Values
001 => [3,1] => [[3,3],[2]] => [2] => 1
011 => [2,1,1] => [[2,2,2],[1,1]] => [1,1] => 0
0001 => [4,1] => [[4,4],[3]] => [3] => 0
0010 => [3,2] => [[4,3],[2]] => [2] => 1
0011 => [3,1,1] => [[3,3,3],[2,2]] => [2,2] => 1
0101 => [2,2,1] => [[3,3,2],[2,1]] => [2,1] => 1
0110 => [2,1,2] => [[3,2,2],[1,1]] => [1,1] => 0
0111 => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => [1,1,1] => 0
1001 => [1,3,1] => [[3,3,1],[2]] => [2] => 1
1011 => [1,2,1,1] => [[2,2,2,1],[1,1]] => [1,1] => 0
00001 => [5,1] => [[5,5],[4]] => [4] => 1
00010 => [4,2] => [[5,4],[3]] => [3] => 0
00011 => [4,1,1] => [[4,4,4],[3,3]] => [3,3] => 2
00100 => [3,3] => [[5,3],[2]] => [2] => 1
00101 => [3,2,1] => [[4,4,3],[3,2]] => [3,2] => 2
00110 => [3,1,2] => [[4,3,3],[2,2]] => [2,2] => 1
00111 => [3,1,1,1] => [[3,3,3,3],[2,2,2]] => [2,2,2] => 2
01001 => [2,3,1] => [[4,4,2],[3,1]] => [3,1] => 1
01010 => [2,2,2] => [[4,3,2],[2,1]] => [2,1] => 1
01011 => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => [2,2,1] => 2
01100 => [2,1,3] => [[4,2,2],[1,1]] => [1,1] => 0
01101 => [2,1,2,1] => [[3,3,2,2],[2,1,1]] => [2,1,1] => 1
01110 => [2,1,1,2] => [[3,2,2,2],[1,1,1]] => [1,1,1] => 0
01111 => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 0
10001 => [1,4,1] => [[4,4,1],[3]] => [3] => 0
10010 => [1,3,2] => [[4,3,1],[2]] => [2] => 1
10011 => [1,3,1,1] => [[3,3,3,1],[2,2]] => [2,2] => 1
10101 => [1,2,2,1] => [[3,3,2,1],[2,1]] => [2,1] => 1
10110 => [1,2,1,2] => [[3,2,2,1],[1,1]] => [1,1] => 0
10111 => [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [1,1,1] => 0
11001 => [1,1,3,1] => [[3,3,1,1],[2]] => [2] => 1
11011 => [1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [1,1] => 0
000001 => [6,1] => [[6,6],[5]] => [5] => 0
000010 => [5,2] => [[6,5],[4]] => [4] => 1
000011 => [5,1,1] => [[5,5,5],[4,4]] => [4,4] => 6
000100 => [4,3] => [[6,4],[3]] => [3] => 0
000101 => [4,2,1] => [[5,5,4],[4,3]] => [4,3] => 6
000110 => [4,1,2] => [[5,4,4],[3,3]] => [3,3] => 2
000111 => [4,1,1,1] => [[4,4,4,4],[3,3,3]] => [3,3,3] => 16
001000 => [3,4] => [[6,3],[2]] => [2] => 1
001001 => [3,3,1] => [[5,5,3],[4,2]] => [4,2] => 4
001010 => [3,2,2] => [[5,4,3],[3,2]] => [3,2] => 2
001011 => [3,2,1,1] => [[4,4,4,3],[3,3,2]] => [3,3,2] => 16
001100 => [3,1,3] => [[5,3,3],[2,2]] => [2,2] => 1
001101 => [3,1,2,1] => [[4,4,3,3],[3,2,2]] => [3,2,2] => 8
001110 => [3,1,1,2] => [[4,3,3,3],[2,2,2]] => [2,2,2] => 2
001111 => [3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => [2,2,2,2] => 5
010001 => [2,4,1] => [[5,5,2],[4,1]] => [4,1] => 2
010010 => [2,3,2] => [[5,4,2],[3,1]] => [3,1] => 1
010011 => [2,3,1,1] => [[4,4,4,2],[3,3,1]] => [3,3,1] => 8
010100 => [2,2,3] => [[5,3,2],[2,1]] => [2,1] => 1
010101 => [2,2,2,1] => [[4,4,3,2],[3,2,1]] => [3,2,1] => 6
010110 => [2,2,1,2] => [[4,3,3,2],[2,2,1]] => [2,2,1] => 2
010111 => [2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => [2,2,2,1] => 5
011000 => [2,1,4] => [[5,2,2],[1,1]] => [1,1] => 0
011001 => [2,1,3,1] => [[4,4,2,2],[3,1,1]] => [3,1,1] => 2
011010 => [2,1,2,2] => [[4,3,2,2],[2,1,1]] => [2,1,1] => 1
011011 => [2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => 3
011100 => [2,1,1,3] => [[4,2,2,2],[1,1,1]] => [1,1,1] => 0
011101 => [2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => 1
011110 => [2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 0
011111 => [2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 0
100001 => [1,5,1] => [[5,5,1],[4]] => [4] => 1
100010 => [1,4,2] => [[5,4,1],[3]] => [3] => 0
100011 => [1,4,1,1] => [[4,4,4,1],[3,3]] => [3,3] => 2
100100 => [1,3,3] => [[5,3,1],[2]] => [2] => 1
100101 => [1,3,2,1] => [[4,4,3,1],[3,2]] => [3,2] => 2
100110 => [1,3,1,2] => [[4,3,3,1],[2,2]] => [2,2] => 1
100111 => [1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => [2,2,2] => 2
101001 => [1,2,3,1] => [[4,4,2,1],[3,1]] => [3,1] => 1
101010 => [1,2,2,2] => [[4,3,2,1],[2,1]] => [2,1] => 1
101011 => [1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [2,2,1] => 2
101100 => [1,2,1,3] => [[4,2,2,1],[1,1]] => [1,1] => 0
101101 => [1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [2,1,1] => 1
101110 => [1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [1,1,1] => 0
101111 => [1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => 0
110001 => [1,1,4,1] => [[4,4,1,1],[3]] => [3] => 0
110010 => [1,1,3,2] => [[4,3,1,1],[2]] => [2] => 1
110011 => [1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [2,2] => 1
110101 => [1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [2,1] => 1
110110 => [1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [1,1] => 0
110111 => [1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [1,1,1] => 0
111001 => [1,1,1,3,1] => [[3,3,1,1,1],[2]] => [2] => 1
111011 => [1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [1,1] => 0
0000001 => [7,1] => [[7,7],[6]] => [6] => 1
0000011 => [6,1,1] => [[6,6,6],[5,5]] => [5,5] => 18
0000111 => [5,1,1,1] => [[5,5,5,5],[4,4,4]] => [4,4,4] => 182
0001000 => [4,4] => [[7,4],[3]] => [3] => 0
0001001 => [4,3,1] => [[6,6,4],[5,3]] => [5,3] => 12
0001010 => [4,2,2] => [[6,5,4],[4,3]] => [4,3] => 6
0001011 => [4,2,1,1] => [[5,5,5,4],[4,4,3]] => [4,4,3] => 182
0001100 => [4,1,3] => [[6,4,4],[3,3]] => [3,3] => 2
0001101 => [4,1,2,1] => [[5,5,4,4],[4,3,3]] => [4,3,3] => 82
0001110 => [4,1,1,2] => [[5,4,4,4],[3,3,3]] => [3,3,3] => 16
0001111 => [4,1,1,1,1] => [[4,4,4,4,4],[3,3,3,3]] => [3,3,3,3] => 168
0010001 => [3,4,1] => [[6,6,3],[5,2]] => [5,2] => 6
0010010 => [3,3,2] => [[6,5,3],[4,2]] => [4,2] => 4
0010011 => [3,3,1,1] => [[5,5,5,3],[4,4,2]] => [4,4,2] => 100
0010100 => [3,2,3] => [[6,4,3],[3,2]] => [3,2] => 2
0010101 => [3,2,2,1] => [[5,5,4,3],[4,3,2]] => [4,3,2] => 66
0010110 => [3,2,1,2] => [[5,4,4,3],[3,3,2]] => [3,3,2] => 16
>>> Load all 175 entries. <<<
0010111 => [3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]] => [3,3,3,2] => 168
0011001 => [3,1,3,1] => [[5,5,3,3],[4,2,2]] => [4,2,2] => 22
0011010 => [3,1,2,2] => [[5,4,3,3],[3,2,2]] => [3,2,2] => 8
0011011 => [3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]] => [3,3,2,2] => 91
0011100 => [3,1,1,3] => [[5,3,3,3],[2,2,2]] => [2,2,2] => 2
0011101 => [3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]] => [3,2,2,2] => 30
0011111 => [3,1,1,1,1,1] => [[3,3,3,3,3,3],[2,2,2,2,2]] => [2,2,2,2,2] => 14
0100010 => [2,4,2] => [[6,5,2],[4,1]] => [4,1] => 2
0100011 => [2,4,1,1] => [[5,5,5,2],[4,4,1]] => [4,4,1] => 34
0100100 => [2,3,3] => [[6,4,2],[3,1]] => [3,1] => 1
0100101 => [2,3,2,1] => [[5,5,4,2],[4,3,1]] => [4,3,1] => 28
0100110 => [2,3,1,2] => [[5,4,4,2],[3,3,1]] => [3,3,1] => 8
0100111 => [2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]] => [3,3,3,1] => 77
0101001 => [2,2,3,1] => [[5,5,3,2],[4,2,1]] => [4,2,1] => 14
0101010 => [2,2,2,2] => [[5,4,3,2],[3,2,1]] => [3,2,1] => 6
0101011 => [2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]] => [3,3,2,1] => 61
0101100 => [2,2,1,3] => [[5,3,3,2],[2,2,1]] => [2,2,1] => 2
0101101 => [2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]] => [3,2,2,1] => 25
0101110 => [2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]] => [2,2,2,1] => 5
0101111 => [2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => [2,2,2,2,1] => 14
0110010 => [2,1,3,2] => [[5,4,2,2],[3,1,1]] => [3,1,1] => 2
0110011 => [2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]] => [3,3,1,1] => 20
0110100 => [2,1,2,3] => [[5,3,2,2],[2,1,1]] => [2,1,1] => 1
0110101 => [2,1,2,2,1] => [[4,4,3,2,2],[3,2,1,1]] => [3,2,1,1] => 12
0110110 => [2,1,2,1,2] => [[4,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => 3
0110111 => [2,1,2,1,1,1] => [[3,3,3,3,2,2],[2,2,2,1,1]] => [2,2,2,1,1] => 9
0111001 => [2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => [3,1,1,1] => 3
0111010 => [2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => 1
0111011 => [2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]] => [2,2,1,1,1] => 4
0111101 => [2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => [2,1,1,1,1] => 1
0111110 => [2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 0
0111111 => [2,1,1,1,1,1,1] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]] => [1,1,1,1,1,1] => 0
1000100 => [1,4,3] => [[6,4,1],[3]] => [3] => 0
1000101 => [1,4,2,1] => [[5,5,4,1],[4,3]] => [4,3] => 6
1000110 => [1,4,1,2] => [[5,4,4,1],[3,3]] => [3,3] => 2
1000111 => [1,4,1,1,1] => [[4,4,4,4,1],[3,3,3]] => [3,3,3] => 16
1001001 => [1,3,3,1] => [[5,5,3,1],[4,2]] => [4,2] => 4
1001010 => [1,3,2,2] => [[5,4,3,1],[3,2]] => [3,2] => 2
1001011 => [1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]] => [3,3,2] => 16
1001100 => [1,3,1,3] => [[5,3,3,1],[2,2]] => [2,2] => 1
1001101 => [1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]] => [3,2,2] => 8
1001110 => [1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => [2,2,2] => 2
1010010 => [1,2,3,2] => [[5,4,2,1],[3,1]] => [3,1] => 1
1010011 => [1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]] => [3,3,1] => 8
1010100 => [1,2,2,3] => [[5,3,2,1],[2,1]] => [2,1] => 1
1010101 => [1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]] => [3,2,1] => 6
1010110 => [1,2,2,1,2] => [[4,3,3,2,1],[2,2,1]] => [2,2,1] => 2
1010111 => [1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]] => [2,2,2,1] => 5
1011001 => [1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]] => [3,1,1] => 2
1011010 => [1,2,1,2,2] => [[4,3,2,2,1],[2,1,1]] => [2,1,1] => 1
1011011 => [1,2,1,2,1,1] => [[3,3,3,2,2,1],[2,2,1,1]] => [2,2,1,1] => 3
1011101 => [1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]] => [2,1,1,1] => 1
1011110 => [1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => 0
1011111 => [1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]] => [1,1,1,1,1] => 0
1100100 => [1,1,3,3] => [[5,3,1,1],[2]] => [2] => 1
1100101 => [1,1,3,2,1] => [[4,4,3,1,1],[3,2]] => [3,2] => 2
1100110 => [1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => [2,2] => 1
1101001 => [1,1,2,3,1] => [[4,4,2,1,1],[3,1]] => [3,1] => 1
1101010 => [1,1,2,2,2] => [[4,3,2,1,1],[2,1]] => [2,1] => 1
1101011 => [1,1,2,2,1,1] => [[3,3,3,2,1,1],[2,2,1]] => [2,2,1] => 2
1101101 => [1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]] => [2,1,1] => 1
1101110 => [1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]] => [1,1,1] => 0
1101111 => [1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => [1,1,1,1] => 0
1110010 => [1,1,1,3,2] => [[4,3,1,1,1],[2]] => [2] => 1
1110101 => [1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]] => [2,1] => 1
1110110 => [1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => [1,1] => 0
1110111 => [1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]] => [1,1,1] => 0
1111011 => [1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => [1,1] => 0
00000001 => [8,1] => [[8,8],[7]] => [7] => 0
00000011 => [7,1,1] => [[7,7,7],[6,6]] => [6,6] => 57
00111111 => [3,1,1,1,1,1,1] => [[3,3,3,3,3,3,3],[2,2,2,2,2,2]] => [2,2,2,2,2,2] => 42
01111111 => [2,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1] => 0
000000001 => [9,1] => [[9,9],[8]] => [8] => 1
011111111 => [2,1,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1,1] => 0
search for individual values
searching the database for the individual values of this statistic
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even.
To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is even.
This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1].
The case of an odd minimum is St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd..
Map
inner shape
Description
The inner shape of a skew partition.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.