(16,14),(17,10),(18,6),(18,19),(19,15),(19,22),(20,12),(20,22),(21,13),(21,16),(22,11),(22,21),(23,10),(23,20),(24,19),(24,20)],25)
=> ([(2,10),(3,6),(3,10),(3,20),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(5,6),(5,10),(5,15),(5,20),(5,21),(6,19),(6,22),(6,23),(6,24),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(10,19),(10,22),(10,23),(10,24),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(17,20),(17,21),(17,24),(18,20),(18,21),(18,23),(18,24),(19,20),(19,21),(20,22),(20,23),(20,24),(21,22),(21,23),(21,24)],25)
=> ([(0,25),(1,25),(2,10),(2,25),(3,6),(3,10),(3,20),(3,25),(4,5),(4,19),(4,20),(4,22),(4,23),(4,24),(4,25),(5,6),(5,10),(5,15),(5,20),(5,21),(5,25),(6,19),(6,22),(6,23),(6,24),(6,25),(7,15),(7,19),(7,20),(7,21),(7,22),(7,23),(7,24),(7,25),(8,9),(8,16),(8,17),(8,18),(8,22),(8,23),(8,24),(8,25),(9,14),(9,16),(9,17),(9,21),(9,23),(9,24),(9,25),(10,19),(10,22),(10,23),(10,24),(10,25),(11,14),(11,16),(11,17),(11,18),(11,21),(11,22),(11,23),(11,24),(11,25),(12,13),(12,17),(12,18),(12,19),(12,21),(12,22),(12,23),(12,24),(12,25),(13,14),(13,15),(13,16),(13,20),(13,21),(13,22),(13,23),(13,24),(13,25),(14,17),(14,18),(14,19),(14,22),(14,23),(14,24),(14,25),(15,17),(15,18),(15,19),(15,22),(15,23),(15,24),(15,25),(16,17),(16,18),(16,19),(16,22),(16,23),(16,24),(16,25),(17,20),(17,21),(17,24),(17,25),(18,20),(18,21),(18,23),(18,24),(18,25),(19,20),(19,21),(19,25),(20,22),(20,23),(20,24),(20,25),(21,22),(21,23),(21,24),(21,25),(22,25),(23,25),(24,25)],26)
=> ? = 140
['D',5]
=> ([(0,13),(1,16),(2,15),(3,13),(3,17),(4,15),(4,16),(4,17),(6,10),(7,19),(8,19),(9,18),(10,5),(11,7),(11,18),(12,8),(12,18),(13,14),(14,7),(14,8),(15,9),(15,11),(16,9),(16,12),(17,11),(17,12),(17,14),(18,6),(18,19),(19,10)],20)
=> ([(2,5),(3,8),(3,9),(3,15),(3,18),(3,19),(4,7),(4,16),(4,17),(4,18),(4,19),(5,8),(5,9),(5,15),(5,18),(5,19),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(8,9),(8,11),(8,13),(8,14),(8,17),(9,10),(9,12),(9,14),(9,16),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(12,13),(12,15),(12,17),(12,18),(12,19),(13,15),(13,16),(13,18),(13,19),(14,15),(14,18),(14,19),(15,16),(15,17),(16,17),(16,18),(16,19),(17,18),(17,19)],20)
=> ([(0,20),(1,20),(2,5),(2,20),(3,8),(3,9),(3,15),(3,18),(3,19),(3,20),(4,7),(4,16),(4,17),(4,18),(4,19),(4,20),(5,8),(5,9),(5,15),(5,18),(5,19),(5,20),(6,12),(6,13),(6,14),(6,16),(6,17),(6,18),(6,19),(6,20),(7,12),(7,13),(7,14),(7,16),(7,17),(7,19),(7,20),(8,9),(8,11),(8,13),(8,14),(8,17),(8,20),(9,10),(9,12),(9,14),(9,16),(9,20),(10,11),(10,13),(10,14),(10,15),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,16),(11,18),(11,19),(11,20),(12,13),(12,15),(12,17),(12,18),(12,19),(12,20),(13,15),(13,16),(13,18),(13,19),(13,20),(14,15),(14,18),(14,19),(14,20),(15,16),(15,17),(15,20),(16,17),(16,18),(16,19),(16,20),(17,18),(17,19),(17,20),(18,20),(19,20)],21)
=> ? = 78
['A',6]
=> ([(0,14),(1,13),(2,18),(2,20),(3,19),(3,20),(4,13),(4,18),(5,14),(5,19),(7,9),(8,10),(9,11),(10,12),(11,6),(12,6),(13,7),(14,8),(15,9),(15,17),(16,10),(16,17),(17,11),(17,12),(18,7),(18,15),(19,8),(19,16),(20,15),(20,16)],21)
=> ([(1,2),(1,7),(1,16),(1,18),(1,20),(2,6),(2,15),(2,17),(2,19),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(12,13),(12,16),(12,18),(12,19),(12,20),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(14,16),(14,17),(14,18),(14,19),(14,20),(15,16),(15,18),(15,20),(16,17),(16,19),(17,18),(17,20),(18,19),(19,20)],21)
=> ([(0,21),(1,2),(1,7),(1,16),(1,18),(1,20),(1,21),(2,6),(2,15),(2,17),(2,19),(2,21),(3,6),(3,7),(3,15),(3,16),(3,17),(3,18),(3,19),(3,20),(3,21),(4,5),(4,11),(4,12),(4,14),(4,15),(4,17),(4,18),(4,19),(4,20),(4,21),(5,11),(5,12),(5,13),(5,16),(5,17),(5,18),(5,19),(5,20),(5,21),(6,7),(6,9),(6,11),(6,13),(6,16),(6,18),(6,20),(6,21),(7,10),(7,12),(7,14),(7,15),(7,17),(7,19),(7,21),(8,11),(8,12),(8,13),(8,14),(8,15),(8,16),(8,17),(8,18),(8,19),(8,20),(8,21),(9,10),(9,12),(9,14),(9,15),(9,16),(9,17),(9,18),(9,19),(9,20),(9,21),(10,11),(10,13),(10,15),(10,16),(10,17),(10,18),(10,19),(10,20),(10,21),(11,12),(11,14),(11,15),(11,17),(11,19),(11,20),(11,21),(12,13),(12,16),(12,18),(12,19),(12,20),(12,21),(13,14),(13,15),(13,17),(13,18),(13,19),(13,20),(13,21),(14,16),(14,17),(14,18),(14,19),(14,20),(14,21),(15,16),(15,18),(15,20),(15,21),(16,17),(16,19),(16,21),(17,18),(17,20),(17,21),(18,19),(18,21),(19,20),(19,21),(20,21)],22)
=> ? = 55
['A',7]
=> ([(0,17),(1,16),(2,26),(2,27),(3,24),(3,26),(4,25),(4,27),(5,16),(5,24),(6,17),(6,25),(8,10),(9,11),(10,12),(11,13),(12,14),(13,15),(14,7),(15,7),(16,8),(17,9),(18,21),(18,22),(19,10),(19,21),(20,11),(20,22),(21,12),(21,23),(22,13),(22,23),(23,14),(23,15),(24,8),(24,19),(25,9),(25,20),(26,18),(26,19),(27,18),(27,20)],28)
=> ?
=> ?
=> ? = 137
['A',8]
=> ([(0,20),(1,19),(2,31),(2,33),(3,32),(3,33),(4,31),(4,34),(5,32),(5,35),(6,19),(6,34),(7,20),(7,35),(9,15),(10,16),(11,17),(12,18),(13,11),(14,12),(15,13),(16,14),(17,8),(18,8),(19,9),(20,10),(21,22),(21,23),(22,11),(22,24),(23,12),(23,24),(24,17),(24,18),(25,21),(25,27),(26,21),(26,28),(27,13),(27,22),(28,14),(28,23),(29,15),(29,27),(30,16),(30,28),(31,25),(31,29),(32,26),(32,30),(33,25),(33,26),(34,9),(34,29),(35,10),(35,30)],36)
=> ?
=> ?
=> ? = 241
Description
The harmonious chromatic number of a graph. A harmonious colouring is a proper vertex colouring such that any pair of colours appears at most once on adjacent vertices.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000479The Ramsey number of a graph. St001917The order of toric promotion on the set of labellings of a graph. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000450The number of edges minus the number of vertices plus 2 of a graph. St001117The game chromatic index of a graph. St001391The disjunction number of a graph. St001869The maximum cut size of a graph. St000095The number of triangles of a graph. St000309The number of vertices with even degree. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001706The number of closed sets in a graph. St001742The difference of the maximal and the minimal degree in a graph.