searching the database
Your data matches 14 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001964
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2,1] => [1,2] => ([(0,1)],2)
=> 0
{{1},{2}}
=> [1,2] => [2,1] => ([],2)
=> 0
{{1,2,3}}
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 0
{{1,3},{2}}
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0
{{1},{2},{3}}
=> [1,2,3] => [3,2,1] => ([],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> 0
{{1,3},{2,4}}
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0
{{1,4},{2,3}}
=> [4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
{{1},{2,4},{3}}
=> [1,4,3,2] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> 0
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 0
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 0
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 0
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 0
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 0
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 0
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [6,3,4,5,1,2] => ([(1,3),(2,4),(4,5)],6)
=> 0
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [3,4,5,6,1,2] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> 0
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [4,5,6,3,1,2] => ([(1,3),(2,4),(4,5)],6)
=> 0
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> 0
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> 0
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001882
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001882: Signed permutations ⟶ ℤResult quality: 29% ●values known / values provided: 29%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001882: Signed permutations ⟶ ℤResult quality: 29% ●values known / values provided: 29%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [3,2,1] => [3,2,1] => 0
{{1,3},{2}}
=> [3,2,1] => [3,1,2] => [3,1,2] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,2,3,1] => [4,2,3,1] => 1
{{1,2,4},{3}}
=> [2,4,3,1] => [4,2,1,3] => [4,2,1,3] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [4,3,2,1] => [4,3,2,1] => 0
{{1,3},{2,4}}
=> [3,4,1,2] => [2,4,3,1] => [2,4,3,1] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,1,2,4] => [3,1,2,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => [4,1,2,3] => [4,1,2,3] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,3,1,2] => [4,3,1,2] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,2,3] => [1,4,2,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,2,3,4,1] => [5,2,3,4,1] => ? = 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,2,3,1,4] => [5,2,3,1,4] => ? = 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,2,4,3,1] => [5,2,4,3,1] => ? = 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [3,2,5,4,1] => [3,2,5,4,1] => ? = 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,2,1,3,4] => [5,2,1,3,4] => ? = 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,2,4,1,3] => [5,2,4,1,3] => ? = 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,3,4] => [2,1,5,3,4] => ? = 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,3,2,4,1] => [5,3,2,4,1] => ? = 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [2,5,3,1,4] => [2,5,3,1,4] => ? = 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,1,3,4,2] => [5,1,3,4,2] => ? = 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [4,5,3,1,2] => [4,5,3,1,2] => ? = 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,3,2,1,4] => [5,3,2,1,4] => ? = 0
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,5,3,2,1] => [4,5,3,2,1] => ? = 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => ? = 0
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => ? = 0
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,4,2,3,1] => [5,4,2,3,1] => ? = 0
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [2,5,4,3,1] => [2,5,4,3,1] => ? = 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,2,3,5] => ? = 0
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,1,4,2,3] => [5,1,4,2,3] => ? = 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,4,2,1,3] => [5,4,2,1,3] => ? = 0
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [5,3,4,2,1] => [5,3,4,2,1] => ? = 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [2,5,1,4,3] => [2,5,1,4,3] => ? = 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [3,4,5,2,1] => [3,4,5,2,1] => ? = 2
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,1,2,3,4] => [5,1,2,3,4] => ? = 0
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,2,3,5] => [1,4,2,3,5] => 0
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,4,1,3,2] => [5,4,1,3,2] => ? = 0
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,5,2,3,4] => 0
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [5,3,4,1,2] => [5,3,4,1,2] => ? = 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,5,3,4] => 0
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [2,1,5,3,4,6] => [2,1,5,3,4,6] => ? = 0
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [2,1,6,3,4,5] => [2,1,6,3,4,5] => ? = 0
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [2,1,3,6,4,5] => [2,1,3,6,4,5] => ? = 0
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => [3,1,2,5,4,6] => [3,1,2,5,4,6] => ? = 0
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => [3,1,2,6,4,5] => [3,1,2,6,4,5] => ? = 0
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => [3,1,2,4,6,5] => [3,1,2,4,6,5] => ? = 0
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => [3,1,2,4,5,6] => [3,1,2,4,5,6] => ? = 0
{{1,4},{2,3},{5,6}}
=> [4,3,2,1,6,5] => [4,1,2,3,6,5] => [4,1,2,3,6,5] => ? = 0
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => [4,1,2,3,5,6] => [4,1,2,3,5,6] => ? = 0
{{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => [1,3,2,6,4,5] => [1,3,2,6,4,5] => ? = 0
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => [5,1,2,3,4,6] => [5,1,2,3,4,6] => ? = 0
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => [1,4,2,3,6,5] => [1,4,2,3,6,5] => ? = 0
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => [1,4,2,3,5,6] => [1,4,2,3,5,6] => ? = 0
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => [6,1,2,3,4,5] => [6,1,2,3,4,5] => ? = 0
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => [1,5,2,3,4,6] => [1,5,2,3,4,6] => ? = 0
{{1},{2,6},{3,5},{4}}
=> [1,6,5,4,3,2] => [1,6,2,3,4,5] => [1,6,2,3,4,5] => ? = 0
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => [1,2,5,3,4,6] => [1,2,5,3,4,6] => ? = 0
{{1},{2},{3,6},{4,5}}
=> [1,2,6,5,4,3] => [1,2,6,3,4,5] => [1,2,6,3,4,5] => ? = 0
{{1},{2},{3},{4,6},{5}}
=> [1,2,3,6,5,4] => [1,2,3,6,4,5] => [1,2,3,6,4,5] => ? = 0
{{1},{2},{3},{4},{5},{6}}
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 0
Description
The number of occurrences of a type-B 231 pattern in a signed permutation.
For a signed permutation $\pi\in\mathfrak H_n$, a triple $-n \leq i < j < k\leq n$ is an occurrence of the type-B $231$ pattern, if $1 \leq j < k$, $\pi(i) < \pi(j)$ and $\pi(i)$ is one larger than $\pi(k)$, i.e., $\pi(i) = \pi(k) + 1$ if $\pi(k) \neq -1$ and $\pi(i) = 1$ otherwise.
Matching statistic: St001491
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 33%
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1] => [1] => => ? = 0 + 1
{{1,2}}
=> [2,1] => [2,1] => 0 => ? = 0 + 1
{{1},{2}}
=> [1,2] => [1,2] => 1 => 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [2,3,1] => 00 => ? = 0 + 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => 00 => ? = 0 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,3,2] => 10 => 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [2,4,3,1] => 000 => ? = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 000 => ? = 0 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 000 => ? = 0 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 000 => ? = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 001 => 1 = 0 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 000 => ? = 0 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 000 => ? = 0 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 100 => 1 = 0 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,4,3,2] => 100 => 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,5,4,3,1] => 0000 => ? = 2 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [2,5,4,3,1] => 0000 => ? = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [2,5,4,3,1] => 0000 => ? = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,5,4,1,3] => 0000 => ? = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [2,5,4,3,1] => 0000 => ? = 0 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,4,3,1] => 0000 => ? = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => 0100 => 1 = 0 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,5,4,1] => 0000 => ? = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [3,5,4,1,2] => 0000 => ? = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,5,4,2,1] => 0000 => ? = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,4,2] => 0000 => ? = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [3,2,5,4,1] => 0000 => ? = 0 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => 0000 => ? = 2 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => 0010 => 1 = 0 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,5,4] => 0010 => 1 = 0 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,5,1] => 0000 => ? = 0 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,3,5,1,2] => 0000 => ? = 2 + 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => 0001 => 1 = 0 + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,3,4,2,1] => 0000 => ? = 1 + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,3,2,4,1] => 0000 => ? = 0 + 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [4,2,5,3,1] => 0000 => ? = 1 + 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,5,3,1,2] => 0000 => ? = 2 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [4,2,5,1,3] => 0000 => ? = 2 + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => 0000 => ? = 0 + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,5,4,3,2] => 1000 => 1 = 0 + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => 0000 => ? = 0 + 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [1,5,4,3,2] => 1000 => 1 = 0 + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [5,2,4,3,1] => 0000 => ? = 1 + 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,5,4,3,2] => 1000 => 1 = 0 + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,5,4,3,2] => 1000 => 1 = 0 + 1
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [2,1,6,5,4,3] => 01000 => ? = 0 + 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [2,1,6,5,4,3] => 01000 => ? = 0 + 1
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [2,1,6,5,4,3] => 01000 => ? = 0 + 1
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => [3,2,1,6,5,4] => 00100 => ? = 0 + 1
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => [3,2,1,6,5,4] => 00100 => ? = 0 + 1
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => [3,2,1,6,5,4] => 00100 => ? = 0 + 1
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => [3,2,1,6,5,4] => 00100 => ? = 0 + 1
{{1,4},{2,3},{5,6}}
=> [4,3,2,1,6,5] => [4,3,2,1,6,5] => 00010 => ? = 0 + 1
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => [4,3,2,1,6,5] => 00010 => ? = 0 + 1
{{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => 00001 => ? = 0 + 1
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 00000 => ? = 0 + 1
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
{{1},{2,6},{3,5},{4}}
=> [1,6,5,4,3,2] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
{{1},{2},{3,5},{4},{6}}
=> [1,2,5,4,3,6] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
{{1},{2},{3,6},{4,5}}
=> [1,2,6,5,4,3] => [1,6,5,4,3,2] => 10000 => ? = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St000181
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000181: Posets ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 33%
Mp00209: Permutations —pattern poset⟶ Posets
St000181: Posets ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,3},{2}}
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 2 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 2 + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,15),(3,9),(3,10),(4,1),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,14),(9,12),(9,15),(10,7),(10,12),(11,6),(11,12),(11,15),(12,13),(12,14),(13,8),(14,8),(15,13),(15,14)],16)
=> ? = 0 + 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,13),(7,14),(9,1),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 0 + 1
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,7),(2,14),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,12),(7,12),(7,13),(9,1),(9,14),(10,6),(10,14),(11,7),(11,14),(12,8),(13,8),(14,12),(14,13)],15)
=> ? = 0 + 1
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => ([(0,1),(0,2),(1,4),(1,10),(2,3),(2,10),(3,5),(3,8),(4,5),(4,9),(5,11),(7,6),(8,7),(8,11),(9,7),(9,11),(10,8),(10,9),(11,6)],12)
=> ? = 0 + 1
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,13),(7,14),(9,1),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 0 + 1
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 + 1
{{1,4},{2,3},{5,6}}
=> [4,3,2,1,6,5] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 + 1
{{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,7),(2,14),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,12),(7,12),(7,13),(9,1),(9,14),(10,6),(10,14),(11,7),(11,14),(12,8),(13,8),(14,12),(14,13)],15)
=> ? = 0 + 1
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => ([(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,15),(3,9),(3,10),(4,1),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,14),(9,12),(9,15),(10,7),(10,12),(11,6),(11,12),(11,15),(12,13),(12,14),(13,8),(14,8),(15,13),(15,14)],16)
=> ? = 0 + 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
{{1},{2,5},{3,4},{6}}
=> [1,5,4,3,2,6] => ([(0,3),(0,4),(0,5),(1,14),(2,1),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(6,14),(7,13),(7,14),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8),(14,8)],15)
=> ? = 0 + 1
Description
The number of connected components of the Hasse diagram for the poset.
Matching statistic: St001890
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001890: Posets ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Mp00209: Permutations —pattern poset⟶ Posets
St001890: Posets ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1] => ([],1)
=> ? = 0 + 1
{{1,2}}
=> [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
{{1,3},{2}}
=> [3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ? = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 0 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 0 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 2 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 0 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 0 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 1 + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 1 + 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 2 + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 0 + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 + 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,15),(3,9),(3,10),(4,1),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,14),(9,12),(9,15),(10,7),(10,12),(11,6),(11,12),(11,15),(12,13),(12,14),(13,8),(14,8),(15,13),(15,14)],16)
=> ? = 0 + 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,13),(7,14),(9,1),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 0 + 1
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,7),(2,14),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,12),(7,12),(7,13),(9,1),(9,14),(10,6),(10,14),(11,7),(11,14),(12,8),(13,8),(14,12),(14,13)],15)
=> ? = 0 + 1
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => ([(0,1),(0,2),(1,4),(1,10),(2,3),(2,10),(3,5),(3,8),(4,5),(4,9),(5,11),(7,6),(8,7),(8,11),(9,7),(9,11),(10,8),(10,9),(11,6)],12)
=> ? = 0 + 1
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => ([(0,3),(0,4),(0,5),(1,14),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,13),(7,14),(9,1),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 0 + 1
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 + 1
{{1,4},{2,3},{5,6}}
=> [4,3,2,1,6,5] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 0 + 1
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 0 + 1
{{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,7),(2,14),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,12),(7,12),(7,13),(9,1),(9,14),(10,6),(10,14),(11,7),(11,14),(12,8),(13,8),(14,12),(14,13)],15)
=> ? = 0 + 1
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 0 + 1
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => ([(0,3),(0,4),(0,5),(1,6),(1,15),(2,7),(2,15),(3,9),(3,10),(4,1),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,14),(9,12),(9,15),(10,7),(10,12),(11,6),(11,12),(11,15),(12,13),(12,14),(13,8),(14,8),(15,13),(15,14)],16)
=> ? = 0 + 1
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ? = 0 + 1
{{1,6},{2,5},{3,4}}
=> [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? = 0 + 1
Description
The maximum magnitude of the Möbius function of a poset.
The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Matching statistic: St000417
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000417: Ordered trees ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000417: Ordered trees ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1] => [.,.]
=> [[],[]]
=> 2 = 0 + 2
{{1,2}}
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 0 + 2
{{1},{2}}
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 0 + 2
{{1,2,3}}
=> [2,3,1] => [[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> 2 = 0 + 2
{{1,3},{2}}
=> [3,2,1] => [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 2 = 0 + 2
{{1},{2},{3}}
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 2 = 0 + 2
{{1,2,3,4}}
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1,2,4},{3}}
=> [2,4,3,1] => [[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> ? = 0 + 2
{{1,3,4},{2}}
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1,3},{2,4}}
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 2 + 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? = 0 + 2
{{1,4},{2,3}}
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> ? = 0 + 2
{{1,4},{2},{3}}
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> 2 = 0 + 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 2 = 0 + 2
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> ? = 2 + 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> ? = 1 + 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> ? = 1 + 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> ? = 2 + 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> ? = 0 + 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> ? = 1 + 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> ? = 0 + 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> ? = 2 + 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> ? = 2 + 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> ? = 2 + 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> ? = 0 + 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> ? = 2 + 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> ? = 0 + 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> ? = 0 + 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> ? = 2 + 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> ? = 0 + 2
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> [[[[[],[]],[[],[]]],[]],[]]
=> ? = 1 + 2
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> ? = 2 + 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> ? = 2 + 2
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [[[[[[],[]],[]],[]],[]],[]]
=> ? = 0 + 2
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> ? = 0 + 2
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> ? = 0 + 2
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> ? = 0 + 2
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> ? = 0 + 2
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 0 + 2
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [[.,.],[[[.,.],.],[.,.]]]
=> [[[],[]],[[[[],[]],[]],[[],[]]]]
=> ? = 0 + 2
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [[.,.],[[[[.,.],.],.],.]]
=> [[[],[]],[[[[[],[]],[]],[]],[]]]
=> ? = 0 + 2
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [[.,.],[.,[[[.,.],.],.]]]
=> [[[],[]],[[],[[[[],[]],[]],[]]]]
=> ? = 0 + 2
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => [[[.,.],.],[[.,.],[.,.]]]
=> [[[[],[]],[]],[[[],[]],[[],[]]]]
=> ? = 0 + 2
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => [[[.,.],.],[[[.,.],.],.]]
=> [[[[],[]],[]],[[[[],[]],[]],[]]]
=> ? = 0 + 2
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => [[[.,.],.],[.,[[.,.],.]]]
=> [[[[],[]],[]],[[],[[[],[]],[]]]]
=> ? = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => [[[.,.],.],[.,[.,[.,.]]]]
=> [[[[],[]],[]],[[],[[],[[],[]]]]]
=> ? = 0 + 2
{{1,4},{2,3},{5,6}}
=> [4,3,2,1,6,5] => [[[[.,.],.],.],[[.,.],.]]
=> [[[[[],[]],[]],[]],[[[],[]],[]]]
=> ? = 0 + 2
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => [[[[.,.],.],.],[.,[.,.]]]
=> [[[[[],[]],[]],[]],[[],[[],[]]]]
=> ? = 0 + 2
{{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => [.,[[.,.],[[[.,.],.],.]]]
=> [[],[[[],[]],[[[[],[]],[]],[]]]]
=> ? = 0 + 2
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => [[[[[.,.],.],.],.],[.,.]]
=> [[[[[[],[]],[]],[]],[]],[[],[]]]
=> ? = 0 + 2
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> [[],[[[[],[]],[]],[[[],[]],[]]]]
=> ? = 0 + 2
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[],[[[[],[]],[]],[[],[[],[]]]]]
=> ? = 0 + 2
Description
The size of the automorphism group of the ordered tree.
Matching statistic: St001058
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St001058: Ordered trees ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St001058: Ordered trees ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1] => [.,.]
=> [[],[]]
=> 2 = 0 + 2
{{1,2}}
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 0 + 2
{{1},{2}}
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 0 + 2
{{1,2,3}}
=> [2,3,1] => [[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> 2 = 0 + 2
{{1,3},{2}}
=> [3,2,1] => [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 2 = 0 + 2
{{1},{2},{3}}
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 2 = 0 + 2
{{1,2,3,4}}
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1,2,4},{3}}
=> [2,4,3,1] => [[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> ? = 0 + 2
{{1,3,4},{2}}
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1,3},{2,4}}
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 2 + 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? = 0 + 2
{{1,4},{2,3}}
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> ? = 0 + 2
{{1,4},{2},{3}}
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> 2 = 0 + 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 2 = 0 + 2
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> ? = 2 + 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> ? = 1 + 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> ? = 1 + 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> ? = 2 + 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> ? = 0 + 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> ? = 1 + 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> ? = 0 + 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> ? = 2 + 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> ? = 2 + 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> ? = 2 + 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> ? = 0 + 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> ? = 2 + 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> ? = 0 + 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> ? = 0 + 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> ? = 2 + 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> ? = 0 + 2
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> [[[[[],[]],[[],[]]],[]],[]]
=> ? = 1 + 2
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> ? = 0 + 2
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> ? = 2 + 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> ? = 2 + 2
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [[[[[[],[]],[]],[]],[]],[]]
=> ? = 0 + 2
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> ? = 0 + 2
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> ? = 0 + 2
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> ? = 0 + 2
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> ? = 1 + 2
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> ? = 0 + 2
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 0 + 2
{{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => [[.,.],[[[.,.],.],[.,.]]]
=> [[[],[]],[[[[],[]],[]],[[],[]]]]
=> ? = 0 + 2
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [[.,.],[[[[.,.],.],.],.]]
=> [[[],[]],[[[[[],[]],[]],[]],[]]]
=> ? = 0 + 2
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [[.,.],[.,[[[.,.],.],.]]]
=> [[[],[]],[[],[[[[],[]],[]],[]]]]
=> ? = 0 + 2
{{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => [[[.,.],.],[[.,.],[.,.]]]
=> [[[[],[]],[]],[[[],[]],[[],[]]]]
=> ? = 0 + 2
{{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => [[[.,.],.],[[[.,.],.],.]]
=> [[[[],[]],[]],[[[[],[]],[]],[]]]
=> ? = 0 + 2
{{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => [[[.,.],.],[.,[[.,.],.]]]
=> [[[[],[]],[]],[[],[[[],[]],[]]]]
=> ? = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => [[[.,.],.],[.,[.,[.,.]]]]
=> [[[[],[]],[]],[[],[[],[[],[]]]]]
=> ? = 0 + 2
{{1,4},{2,3},{5,6}}
=> [4,3,2,1,6,5] => [[[[.,.],.],.],[[.,.],.]]
=> [[[[[],[]],[]],[]],[[[],[]],[]]]
=> ? = 0 + 2
{{1,4},{2,3},{5},{6}}
=> [4,3,2,1,5,6] => [[[[.,.],.],.],[.,[.,.]]]
=> [[[[[],[]],[]],[]],[[],[[],[]]]]
=> ? = 0 + 2
{{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => [.,[[.,.],[[[.,.],.],.]]]
=> [[],[[[],[]],[[[[],[]],[]],[]]]]
=> ? = 0 + 2
{{1,5},{2,4},{3},{6}}
=> [5,4,3,2,1,6] => [[[[[.,.],.],.],.],[.,.]]
=> [[[[[[],[]],[]],[]],[]],[[],[]]]
=> ? = 0 + 2
{{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => [.,[[[.,.],.],[[.,.],.]]]
=> [[],[[[[],[]],[]],[[[],[]],[]]]]
=> ? = 0 + 2
{{1},{2,4},{3},{5},{6}}
=> [1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[],[[[[],[]],[]],[[],[[],[]]]]]
=> ? = 0 + 2
Description
The breadth of the ordered tree.
This is the maximal number of nodes having the same depth.
Matching statistic: St001630
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00218: Set partitions —inverse Wachs-White-rho⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> {{1}}
=> [1] => ([(0,1)],2)
=> ? = 0 + 2
{{1,2}}
=> {{1,2}}
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2}}
=> {{1},{2}}
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
{{1,3},{2}}
=> {{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 1 + 2
{{1,2,4},{3}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
{{1,3,4},{2}}
=> {{1,3,4},{2}}
=> [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
{{1,3},{2,4}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 2 + 2
{{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
{{1,4},{2,3}}
=> {{1,3},{2,4}}
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
{{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
{{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
{{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
{{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 2 + 2
{{1,2,3,5},{4}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 1 + 2
{{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 1 + 2
{{1,2,4},{3,5}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
{{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 0 + 2
{{1,2,5},{3},{4}}
=> {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 1 + 2
{{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 2
{{1,3,4,5},{2}}
=> {{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 1 + 2
{{1,3,4},{2,5}}
=> {{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 2
{{1,3,5},{2,4}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 2
{{1,3},{2,4,5}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
{{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
{{1,3},{2,5},{4}}
=> {{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 2 + 2
{{1,3},{2},{4,5}}
=> {{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 2
{{1,3},{2},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 0 + 2
{{1,4,5},{2,3}}
=> {{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 0 + 2
{{1,4},{2,3,5}}
=> {{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 2
{{1,4},{2,3},{5}}
=> {{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
{{1,5},{2,3,4}}
=> {{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 1 + 2
{{1,5},{2,3},{4}}
=> {{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1,4,5},{2},{3}}
=> {{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 1 + 2
{{1,4},{2,5},{3}}
=> {{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 2 + 2
{{1,4},{2},{3,5}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 2 + 2
{{1,5},{2,4},{3}}
=> {{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 0 + 2
{{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 0 + 2
{{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
{{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 1 + 2
{{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 0 + 2
{{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
{{1,2},{3,5},{4},{6}}
=> {{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,9),(4,12),(5,12),(6,10),(6,11),(8,7),(9,7),(10,13),(11,13),(12,8),(13,8),(13,9)],14)
=> ? = 0 + 2
{{1,2},{3,6},{4,5}}
=> {{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,10),(9,10),(10,11)],12)
=> ? = 0 + 2
{{1,2},{3},{4,6},{5}}
=> {{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ? = 0 + 2
{{1,3},{2},{4,5},{6}}
=> {{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 0 + 2
{{1,3},{2},{4,6},{5}}
=> {{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ? = 0 + 2
{{1,3},{2},{4},{5,6}}
=> {{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ? = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> {{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,12),(4,13),(4,14),(5,11),(5,15),(6,12),(6,15),(8,11),(9,7),(10,7),(11,9),(12,10),(13,8),(14,8),(15,9),(15,10)],16)
=> ? = 0 + 2
{{1,4},{2,3},{5,6}}
=> {{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,10),(9,10),(10,11)],12)
=> ? = 0 + 2
{{1,4},{2,3},{5},{6}}
=> {{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 0 + 2
{{1},{2,3},{4,6},{5}}
=> {{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 0 + 2
{{1,5},{2,4},{3},{6}}
=> {{1,4},{2,5},{3},{6}}
=> [4,5,3,1,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,10),(6,11),(7,11),(8,10),(10,12),(11,12),(12,9)],13)
=> ? = 0 + 2
{{1},{2,4},{3},{5,6}}
=> {{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,9),(4,12),(5,12),(6,10),(6,11),(8,7),(9,7),(10,13),(11,13),(12,8),(13,8),(13,9)],14)
=> ? = 0 + 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00218: Set partitions —inverse Wachs-White-rho⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00208: Permutations —lattice of intervals⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> {{1}}
=> [1] => ([(0,1)],2)
=> ? = 0 + 2
{{1,2}}
=> {{1,2}}
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1},{2}}
=> {{1},{2}}
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 0 + 2
{{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
{{1,3},{2}}
=> {{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 1 + 2
{{1,2,4},{3}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
{{1,3,4},{2}}
=> {{1,3,4},{2}}
=> [3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? = 0 + 2
{{1,3},{2,4}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 2 + 2
{{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
{{1,4},{2,3}}
=> {{1,3},{2,4}}
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? = 0 + 2
{{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 0 + 2
{{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? = 0 + 2
{{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? = 0 + 2
{{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? = 2 + 2
{{1,2,3,5},{4}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 1 + 2
{{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ? = 1 + 2
{{1,2,4},{3,5}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
{{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 0 + 2
{{1,2,5},{3},{4}}
=> {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 1 + 2
{{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 2
{{1,3,4,5},{2}}
=> {{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ? = 1 + 2
{{1,3,4},{2,5}}
=> {{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ? = 2 + 2
{{1,3,5},{2,4}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 2
{{1,3},{2,4,5}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? = 2 + 2
{{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
{{1,3},{2,5},{4}}
=> {{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 2 + 2
{{1,3},{2},{4,5}}
=> {{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? = 0 + 2
{{1,3},{2},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 0 + 2
{{1,4,5},{2,3}}
=> {{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 0 + 2
{{1,4},{2,3,5}}
=> {{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ? = 2 + 2
{{1,4},{2,3},{5}}
=> {{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
{{1,5},{2,3,4}}
=> {{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 1 + 2
{{1,5},{2,3},{4}}
=> {{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1,4,5},{2},{3}}
=> {{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ? = 1 + 2
{{1,4},{2,5},{3}}
=> {{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 2 + 2
{{1,4},{2},{3,5}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ? = 2 + 2
{{1,5},{2,4},{3}}
=> {{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ? = 0 + 2
{{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 0 + 2
{{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
{{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? = 0 + 2
{{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ? = 1 + 2
{{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ? = 0 + 2
{{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? = 0 + 2
{{1,2},{3,5},{4},{6}}
=> {{1,2},{3,5},{4},{6}}
=> [2,1,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,9),(4,12),(5,12),(6,10),(6,11),(8,7),(9,7),(10,13),(11,13),(12,8),(13,8),(13,9)],14)
=> ? = 0 + 2
{{1,2},{3,6},{4,5}}
=> {{1,2},{3,5},{4,6}}
=> [2,1,5,6,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,10),(9,10),(10,11)],12)
=> ? = 0 + 2
{{1,2},{3},{4,6},{5}}
=> {{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ? = 0 + 2
{{1,3},{2},{4,5},{6}}
=> {{1,3},{2},{4,5},{6}}
=> [3,2,1,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 0 + 2
{{1,3},{2},{4,6},{5}}
=> {{1,3},{2},{4,6},{5}}
=> [3,2,1,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,12),(5,12),(5,13),(6,10),(6,11),(8,7),(9,7),(10,8),(11,8),(12,9),(13,9)],14)
=> ? = 0 + 2
{{1,3},{2},{4},{5,6}}
=> {{1,3},{2},{4},{5,6}}
=> [3,2,1,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,13),(3,12),(4,11),(5,9),(5,10),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,10)],14)
=> ? = 0 + 2
{{1,3},{2},{4},{5},{6}}
=> {{1,3},{2},{4},{5},{6}}
=> [3,2,1,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,12),(4,13),(4,14),(5,11),(5,15),(6,12),(6,15),(8,11),(9,7),(10,7),(11,9),(12,10),(13,8),(14,8),(15,9),(15,10)],16)
=> ? = 0 + 2
{{1,4},{2,3},{5,6}}
=> {{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,10),(9,10),(10,11)],12)
=> ? = 0 + 2
{{1,4},{2,3},{5},{6}}
=> {{1,3},{2,4},{5},{6}}
=> [3,4,1,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,9),(3,8),(4,8),(5,7),(6,7),(6,10),(7,12),(8,11),(9,11),(10,12),(11,10)],13)
=> ? = 0 + 2
{{1},{2,3},{4,6},{5}}
=> {{1},{2,3},{4,6},{5}}
=> [1,3,2,6,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(2,11),(3,10),(4,13),(5,13),(6,11),(6,12),(8,9),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ? = 0 + 2
{{1,5},{2,4},{3},{6}}
=> {{1,4},{2,5},{3},{6}}
=> [4,5,3,1,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(2,8),(3,7),(4,7),(5,9),(6,10),(6,11),(7,11),(8,10),(10,12),(11,12),(12,9)],13)
=> ? = 0 + 2
{{1},{2,4},{3},{5,6}}
=> {{1},{2,4},{3},{5,6}}
=> [1,4,3,2,6,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,9),(4,12),(5,12),(6,10),(6,11),(8,7),(9,7),(10,13),(11,13),(12,8),(13,8),(13,9)],14)
=> ? = 0 + 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001604
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001604: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 33%
Values
{{1}}
=> [1]
=> []
=> ?
=> ? = 0
{{1,2}}
=> [2]
=> []
=> ?
=> ? = 0
{{1},{2}}
=> [1,1]
=> [1]
=> []
=> ? = 0
{{1,2,3}}
=> [3]
=> []
=> ?
=> ? = 0
{{1,3},{2}}
=> [2,1]
=> [1]
=> []
=> ? = 0
{{1},{2},{3}}
=> [1,1,1]
=> [1,1]
=> [1]
=> ? = 0
{{1,2,3,4}}
=> [4]
=> []
=> ?
=> ? = 1
{{1,2,4},{3}}
=> [3,1]
=> [1]
=> []
=> ? = 0
{{1,3,4},{2}}
=> [3,1]
=> [1]
=> []
=> ? = 0
{{1,3},{2,4}}
=> [2,2]
=> [2]
=> []
=> ? = 2
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 0
{{1,4},{2,3}}
=> [2,2]
=> [2]
=> []
=> ? = 0
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 0
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? = 0
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> ? = 0
{{1,2,3,4,5}}
=> [5]
=> []
=> ?
=> ? = 2
{{1,2,3,5},{4}}
=> [4,1]
=> [1]
=> []
=> ? = 1
{{1,2,4,5},{3}}
=> [4,1]
=> [1]
=> []
=> ? = 1
{{1,2,4},{3,5}}
=> [3,2]
=> [2]
=> []
=> ? = 2
{{1,2,5},{3,4}}
=> [3,2]
=> [2]
=> []
=> ? = 0
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 1
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1,3,4,5},{2}}
=> [4,1]
=> [1]
=> []
=> ? = 1
{{1,3,4},{2,5}}
=> [3,2]
=> [2]
=> []
=> ? = 2
{{1,3,5},{2,4}}
=> [3,2]
=> [2]
=> []
=> ? = 2
{{1,3},{2,4,5}}
=> [3,2]
=> [2]
=> []
=> ? = 2
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 0
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 2
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> ? = 0
{{1,4,5},{2,3}}
=> [3,2]
=> [2]
=> []
=> ? = 0
{{1,4},{2,3,5}}
=> [3,2]
=> [2]
=> []
=> ? = 2
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1,5},{2,3,4}}
=> [3,2]
=> [2]
=> []
=> ? = 1
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1,4,5},{2},{3}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? = 1
{{1,4},{2,5},{3}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 2
{{1,4},{2},{3,5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 2
{{1,5},{2,4},{3}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> ? = 0
{{1,5},{2},{3,4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1},{2,5},{3,4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? = 0
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> ? = 1
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> ? = 0
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> ? = 0
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> ? = 0
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> ? = 0
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> ? = 0
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> ? = 0
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> ? = 0
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1},{2},{3},{4,6},{5}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
{{1},{2},{3},{4},{5},{6}}
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
The following 4 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!