searching the database
Your data matches 35 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000038
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
St000038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 4
[1,1,1,0,0,0]
=> 6
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 6
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 8
[1,1,0,1,1,0,0,0]
=> 12
[1,1,1,0,0,0,1,0]
=> 6
[1,1,1,0,0,1,0,0]
=> 12
[1,1,1,0,1,0,0,0]
=> 18
[1,1,1,1,0,0,0,0]
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> 48
Description
The product of the heights of the descending steps of a Dyck path.
A Dyck path with 2n letters defines a partition inside an [n] x [n] board. This statistic counts the number of placements of n non-attacking rooks on the board.
By the Gessel-Viennot theory of orthogonal polynomials this corresponds to the 0-moment of the Hermite polynomials.
Summing the values of the statistic over all Dyck paths of fixed size n the number of perfect matchings (2n+1)!! is obtained: up steps are openers, down steps closers and the rooks determine a pairing of openers and closers.
Matching statistic: St000033
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000033: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000033: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 2
[1,0,1,0,1,0]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0,1,0]
=> [3,1,2] => 2
[1,1,0,1,0,0]
=> [2,1,3] => 4
[1,1,1,0,0,0]
=> [1,2,3] => 6
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 6
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 8
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 12
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 6
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 12
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 18
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 24
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 12
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 12
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 18
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 24
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 12
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 16
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 24
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 12
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 24
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 48
Description
The number of permutations greater than or equal to the given permutation in (strong) Bruhat order.
Matching statistic: St000040
(load all 24 compositions to match this statistic)
(load all 24 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000040: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000040: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [1,2] => 1
[1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 4
[1,1,1,0,0,0]
=> [3,2,1] => 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 6
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 8
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 12
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 6
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 12
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 18
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 24
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 12
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 16
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 24
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 12
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 24
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 48
Description
The number of regions of the inversion arrangement of a permutation.
The inversion arrangement Aw consists of the hyperplanes xi−xj=0 such that (i,j) is an inversion of w.
Postnikov [4] conjectured that the number of regions in Aw equals the number of permutations in the interval [id,w] in the strong Bruhat order if and only if w avoids 4231, 35142, 42513, 351624. This conjecture was proved by Hultman-Linusson-Shareshian-Sjöstrand [1].
Oh-Postnikov-Yoo [3] showed that the number of regions of Aw is |χGw(−1)| where χGw is the chromatic polynomial of the inversion graph Gw. This is the graph with vertices 1,2,…,n and edges (i,j) for i⪇ w_i\gneq w_j.
For a permutation w=w_1\cdots w_n, Lewis-Morales [2] and Hultman (see appendix in [2]) showed that this number equals the number of placements of n non-attacking rooks on the south-west Rothe diagram of w.
Matching statistic: St000109
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000109: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000109: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [1,2] => 1
[1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 4
[1,1,1,0,0,0]
=> [3,2,1] => 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 6
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 8
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 12
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 6
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 12
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 18
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 24
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 8
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 12
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 8
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 8
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 16
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 24
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 12
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 24
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 48
Description
The number of elements less than or equal to the given element in Bruhat order.
Matching statistic: St000269
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000269: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000269: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,2] => ([],2)
=> 1
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 4
[1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 8
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 6
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
Description
The number of acyclic orientations of a graph.
Matching statistic: St001813
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001813: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
St001813: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([],2)
=> 1
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 4
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 6
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 4
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 8
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 12
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 6
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 12
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 18
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 48
Description
The product of the sizes of the principal order filters in a poset.
Matching statistic: St000948
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000948: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000948: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 48
Description
The chromatic discriminant of a graph.
The chromatic discriminant \alpha(G) is the coefficient of the linear term of the chromatic polynomial \chi(G,q).
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at q,
(2) Maximum G-parking functions relative to q,
(3) Minimal q-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to G,
(6) Multilinear Lyndon heaps on G.
In addition, \alpha(G) is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Matching statistic: St001475
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001475: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001475: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 18
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 12
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 36
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 48
Description
The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0).
Matching statistic: St001808
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St001808: Dyck paths ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St001808: Dyck paths ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 6
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 4
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 24
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 6
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 12
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 6
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 18
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 12
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 8
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 120
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 24
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 48
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 24
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 72
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 12
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 48
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 12
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 6
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 24
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 12
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 6
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 96
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 18
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 36
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 18
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 72
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 12
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 36
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 12
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 24
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 12
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 54
Description
The box weight or horizontal decoration of a Dyck path.
Let a Dyck path D = (d_1,d_2,\dots,d_n) with steps d_i \in \{N=(0,1),E=(1,0)\} be given.
For the ith step d_i \in D we define the weight
\beta(d_i) = 1, \quad \text{ if } d_i=N,
and
\beta(d_i) = \sum_{k = 1}^{i} [\![ d_k = N]\!], \quad \text{ if } d_i=E,
where we use the Iverson bracket [\![ A ]\!] that is equal to 1 if A is true, and 0 otherwise.
The '''box weight''' or '''horizontal deocration''' of D is defined as
\prod_{i=1}^{n} \beta(d_i).
The name describes the fact that between each E step and the line y=-1 exactly one unit box is marked.
Matching statistic: St001545
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001545: Graphs ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 53%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001545: Graphs ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 53%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [1,2] => ([],2)
=> ([],1)
=> ? = 1
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> ? ∊ {1,2,4}
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,4}
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,4}
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,4,6,8,12,12,18}
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 8
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,4,6,6,8,8,8,12,12,12,12,16,18,18,24,24,24,24,36,36,36,54,72,72,96}
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 120
Description
The second Elser number of a connected graph.
For a connected graph G the k-th Elser number is
els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k
where the sum is over all nuclei of G, that is, the connected subgraphs of G whose vertex set is a vertex cover of G.
It is clear that this number is even. It was shown in [1] that it is non-negative.
The following 25 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000669The number of permutations obtained by switching ascents or descents of size 2. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000681The Grundy value of Chomp on Ferrers diagrams. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St001378The product of the cohook lengths of the integer partition. St000274The number of perfect matchings of a graph. St000307The number of rowmotion orbits of a poset. St000886The number of permutations with the same antidiagonal sums. St001632The number of indecomposable injective modules I with dim Ext^1(I,A)=1 for the incidence algebra A of a poset. St001735The number of permutations with the same set of runs. St000367The number of simsun double descents of a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000538The number of even inversions of a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St001171The vector space dimension of Ext_A^1(I_o,A) when I_o is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(x^n). St001705The number of occurrences of the pattern 2413 in a permutation. St000100The number of linear extensions of a poset. St000454The largest eigenvalue of a graph if it is integral. St000633The size of the automorphism group of a poset. St001644The dimension of a graph. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001330The hat guessing number of a graph. St000455The second largest eigenvalue of a graph if it is integral.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!