searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001949
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001949: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001949: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 1
[2] => ([],2)
=> 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2] => ([(1,2)],3)
=> 1
[2,1] => ([(0,2),(1,2)],3)
=> 1
[3] => ([],3)
=> 2
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3] => ([(2,3)],4)
=> 2
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4] => ([],4)
=> 3
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4] => ([(3,4)],5)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3] => ([(2,4),(3,4)],5)
=> 2
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5] => ([],5)
=> 4
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,5] => ([(4,5)],6)
=> 4
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The rigidity index of a graph.
A base of a permutation group is a set B such that the pointwise stabilizer of B is trivial. For example, a base of the symmetric group on n letters must contain all but one letter.
This statistic yields the minimal size of a base for the automorphism group of a graph.
Matching statistic: St001499
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 99%●distinct values known / distinct values provided: 86%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 99%●distinct values known / distinct values provided: 86%
Values
[1] => [1,0]
=> [1,0]
=> [1,0]
=> ? = 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 3
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 3
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra.
We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Matching statistic: St000249
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000249: Set partitions ⟶ ℤResult quality: 86% ●values known / values provided: 99%●distinct values known / distinct values provided: 86%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000249: Set partitions ⟶ ℤResult quality: 86% ●values known / values provided: 99%●distinct values known / distinct values provided: 86%
Values
[1] => [1,0]
=> [1,0]
=> {{1}}
=> ? = 0 + 1
[1,1] => [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 2 = 1 + 1
[2] => [1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2 = 1 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3 = 2 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 2 = 1 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3 = 2 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 4 = 3 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 3 = 2 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3 = 2 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3 = 2 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2 = 1 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3 = 2 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4 = 3 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 5 = 4 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 4 = 3 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 3 = 2 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> 4 = 3 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 3 = 2 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> 2 = 1 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> 4 = 3 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 4 = 3 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 3 = 2 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 4 = 3 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4 = 3 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5 = 4 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6}}
=> 6 = 5 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,6},{2},{3},{4},{5}}
=> 5 = 4 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> {{1,5},{2},{3},{4},{6}}
=> 4 = 3 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> {{1,2,6},{3},{4},{5}}
=> 5 = 4 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> {{1,4},{2},{3},{5},{6}}
=> 4 = 3 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> {{1,6},{2,5},{3},{4}}
=> 3 = 2 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> {{1,2,5},{3},{4},{6}}
=> 4 = 3 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> {{1,2,3,6},{4},{5}}
=> 5 = 4 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> {{1,3},{2},{4},{5},{6}}
=> 4 = 3 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> {{1,6},{2,4},{3},{5}}
=> 3 = 2 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> {{1,5},{2,4},{3},{6}}
=> 2 = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> {{1,2,6},{3,5},{4}}
=> 3 = 2 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> {{1,2,4},{3},{5},{6}}
=> 4 = 3 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> {{1,6},{2,3,5},{4}}
=> 3 = 2 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> {{1,2,3,5},{4},{6}}
=> 4 = 3 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,6},{5}}
=> 5 = 4 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6}}
=> 5 = 4 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,6},{2,3},{4},{5}}
=> 4 = 3 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> {{1,5},{2,3},{4},{6}}
=> 3 = 2 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> {{1,2,6},{3,4},{5}}
=> 4 = 3 + 1
Description
The number of singletons ([[St000247]]) plus the number of antisingletons ([[St000248]]) of a set partition.
Matching statistic: St001315
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001315: Graphs ⟶ ℤResult quality: 94% ●values known / values provided: 94%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001315: Graphs ⟶ ℤResult quality: 94% ●values known / values provided: 94%●distinct values known / distinct values provided: 100%
Values
[1] => 1 => [1] => ([],1)
=> 1 = 0 + 1
[1,1] => 11 => [2] => ([],2)
=> 2 = 1 + 1
[2] => 10 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,1,1] => 111 => [3] => ([],3)
=> 3 = 2 + 1
[1,2] => 110 => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1] => 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3] => 100 => [1,2] => ([(1,2)],3)
=> 3 = 2 + 1
[1,1,1,1] => 1111 => [4] => ([],4)
=> 4 = 3 + 1
[1,1,2] => 1110 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,2,1] => 1101 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,3] => 1100 => [2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,1] => 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,2] => 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1] => 1001 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4] => 1000 => [1,3] => ([(2,3)],4)
=> 4 = 3 + 1
[1,1,1,1,1] => 11111 => [5] => ([],5)
=> 5 = 4 + 1
[1,1,1,2] => 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,2,1] => 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,3] => 11100 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,1,1] => 11011 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,2] => 11010 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,1] => 11001 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4] => 11000 => [2,3] => ([(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,1,1] => 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,2] => 10110 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,2,1] => 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,3] => 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[3,1,1] => 10011 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,2] => 10010 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[4,1] => 10001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5] => 10000 => [1,4] => ([(3,4)],5)
=> 5 = 4 + 1
[1,1,1,1,1,1] => 111111 => [6] => ([],6)
=> 6 = 5 + 1
[1,1,1,1,2] => 111110 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,2,1] => 111101 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,3] => 111100 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,2,1,1] => 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,2,2] => 111010 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,1,3,1] => 111001 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,4] => 111000 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,2,1,1,1] => 110111 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,2,1,2] => 110110 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,2,1] => 110101 => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,3] => 110100 => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,3,1,1] => 110011 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,3,2] => 110010 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,4,1] => 110001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,5] => 110000 => [2,4] => ([(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,1,1,1,1] => 101111 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,1,1,2] => 101110 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,2,1] => 101101 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,2,2,2] => 1101010 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[2,1,2,2] => 1011010 => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,2,1,2] => 1010110 => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,2,2,1] => 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[2,2,3] => 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[2,3,2] => 1010010 => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[3,2,2] => 1001010 => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
Description
The dissociation number of a graph.
Matching statistic: St001405
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St001405: Permutations ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St001405: Permutations ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [2,1] => [2,1] => 1
[2] => [1,1,0,0]
=> [1,2] => [1,2] => 1
[1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 2
[1,2] => [1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[2,1] => [1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 1
[3] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 2
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 3
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,3,4,2] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 4
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [2,4,5,3,1] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,4,5,3,2] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,3,5,4,2] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,3,4,5,2] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,2,4,5,3] => 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => 3
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 4
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 5
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [5,6,4,3,2,1] => 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [4,6,5,3,2,1] => 3
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,5,6,3,2,1] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [3,6,5,4,2,1] => 3
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [3,5,6,4,2,1] => 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [3,4,6,5,2,1] => 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,4,5,6,2,1] => 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [2,6,5,4,3,1] => 3
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,5,6,4,3,1] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [2,4,6,5,3,1] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [2,4,5,6,3,1] => 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [2,3,6,5,4,1] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [2,3,5,6,4,1] => 2
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [2,3,4,6,5,1] => 3
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => [1,5,6,4,3,2] => 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [1,4,6,5,3,2] => 2
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => [7,6,5,4,3,2,1] => ? = 6
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [6,7,5,4,3,2,1] => ? = 5
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 4
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [5,6,7,4,3,2,1] => ? = 5
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 4
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [4,6,7,5,3,2,1] => ? = 3
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [4,5,7,6,3,2,1] => ? = 4
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 5
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [3,7,6,5,4,2,1] => ? = 4
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => [3,6,7,5,4,2,1] => ? = 3
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [3,5,7,6,4,2,1] => ? = 2
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [3,5,6,7,4,2,1] => ? = 3
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => [3,4,6,7,5,2,1] => ? = 3
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => [3,4,5,7,6,2,1] => ? = 4
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => [3,4,5,6,7,2,1] => ? = 5
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => [2,7,6,5,4,3,1] => ? = 4
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,2,3,1] => [2,6,7,5,4,3,1] => ? = 3
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => [2,5,7,6,4,3,1] => ? = 2
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,2,3,1] => [2,5,6,7,4,3,1] => ? = 3
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => [2,4,7,6,5,3,1] => ? = 2
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,3,1] => [2,4,6,7,5,3,1] => ? = 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,2,3,1] => [2,4,5,7,6,3,1] => ? = 2
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,3,1] => [2,4,5,6,7,3,1] => ? = 3
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,3,4,1] => [2,3,7,6,5,4,1] => ? = 4
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [6,7,5,2,3,4,1] => [2,3,6,7,5,4,1] => ? = 3
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [7,5,6,2,3,4,1] => [2,3,5,7,6,4,1] => ? = 2
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [5,6,7,2,3,4,1] => [2,3,5,6,7,4,1] => ? = 3
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,4,5,1] => [2,3,4,7,6,5,1] => ? = 4
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [6,7,2,3,4,5,1] => [2,3,4,6,7,5,1] => ? = 3
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => [2,3,4,5,7,6,1] => ? = 4
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [2,3,4,5,6,7,1] => ? = 5
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => ? = 5
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,1,2] => [1,6,7,5,4,3,2] => ? = 4
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,1,2] => [1,5,7,6,4,3,2] => ? = 3
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,1,2] => [1,5,6,7,4,3,2] => ? = 4
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,1,2] => [1,4,7,6,5,3,2] => ? = 3
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,1,2] => [1,4,6,7,5,3,2] => ? = 2
Description
The number of bonds in a permutation.
For a permutation π, the pair (πi,πi+1) is a bond if |πi−πi+1|=1.
Matching statistic: St000836
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000836: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 71%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000836: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 71%
Values
[1] => [1,0]
=> [1,0]
=> [1] => ? = 0 - 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0 = 1 - 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0 = 1 - 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1 = 2 - 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 0 = 1 - 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1 = 2 - 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2 = 3 - 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1 = 2 - 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0 = 1 - 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1 = 2 - 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1 = 2 - 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1 = 2 - 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 2 = 3 - 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 3 = 4 - 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 2 = 3 - 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 1 = 2 - 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2 = 3 - 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1 = 2 - 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 0 = 1 - 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 1 = 2 - 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 2 = 3 - 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2 = 3 - 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1 = 2 - 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0 = 1 - 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1 = 2 - 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2 = 3 - 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1 = 2 - 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => 2 = 3 - 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 3 = 4 - 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 4 = 5 - 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 3 = 4 - 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 2 = 3 - 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 3 = 4 - 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 2 = 3 - 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => 1 = 2 - 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 2 = 3 - 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [6,4,3,2,5,1] => 3 = 4 - 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 2 = 3 - 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => 1 = 2 - 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 0 = 1 - 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,5,4,6,3] => 1 = 2 - 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 2 = 3 - 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,5,4,1,6] => 1 = 2 - 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [6,3,2,5,4,1] => 2 = 3 - 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [6,4,3,5,2,1] => 3 = 4 - 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 3 = 4 - 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 2 = 3 - 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 1 = 2 - 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => 2 = 3 - 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 6 - 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 5 - 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? = 4 - 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ? = 5 - 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 4 - 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? = 3 - 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => ? = 4 - 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => ? = 5 - 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 4 - 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 3 - 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? = 2 - 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [3,2,1,6,5,7,4] => ? = 3 - 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,3,2,6,5,1,7] => ? = 3 - 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [7,4,3,2,6,5,1] => ? = 4 - 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ? = 5 - 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 4 - 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 3 - 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 2 - 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,5,4,7,3] => ? = 3 - 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 2 - 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 1 - 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,4,7,6,3] => ? = 2 - 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,7,5,4,6,3] => ? = 3 - 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => ? = 4 - 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,2,6,5,4,1,7] => ? = 3 - 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [3,2,5,4,1,7,6] => ? = 2 - 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => ? = 3 - 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [7,3,2,6,5,4,1] => ? = 4 - 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [6,3,2,5,4,1,7] => ? = 3 - 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [7,4,3,6,5,2,1] => ? = 4 - 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [7,6,4,3,5,2,1] => ? = 5 - 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 5 - 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 4 - 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 3 - 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,5,4,3,7,2] => ? = 4 - 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,4,3,7,6,2] => ? = 3 - 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,7,5,4,3,6,2] => ? = 4 - 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,7,4,3,6,5,2] => ? = 3 - 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 4 - 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 5 - 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,5,4,3,1,7] => ? = 4 - 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [2,5,4,3,1,7,6] => ? = 3 - 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => ? = 4 - 1
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [2,4,3,1,7,6,5] => ? = 3 - 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,3,1,6,5,7] => ? = 2 - 1
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,4,3,7,6,1] => ? = 3 - 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,7,5,4,3,6,1] => ? = 4 - 1
[4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [7,2,6,5,4,3,1] => ? = 5 - 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [6,2,5,4,3,1,7] => ? = 4 - 1
Description
The number of descents of distance 2 of a permutation.
This is, des2(π)=|{i:π(i)>π(i+2)}|.
Matching statistic: St000837
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000837: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 86%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000837: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 86%
Values
[1] => [1,0]
=> [1,0]
=> [1] => ? = 0 - 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0 = 1 - 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 0 = 1 - 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1 = 2 - 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0 = 1 - 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 0 = 1 - 1
[3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 2 = 3 - 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1 = 2 - 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0 = 1 - 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 2 - 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 0 = 1 - 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1 = 2 - 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2 = 3 - 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 3 = 4 - 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 2 = 3 - 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 1 = 2 - 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 2 = 3 - 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 1 = 2 - 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 0 = 1 - 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 1 = 2 - 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 2 = 3 - 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2 = 3 - 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1 = 2 - 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 0 = 1 - 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1 = 2 - 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 2 = 3 - 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1 = 2 - 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2 = 3 - 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 3 = 4 - 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 4 = 5 - 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 3 = 4 - 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => 2 = 3 - 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,4,6] => 3 = 4 - 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [4,5,6,1,2,3] => 2 = 3 - 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,5,1,2,3] => 1 = 2 - 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,5,1,2,3,6] => 2 = 3 - 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,2,3,5,6] => 3 = 4 - 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => 2 = 3 - 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => 1 = 2 - 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,1,2] => 0 = 1 - 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,1,2] => 1 = 2 - 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => 2 = 3 - 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 1 = 2 - 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => 2 = 3 - 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 3 = 4 - 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 3 = 4 - 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => 2 = 3 - 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => 1 = 2 - 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => 2 = 3 - 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 5 - 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [6,7,1,2,3,4,5] => ? = 4 - 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,2,3,4,5,7] => ? = 5 - 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [5,6,7,1,2,3,4] => ? = 4 - 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [7,5,6,1,2,3,4] => ? = 3 - 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,6,1,2,3,4,7] => ? = 4 - 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [5,1,2,3,4,6,7] => ? = 5 - 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 4 - 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,1,2,3] => ? = 3 - 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,1,2,3] => ? = 2 - 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,1,2,3] => ? = 3 - 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [7,4,5,1,2,3,6] => ? = 3 - 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 4 - 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [4,1,2,3,5,6,7] => ? = 5 - 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,1,2] => ? = 4 - 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,1,2] => ? = 3 - 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,1,2] => ? = 2 - 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,7,1,2] => ? = 3 - 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,1,2] => ? = 2 - 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,1,2] => ? = 1 - 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,1,2] => ? = 2 - 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,1,2] => ? = 3 - 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,1,2,7] => ? = 4 - 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,1,2,6] => ? = 3 - 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,1,2,5] => ? = 2 - 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [6,3,4,5,1,2,7] => ? = 3 - 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7] => ? = 4 - 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [7,3,4,1,2,5,6] => ? = 3 - 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [3,4,1,2,5,6,7] => ? = 4 - 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [3,1,2,4,5,6,7] => ? = 5 - 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 5 - 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => ? = 4 - 1
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [6,7,2,3,4,5,1] => ? = 3 - 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,7,1] => ? = 4 - 1
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [5,6,7,2,3,4,1] => ? = 3 - 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [7,5,6,2,3,4,1] => ? = 2 - 1
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [5,6,2,3,4,7,1] => ? = 3 - 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,6,7,1] => ? = 4 - 1
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,3,1] => ? = 3 - 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,2,3,1] => ? = 2 - 1
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,3,1] => ? = 1 - 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,2,3,1] => ? = 2 - 1
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [4,5,6,2,3,7,1] => ? = 3 - 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [7,4,5,2,3,6,1] => ? = 2 - 1
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,5,2,3,6,7,1] => ? = 3 - 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => ? = 4 - 1
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7] => ? = 5 - 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,1,6] => ? = 4 - 1
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [6,7,2,3,4,1,5] => ? = 3 - 1
Description
The number of ascents of distance 2 of a permutation.
This is, asc2(π)=|{i:π(i)<π(i+2)}|.
Matching statistic: St001526
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001526: Dyck paths ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 71%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001526: Dyck paths ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 71%
Values
[1] => [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4 = 3 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4 = 3 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 4 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 3 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 3 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 4 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 3 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 4 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 3 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 2 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 3 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 4 + 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 5 + 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6 + 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 5 + 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 4 + 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 5 + 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 4 + 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 5 + 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3 + 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 3 + 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> ? = 3 + 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 5 + 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000956
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000956: Permutations ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 71%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000956: Permutations ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 71%
Values
[1] => [1,0]
=> [1,0]
=> [2,1] => 1 = 0 + 1
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 2 = 1 + 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3 = 2 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4 = 3 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 3 = 2 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 3 = 2 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 3 = 2 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2 = 1 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 3 = 2 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 4 = 3 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5 = 4 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 4 = 3 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3 = 2 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => 4 = 3 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 3 = 2 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 2 = 1 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => 4 = 3 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 4 = 3 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 3 = 2 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 4 = 3 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => 4 = 3 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => 5 = 4 + 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 5 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 4 + 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,3,4,7,6,1,5] => ? = 4 + 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 3 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,3,5,1,7,4,6] => ? = 2 + 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ? = 3 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [2,3,7,5,6,1,4] => ? = 4 + 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 3 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,4,1,5,7,3,6] => ? = 2 + 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 1 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,7,6,3,5] => ? = 2 + 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ? = 3 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,5,4,1,7,3,6] => ? = 2 + 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => ? = 3 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,4,5,6,1,3] => ? = 4 + 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 4 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => ? = 3 + 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [3,1,4,6,2,7,5] => ? = 2 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 3 + 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 2 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 1 + 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,1,6,5,2,7,4] => ? = 2 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => ? = 3 + 1
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [4,3,1,5,6,7,2] => ? = 4 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => ? = 3 + 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,3,1,6,2,7,5] => ? = 2 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [4,3,1,7,6,2,5] => ? = 3 + 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [5,3,4,1,6,7,2] => ? = 4 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => ? = 3 + 1
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,4,5,1,7,2] => ? = 4 + 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [7,3,4,5,6,1,2] => ? = 5 + 1
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 6 + 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => ? = 5 + 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 4 + 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [2,3,4,5,8,7,1,6] => ? = 5 + 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 4 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [2,3,4,6,1,8,5,7] => ? = 3 + 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [2,3,4,7,6,1,8,5] => ? = 4 + 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [2,3,4,8,6,7,1,5] => ? = 5 + 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [2,3,5,1,6,7,8,4] => ? = 4 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [2,3,5,1,6,8,4,7] => ? = 3 + 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [2,3,5,1,7,4,8,6] => ? = 2 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [2,3,5,1,8,7,4,6] => ? = 3 + 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [2,3,6,5,1,8,4,7] => ? = 3 + 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [2,3,7,5,6,1,8,4] => ? = 4 + 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [2,3,8,5,6,7,1,4] => ? = 5 + 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 4 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,4,1,5,6,8,3,7] => ? = 3 + 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,4,1,5,7,3,8,6] => ? = 2 + 1
Description
The maximal displacement of a permutation.
This is max for a permutation \pi of \{1,\ldots,n\}.
This statistic without the absolute value is the maximal drop size [[St000141]].
Matching statistic: St001720
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001720: Lattices ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 100%
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001720: Lattices ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 100%
Values
[1] => [[1],[]]
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1] => [[1,1],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[2] => [[2],[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[1,1,1] => [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[1,2] => [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 1 + 2
[2,1] => [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
[3] => [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[1,1,1,1] => [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[1,1,2] => [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4 = 2 + 2
[1,2,1] => [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 3 = 1 + 2
[1,3] => [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4 = 2 + 2
[2,1,1] => [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4 = 2 + 2
[2,2] => [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 3 = 1 + 2
[3,1] => [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4 = 2 + 2
[4] => [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[1,1,1,2] => [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> 5 = 3 + 2
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 2 + 2
[1,1,3] => [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 + 2
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 2 + 2
[1,2,2] => [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ? = 1 + 2
[1,3,1] => [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ? = 2 + 2
[1,4] => [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> 5 = 3 + 2
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 5 = 3 + 2
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ? = 2 + 2
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? = 1 + 2
[2,3] => [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 2 + 2
[3,1,1] => [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 3 + 2
[3,2] => [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 2 + 2
[4,1] => [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 5 = 3 + 2
[5] => [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 4 + 2
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(0,6),(1,4),(1,13),(2,11),(3,9),(4,3),(4,12),(5,10),(6,1),(6,10),(8,7),(9,7),(10,2),(10,13),(11,8),(12,8),(12,9),(13,11),(13,12)],14)
=> ? = 3 + 2
[1,1,1,3] => [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? = 4 + 2
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 3 + 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,14),(2,3),(2,15),(3,12),(4,1),(4,13),(5,2),(5,13),(6,9),(6,11),(7,17),(8,17),(9,16),(10,8),(10,16),(11,7),(11,16),(12,7),(12,8),(13,6),(13,14),(13,15),(14,9),(14,10),(15,10),(15,11),(15,12),(16,17)],18)
=> ? = 2 + 2
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,13),(2,14),(3,5),(3,6),(3,14),(4,7),(4,9),(5,10),(5,12),(6,4),(6,11),(6,12),(7,16),(9,16),(10,1),(10,15),(11,9),(11,15),(12,7),(12,15),(13,8),(14,10),(14,11),(15,13),(15,16),(16,8)],17)
=> ? = 3 + 2
[1,1,4] => [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ? = 4 + 2
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(0,6),(1,11),(2,4),(2,13),(3,7),(4,10),(5,1),(5,12),(6,2),(6,12),(8,9),(9,7),(10,3),(10,9),(11,8),(12,11),(12,13),(13,8),(13,10)],14)
=> ? = 3 + 2
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(0,3),(1,14),(2,1),(2,15),(3,5),(3,6),(3,15),(4,7),(4,8),(5,9),(5,11),(6,9),(6,12),(7,17),(8,17),(9,18),(10,16),(11,10),(11,18),(12,4),(12,13),(12,18),(13,7),(13,16),(14,10),(14,13),(15,11),(15,12),(15,14),(16,17),(18,8),(18,16)],19)
=> ? = 2 + 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ?
=> ? = 1 + 2
[1,2,3] => [[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,14),(2,3),(2,15),(3,12),(4,1),(4,13),(5,2),(5,13),(6,9),(6,11),(7,17),(8,17),(9,16),(10,8),(10,16),(11,7),(11,16),(12,7),(12,8),(13,6),(13,14),(13,15),(14,9),(14,10),(15,10),(15,11),(15,12),(16,17)],18)
=> ? = 2 + 2
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,10),(2,13),(3,5),(3,6),(3,14),(4,2),(4,14),(5,8),(5,11),(6,8),(6,12),(7,16),(8,15),(9,1),(9,16),(11,7),(11,15),(12,9),(12,15),(13,7),(13,9),(14,11),(14,12),(14,13),(15,16),(16,10)],17)
=> ? = 3 + 2
[1,3,2] => [[4,3,1],[2]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(0,3),(1,14),(2,1),(2,15),(3,5),(3,6),(3,15),(4,7),(4,8),(5,9),(5,11),(6,9),(6,12),(7,17),(8,17),(9,18),(10,16),(11,10),(11,18),(12,4),(12,13),(12,18),(13,7),(13,16),(14,10),(14,13),(15,11),(15,12),(15,14),(16,17),(18,8),(18,16)],19)
=> ? = 2 + 2
[1,4,1] => [[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,2),(0,3),(1,8),(2,13),(3,5),(3,6),(3,13),(4,7),(4,9),(5,10),(5,12),(6,4),(6,11),(6,12),(7,15),(9,1),(9,15),(10,14),(11,9),(11,14),(12,7),(12,14),(13,10),(13,11),(14,15),(15,8)],16)
=> ? = 3 + 2
[1,5] => [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 4 + 2
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 2
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,2),(0,3),(1,8),(2,13),(3,5),(3,6),(3,13),(4,7),(4,9),(5,10),(5,12),(6,4),(6,11),(6,12),(7,15),(9,1),(9,15),(10,14),(11,9),(11,14),(12,7),(12,14),(13,10),(13,11),(14,15),(15,8)],16)
=> ? = 3 + 2
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,13),(2,8),(2,10),(3,7),(3,12),(4,11),(4,15),(5,11),(5,14),(6,3),(6,14),(6,15),(7,1),(7,16),(8,18),(10,18),(11,17),(12,8),(12,16),(13,9),(14,7),(14,17),(15,2),(15,12),(15,17),(16,13),(16,18),(17,10),(17,16),(18,9)],19)
=> ? = 2 + 2
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,13),(2,14),(3,5),(3,6),(3,14),(4,7),(4,9),(5,10),(5,12),(6,4),(6,11),(6,12),(7,16),(9,16),(10,1),(10,15),(11,9),(11,15),(12,7),(12,15),(13,8),(14,10),(14,11),(15,13),(15,16),(16,8)],17)
=> ? = 3 + 2
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,12),(2,13),(3,8),(3,9),(4,10),(4,15),(5,10),(5,14),(6,3),(6,14),(6,15),(8,17),(9,1),(9,17),(10,2),(10,16),(11,7),(12,7),(13,11),(14,9),(14,16),(15,8),(15,16),(16,13),(16,17),(17,11),(17,12)],18)
=> ? = 2 + 2
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ?
=> ? = 1 + 2
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,13),(2,8),(2,10),(3,7),(3,12),(4,11),(4,15),(5,11),(5,14),(6,3),(6,14),(6,15),(7,1),(7,16),(8,18),(10,18),(11,17),(12,8),(12,16),(13,9),(14,7),(14,17),(15,2),(15,12),(15,17),(16,13),(16,18),(17,10),(17,16),(18,9)],19)
=> ? = 2 + 2
[2,4] => [[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(0,6),(1,4),(1,13),(2,11),(3,9),(4,3),(4,12),(5,10),(6,1),(6,10),(8,7),(9,7),(10,2),(10,13),(11,8),(12,8),(12,9),(13,11),(13,12)],14)
=> ? = 3 + 2
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 2
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,10),(2,13),(3,5),(3,6),(3,14),(4,2),(4,14),(5,8),(5,11),(6,8),(6,12),(7,16),(8,15),(9,1),(9,16),(11,7),(11,15),(12,9),(12,15),(13,7),(13,9),(14,11),(14,12),(14,13),(15,16),(16,10)],17)
=> ? = 3 + 2
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,12),(2,13),(3,8),(3,9),(4,10),(4,15),(5,10),(5,14),(6,3),(6,14),(6,15),(8,17),(9,1),(9,17),(10,2),(10,16),(11,7),(12,7),(13,11),(14,9),(14,16),(15,8),(15,16),(16,13),(16,17),(17,11),(17,12)],18)
=> ? = 2 + 2
[3,3] => [[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(1,10),(2,11),(3,4),(3,14),(4,8),(5,2),(5,13),(6,3),(6,13),(8,9),(9,7),(10,7),(11,1),(11,12),(12,9),(12,10),(13,11),(13,14),(14,8),(14,12)],15)
=> ? = 3 + 2
[4,1,1] => [[4,4,4],[3,3]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 2
[4,2] => [[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(0,6),(1,11),(2,4),(2,13),(3,7),(4,10),(5,1),(5,12),(6,2),(6,12),(8,9),(9,7),(10,3),(10,9),(11,8),(12,11),(12,13),(13,8),(13,10)],14)
=> ? = 3 + 2
[5,1] => [[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 2
[6] => [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 8 = 6 + 2
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(0,7),(1,8),(2,9),(3,5),(3,8),(4,6),(4,10),(5,4),(5,12),(6,2),(6,11),(7,1),(7,3),(8,12),(10,11),(11,9),(12,10)],13)
=> ? = 5 + 2
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7)
=> ([(0,6),(0,7),(1,9),(2,5),(2,14),(3,13),(4,3),(4,16),(5,4),(5,15),(6,10),(7,2),(7,10),(9,11),(10,1),(10,14),(11,12),(12,8),(13,8),(14,9),(14,15),(15,11),(15,16),(16,12),(16,13)],17)
=> ? = 4 + 2
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(0,1),(1,2),(1,3),(2,5),(2,13),(3,7),(3,13),(4,12),(5,11),(6,4),(6,15),(7,6),(7,14),(9,10),(10,8),(11,9),(12,8),(13,11),(13,14),(14,9),(14,15),(15,10),(15,12)],16)
=> ? = 5 + 2
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7)
=> ([(0,6),(0,7),(1,12),(2,13),(3,5),(3,18),(4,9),(5,4),(5,14),(6,2),(6,16),(7,3),(7,16),(9,10),(10,8),(11,8),(12,11),(13,1),(13,15),(14,9),(14,17),(15,12),(15,17),(16,13),(16,18),(17,10),(17,11),(18,14),(18,15)],19)
=> ? = 4 + 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7)
=> ?
=> ? = 3 + 2
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7)
=> ?
=> ? = 4 + 2
[1,1,1,4] => [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(0,1),(1,2),(1,3),(2,7),(2,14),(3,6),(3,14),(4,11),(5,12),(6,4),(6,15),(7,5),(7,16),(9,8),(10,8),(11,9),(12,10),(13,9),(13,10),(14,15),(14,16),(15,11),(15,13),(16,12),(16,13)],17)
=> ? = 5 + 2
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7)
=> ([(0,6),(0,7),(1,13),(2,4),(2,17),(3,5),(3,18),(4,9),(5,12),(6,2),(6,15),(7,3),(7,15),(9,10),(10,11),(11,8),(12,1),(12,16),(13,8),(14,10),(14,16),(15,17),(15,18),(16,11),(16,13),(17,9),(17,14),(18,12),(18,14)],19)
=> ? = 4 + 2
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7)
=> ?
=> ? = 3 + 2
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7)
=> ?
=> ? = 2 + 2
[7] => [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 8 = 6 + 2
Description
The minimal length of a chain of small intervals in a lattice.
An interval [a, b] is small if b is a join of elements covering a.
The following 1 statistic also match your data. Click on any of them to see the details.
St001626The number of maximal proper sublattices of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!