Identifier
- St000758: Integer compositions ⟶ ℤ
Values
=>
[1]=>1
[1,1]=>1
[2]=>1
[1,1,1]=>1
[1,2]=>2
[2,1]=>1
[3]=>1
[1,1,1,1]=>1
[1,1,2]=>2
[1,2,1]=>2
[1,3]=>2
[2,1,1]=>1
[2,2]=>2
[3,1]=>1
[4]=>1
[1,1,1,1,1]=>1
[1,1,1,2]=>2
[1,1,2,1]=>2
[1,1,3]=>2
[1,2,1,1]=>2
[1,2,2]=>2
[1,3,1]=>2
[1,4]=>2
[2,1,1,1]=>1
[2,1,2]=>2
[2,2,1]=>2
[2,3]=>2
[3,1,1]=>1
[3,2]=>2
[4,1]=>1
[5]=>1
[1,1,1,1,1,1]=>1
[1,1,1,1,2]=>2
[1,1,1,2,1]=>2
[1,1,1,3]=>2
[1,1,2,1,1]=>2
[1,1,2,2]=>2
[1,1,3,1]=>2
[1,1,4]=>2
[1,2,1,1,1]=>2
[1,2,1,2]=>2
[1,2,2,1]=>2
[1,2,3]=>3
[1,3,1,1]=>2
[1,3,2]=>2
[1,4,1]=>2
[1,5]=>2
[2,1,1,1,1]=>1
[2,1,1,2]=>2
[2,1,2,1]=>2
[2,1,3]=>2
[2,2,1,1]=>2
[2,2,2]=>2
[2,3,1]=>2
[2,4]=>2
[3,1,1,1]=>1
[3,1,2]=>2
[3,2,1]=>2
[3,3]=>2
[4,1,1]=>1
[4,2]=>2
[5,1]=>1
[6]=>1
[1,1,1,1,1,1,1]=>1
[1,1,1,1,1,2]=>2
[1,1,1,1,2,1]=>2
[1,1,1,1,3]=>2
[1,1,1,2,1,1]=>2
[1,1,1,2,2]=>2
[1,1,1,3,1]=>2
[1,1,1,4]=>2
[1,1,2,1,1,1]=>2
[1,1,2,1,2]=>2
[1,1,2,2,1]=>2
[1,1,2,3]=>3
[1,1,3,1,1]=>2
[1,1,3,2]=>2
[1,1,4,1]=>2
[1,1,5]=>2
[1,2,1,1,1,1]=>2
[1,2,1,1,2]=>2
[1,2,1,2,1]=>2
[1,2,1,3]=>3
[1,2,2,1,1]=>2
[1,2,2,2]=>2
[1,2,3,1]=>3
[1,2,4]=>3
[1,3,1,1,1]=>2
[1,3,1,2]=>2
[1,3,2,1]=>2
[1,3,3]=>3
[1,4,1,1]=>2
[1,4,2]=>2
[1,5,1]=>2
[1,6]=>2
[2,1,1,1,1,1]=>1
[2,1,1,1,2]=>2
[2,1,1,2,1]=>2
[2,1,1,3]=>2
[2,1,2,1,1]=>2
[2,1,2,2]=>2
[2,1,3,1]=>2
[2,1,4]=>2
[2,2,1,1,1]=>2
[2,2,1,2]=>2
[2,2,2,1]=>2
[2,2,3]=>3
[2,3,1,1]=>2
[2,3,2]=>2
[2,4,1]=>2
[2,5]=>2
[3,1,1,1,1]=>1
[3,1,1,2]=>2
[3,1,2,1]=>2
[3,1,3]=>2
[3,2,1,1]=>2
[3,2,2]=>2
[3,3,1]=>2
[3,4]=>2
[4,1,1,1]=>1
[4,1,2]=>2
[4,2,1]=>2
[4,3]=>2
[5,1,1]=>1
[5,2]=>2
[6,1]=>1
[7]=>1
[1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,2]=>2
[1,1,1,1,1,2,1]=>2
[1,1,1,1,1,3]=>2
[1,1,1,1,2,1,1]=>2
[1,1,1,1,2,2]=>2
[1,1,1,1,3,1]=>2
[1,1,1,1,4]=>2
[1,1,1,2,1,1,1]=>2
[1,1,1,2,1,2]=>2
[1,1,1,2,2,1]=>2
[1,1,1,2,3]=>3
[1,1,1,3,1,1]=>2
[1,1,1,3,2]=>2
[1,1,1,4,1]=>2
[1,1,1,5]=>2
[1,1,2,1,1,1,1]=>2
[1,1,2,1,1,2]=>2
[1,1,2,1,2,1]=>2
[1,1,2,1,3]=>3
[1,1,2,2,1,1]=>2
[1,1,2,2,2]=>2
[1,1,2,3,1]=>3
[1,1,2,4]=>3
[1,1,3,1,1,1]=>2
[1,1,3,1,2]=>2
[1,1,3,2,1]=>2
[1,1,3,3]=>3
[1,1,4,1,1]=>2
[1,1,4,2]=>2
[1,1,5,1]=>2
[1,1,6]=>2
[1,2,1,1,1,1,1]=>2
[1,2,1,1,1,2]=>2
[1,2,1,1,2,1]=>2
[1,2,1,1,3]=>3
[1,2,1,2,1,1]=>2
[1,2,1,2,2]=>2
[1,2,1,3,1]=>3
[1,2,1,4]=>3
[1,2,2,1,1,1]=>2
[1,2,2,1,2]=>2
[1,2,2,2,1]=>2
[1,2,2,3]=>3
[1,2,3,1,1]=>3
[1,2,3,2]=>3
[1,2,4,1]=>3
[1,2,5]=>3
[1,3,1,1,1,1]=>2
[1,3,1,1,2]=>2
[1,3,1,2,1]=>2
[1,3,1,3]=>3
[1,3,2,1,1]=>2
[1,3,2,2]=>2
[1,3,3,1]=>3
[1,3,4]=>3
[1,4,1,1,1]=>2
[1,4,1,2]=>2
[1,4,2,1]=>2
[1,4,3]=>3
[1,5,1,1]=>2
[1,5,2]=>2
[1,6,1]=>2
[1,7]=>2
[2,1,1,1,1,1,1]=>1
[2,1,1,1,1,2]=>2
[2,1,1,1,2,1]=>2
[2,1,1,1,3]=>2
[2,1,1,2,1,1]=>2
[2,1,1,2,2]=>2
[2,1,1,3,1]=>2
[2,1,1,4]=>2
[2,1,2,1,1,1]=>2
[2,1,2,1,2]=>2
[2,1,2,2,1]=>2
[2,1,2,3]=>3
[2,1,3,1,1]=>2
[2,1,3,2]=>2
[2,1,4,1]=>2
[2,1,5]=>2
[2,2,1,1,1,1]=>2
[2,2,1,1,2]=>2
[2,2,1,2,1]=>2
[2,2,1,3]=>3
[2,2,2,1,1]=>2
[2,2,2,2]=>2
[2,2,3,1]=>3
[2,2,4]=>3
[2,3,1,1,1]=>2
[2,3,1,2]=>2
[2,3,2,1]=>2
[2,3,3]=>3
[2,4,1,1]=>2
[2,4,2]=>2
[2,5,1]=>2
[2,6]=>2
[3,1,1,1,1,1]=>1
[3,1,1,1,2]=>2
[3,1,1,2,1]=>2
[3,1,1,3]=>2
[3,1,2,1,1]=>2
[3,1,2,2]=>2
[3,1,3,1]=>2
[3,1,4]=>2
[3,2,1,1,1]=>2
[3,2,1,2]=>2
[3,2,2,1]=>2
[3,2,3]=>3
[3,3,1,1]=>2
[3,3,2]=>2
[3,4,1]=>2
[3,5]=>2
[4,1,1,1,1]=>1
[4,1,1,2]=>2
[4,1,2,1]=>2
[4,1,3]=>2
[4,2,1,1]=>2
[4,2,2]=>2
[4,3,1]=>2
[4,4]=>2
[5,1,1,1]=>1
[5,1,2]=>2
[5,2,1]=>2
[5,3]=>2
[6,1,1]=>1
[6,2]=>2
[7,1]=>1
[8]=>1
[1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,2]=>2
[1,1,1,1,1,1,2,1]=>2
[1,1,1,1,1,1,3]=>2
[1,1,1,1,1,2,1,1]=>2
[1,1,1,1,1,2,2]=>2
[1,1,1,1,1,3,1]=>2
[1,1,1,1,1,4]=>2
[1,1,1,1,2,1,1,1]=>2
[1,1,1,1,2,1,2]=>2
[1,1,1,1,2,2,1]=>2
[1,1,1,1,2,3]=>3
[1,1,1,1,3,1,1]=>2
[1,1,1,1,3,2]=>2
[1,1,1,1,4,1]=>2
[1,1,1,1,5]=>2
[1,1,1,2,1,1,1,1]=>2
[1,1,1,2,1,1,2]=>2
[1,1,1,2,1,2,1]=>2
[1,1,1,2,1,3]=>3
[1,1,1,2,2,1,1]=>2
[1,1,1,2,2,2]=>2
[1,1,1,2,3,1]=>3
[1,1,1,2,4]=>3
[1,1,1,3,1,1,1]=>2
[1,1,1,3,1,2]=>2
[1,1,1,3,2,1]=>2
[1,1,1,3,3]=>3
[1,1,1,4,1,1]=>2
[1,1,1,4,2]=>2
[1,1,1,5,1]=>2
[1,1,1,6]=>2
[1,1,2,1,1,1,1,1]=>2
[1,1,2,1,1,1,2]=>2
[1,1,2,1,1,2,1]=>2
[1,1,2,1,1,3]=>3
[1,1,2,1,2,1,1]=>2
[1,1,2,1,2,2]=>2
[1,1,2,1,3,1]=>3
[1,1,2,1,4]=>3
[1,1,2,2,1,1,1]=>2
[1,1,2,2,1,2]=>2
[1,1,2,2,2,1]=>2
[1,1,2,2,3]=>3
[1,1,2,3,1,1]=>3
[1,1,2,3,2]=>3
[1,1,2,4,1]=>3
[1,1,2,5]=>3
[1,1,3,1,1,1,1]=>2
[1,1,3,1,1,2]=>2
[1,1,3,1,2,1]=>2
[1,1,3,1,3]=>3
[1,1,3,2,1,1]=>2
[1,1,3,2,2]=>2
[1,1,3,3,1]=>3
[1,1,3,4]=>3
[1,1,4,1,1,1]=>2
[1,1,4,1,2]=>2
[1,1,4,2,1]=>2
[1,1,4,3]=>3
[1,1,5,1,1]=>2
[1,1,5,2]=>2
[1,1,6,1]=>2
[1,1,7]=>2
[1,2,1,1,1,1,1,1]=>2
[1,2,1,1,1,1,2]=>2
[1,2,1,1,1,2,1]=>2
[1,2,1,1,1,3]=>3
[1,2,1,1,2,1,1]=>2
[1,2,1,1,2,2]=>2
[1,2,1,1,3,1]=>3
[1,2,1,1,4]=>3
[1,2,1,2,1,1,1]=>2
[1,2,1,2,1,2]=>2
[1,2,1,2,2,1]=>2
[1,2,1,2,3]=>3
[1,2,1,3,1,1]=>3
[1,2,1,3,2]=>3
[1,2,1,4,1]=>3
[1,2,1,5]=>3
[1,2,2,1,1,1,1]=>2
[1,2,2,1,1,2]=>2
[1,2,2,1,2,1]=>2
[1,2,2,1,3]=>3
[1,2,2,2,1,1]=>2
[1,2,2,2,2]=>2
[1,2,2,3,1]=>3
[1,2,2,4]=>3
[1,2,3,1,1,1]=>3
[1,2,3,1,2]=>3
[1,2,3,2,1]=>3
[1,2,3,3]=>3
[1,2,4,1,1]=>3
[1,2,4,2]=>3
[1,2,5,1]=>3
[1,2,6]=>3
[1,3,1,1,1,1,1]=>2
[1,3,1,1,1,2]=>2
[1,3,1,1,2,1]=>2
[1,3,1,1,3]=>3
[1,3,1,2,1,1]=>2
[1,3,1,2,2]=>2
[1,3,1,3,1]=>3
[1,3,1,4]=>3
[1,3,2,1,1,1]=>2
[1,3,2,1,2]=>2
[1,3,2,2,1]=>2
[1,3,2,3]=>3
[1,3,3,1,1]=>3
[1,3,3,2]=>3
[1,3,4,1]=>3
[1,3,5]=>3
[1,4,1,1,1,1]=>2
[1,4,1,1,2]=>2
[1,4,1,2,1]=>2
[1,4,1,3]=>3
[1,4,2,1,1]=>2
[1,4,2,2]=>2
[1,4,3,1]=>3
[1,4,4]=>3
[1,5,1,1,1]=>2
[1,5,1,2]=>2
[1,5,2,1]=>2
[1,5,3]=>3
[1,6,1,1]=>2
[1,6,2]=>2
[1,7,1]=>2
[1,8]=>2
[2,1,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,2]=>2
[2,1,1,1,1,2,1]=>2
[2,1,1,1,1,3]=>2
[2,1,1,1,2,1,1]=>2
[2,1,1,1,2,2]=>2
[2,1,1,1,3,1]=>2
[2,1,1,1,4]=>2
[2,1,1,2,1,1,1]=>2
[2,1,1,2,1,2]=>2
[2,1,1,2,2,1]=>2
[2,1,1,2,3]=>3
[2,1,1,3,1,1]=>2
[2,1,1,3,2]=>2
[2,1,1,4,1]=>2
[2,1,1,5]=>2
[2,1,2,1,1,1,1]=>2
[2,1,2,1,1,2]=>2
[2,1,2,1,2,1]=>2
[2,1,2,1,3]=>3
[2,1,2,2,1,1]=>2
[2,1,2,2,2]=>2
[2,1,2,3,1]=>3
[2,1,2,4]=>3
[2,1,3,1,1,1]=>2
[2,1,3,1,2]=>2
[2,1,3,2,1]=>2
[2,1,3,3]=>3
[2,1,4,1,1]=>2
[2,1,4,2]=>2
[2,1,5,1]=>2
[2,1,6]=>2
[2,2,1,1,1,1,1]=>2
[2,2,1,1,1,2]=>2
[2,2,1,1,2,1]=>2
[2,2,1,1,3]=>3
[2,2,1,2,1,1]=>2
[2,2,1,2,2]=>2
[2,2,1,3,1]=>3
[2,2,1,4]=>3
[2,2,2,1,1,1]=>2
[2,2,2,1,2]=>2
[2,2,2,2,1]=>2
[2,2,2,3]=>3
[2,2,3,1,1]=>3
[2,2,3,2]=>3
[2,2,4,1]=>3
[2,2,5]=>3
[2,3,1,1,1,1]=>2
[2,3,1,1,2]=>2
[2,3,1,2,1]=>2
[2,3,1,3]=>3
[2,3,2,1,1]=>2
[2,3,2,2]=>2
[2,3,3,1]=>3
[2,3,4]=>3
[2,4,1,1,1]=>2
[2,4,1,2]=>2
[2,4,2,1]=>2
[2,4,3]=>3
[2,5,1,1]=>2
[2,5,2]=>2
[2,6,1]=>2
[2,7]=>2
[3,1,1,1,1,1,1]=>1
[3,1,1,1,1,2]=>2
[3,1,1,1,2,1]=>2
[3,1,1,1,3]=>2
[3,1,1,2,1,1]=>2
[3,1,1,2,2]=>2
[3,1,1,3,1]=>2
[3,1,1,4]=>2
[3,1,2,1,1,1]=>2
[3,1,2,1,2]=>2
[3,1,2,2,1]=>2
[3,1,2,3]=>3
[3,1,3,1,1]=>2
[3,1,3,2]=>2
[3,1,4,1]=>2
[3,1,5]=>2
[3,2,1,1,1,1]=>2
[3,2,1,1,2]=>2
[3,2,1,2,1]=>2
[3,2,1,3]=>3
[3,2,2,1,1]=>2
[3,2,2,2]=>2
[3,2,3,1]=>3
[3,2,4]=>3
[3,3,1,1,1]=>2
[3,3,1,2]=>2
[3,3,2,1]=>2
[3,3,3]=>3
[3,4,1,1]=>2
[3,4,2]=>2
[3,5,1]=>2
[3,6]=>2
[4,1,1,1,1,1]=>1
[4,1,1,1,2]=>2
[4,1,1,2,1]=>2
[4,1,1,3]=>2
[4,1,2,1,1]=>2
[4,1,2,2]=>2
[4,1,3,1]=>2
[4,1,4]=>2
[4,2,1,1,1]=>2
[4,2,1,2]=>2
[4,2,2,1]=>2
[4,2,3]=>3
[4,3,1,1]=>2
[4,3,2]=>2
[4,4,1]=>2
[4,5]=>2
[5,1,1,1,1]=>1
[5,1,1,2]=>2
[5,1,2,1]=>2
[5,1,3]=>2
[5,2,1,1]=>2
[5,2,2]=>2
[5,3,1]=>2
[5,4]=>2
[6,1,1,1]=>1
[6,1,2]=>2
[6,2,1]=>2
[6,3]=>2
[7,1,1]=>1
[7,2]=>2
[8,1]=>1
[9]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of the longest staircase fitting into an integer composition.
For a given composition $c_1,\dots,c_n$, this is the maximal number $\ell$ such that there are indices $i_1 < \dots < i_\ell$ with $c_{i_k} \geq k$, see [def.3.1, 1]
For a given composition $c_1,\dots,c_n$, this is the maximal number $\ell$ such that there are indices $i_1 < \dots < i_\ell$ with $c_{i_k} \geq k$, see [def.3.1, 1]
References
[1] Skandera, M. An Eulerian partner for inversions MathSciNet:1848722
Code
def statistic(w): l = 0 for e in w: if e > l: l += 1 return l
Created
Apr 09, 2017 at 10:46 by Martin Rubey
Updated
Nov 06, 2017 at 23:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!