Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00225: Semistandard tableaux weightInteger partitions
St000148: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,1]
=> 2
[[2,2]]
=> [2]
=> 0
[[1],[2]]
=> [1,1]
=> 2
[[1,3]]
=> [1,1]
=> 2
[[2,3]]
=> [1,1]
=> 2
[[3,3]]
=> [2]
=> 0
[[1],[3]]
=> [1,1]
=> 2
[[2],[3]]
=> [1,1]
=> 2
[[1,1,2]]
=> [2,1]
=> 1
[[1,2,2]]
=> [2,1]
=> 1
[[2,2,2]]
=> [3]
=> 1
[[1,1],[2]]
=> [2,1]
=> 1
[[1,2],[2]]
=> [2,1]
=> 1
[[1,4]]
=> [1,1]
=> 2
[[2,4]]
=> [1,1]
=> 2
[[3,4]]
=> [1,1]
=> 2
[[4,4]]
=> [2]
=> 0
[[1],[4]]
=> [1,1]
=> 2
[[2],[4]]
=> [1,1]
=> 2
[[3],[4]]
=> [1,1]
=> 2
[[1,1,3]]
=> [2,1]
=> 1
[[1,2,3]]
=> [1,1,1]
=> 3
[[1,3,3]]
=> [2,1]
=> 1
[[2,2,3]]
=> [2,1]
=> 1
[[2,3,3]]
=> [2,1]
=> 1
[[3,3,3]]
=> [3]
=> 1
[[1,1],[3]]
=> [2,1]
=> 1
[[1,2],[3]]
=> [1,1,1]
=> 3
[[1,3],[2]]
=> [1,1,1]
=> 3
[[1,3],[3]]
=> [2,1]
=> 1
[[2,2],[3]]
=> [2,1]
=> 1
[[2,3],[3]]
=> [2,1]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> 3
[[1,1,1,2]]
=> [3,1]
=> 2
[[1,1,2,2]]
=> [2,2]
=> 0
[[1,2,2,2]]
=> [3,1]
=> 2
[[2,2,2,2]]
=> [4]
=> 0
[[1,1,1],[2]]
=> [3,1]
=> 2
[[1,1,2],[2]]
=> [2,2]
=> 0
[[1,2,2],[2]]
=> [3,1]
=> 2
[[1,1],[2,2]]
=> [2,2]
=> 0
[[1,5]]
=> [1,1]
=> 2
[[2,5]]
=> [1,1]
=> 2
[[3,5]]
=> [1,1]
=> 2
[[4,5]]
=> [1,1]
=> 2
[[5,5]]
=> [2]
=> 0
[[1],[5]]
=> [1,1]
=> 2
[[2],[5]]
=> [1,1]
=> 2
[[3],[5]]
=> [1,1]
=> 2
[[4],[5]]
=> [1,1]
=> 2
Description
The number of odd parts of a partition.
Mp00225: Semistandard tableaux weightInteger partitions
Mp00317: Integer partitions odd partsBinary words
St000288: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,1]
=> 11 => 2
[[2,2]]
=> [2]
=> 0 => 0
[[1],[2]]
=> [1,1]
=> 11 => 2
[[1,3]]
=> [1,1]
=> 11 => 2
[[2,3]]
=> [1,1]
=> 11 => 2
[[3,3]]
=> [2]
=> 0 => 0
[[1],[3]]
=> [1,1]
=> 11 => 2
[[2],[3]]
=> [1,1]
=> 11 => 2
[[1,1,2]]
=> [2,1]
=> 01 => 1
[[1,2,2]]
=> [2,1]
=> 01 => 1
[[2,2,2]]
=> [3]
=> 1 => 1
[[1,1],[2]]
=> [2,1]
=> 01 => 1
[[1,2],[2]]
=> [2,1]
=> 01 => 1
[[1,4]]
=> [1,1]
=> 11 => 2
[[2,4]]
=> [1,1]
=> 11 => 2
[[3,4]]
=> [1,1]
=> 11 => 2
[[4,4]]
=> [2]
=> 0 => 0
[[1],[4]]
=> [1,1]
=> 11 => 2
[[2],[4]]
=> [1,1]
=> 11 => 2
[[3],[4]]
=> [1,1]
=> 11 => 2
[[1,1,3]]
=> [2,1]
=> 01 => 1
[[1,2,3]]
=> [1,1,1]
=> 111 => 3
[[1,3,3]]
=> [2,1]
=> 01 => 1
[[2,2,3]]
=> [2,1]
=> 01 => 1
[[2,3,3]]
=> [2,1]
=> 01 => 1
[[3,3,3]]
=> [3]
=> 1 => 1
[[1,1],[3]]
=> [2,1]
=> 01 => 1
[[1,2],[3]]
=> [1,1,1]
=> 111 => 3
[[1,3],[2]]
=> [1,1,1]
=> 111 => 3
[[1,3],[3]]
=> [2,1]
=> 01 => 1
[[2,2],[3]]
=> [2,1]
=> 01 => 1
[[2,3],[3]]
=> [2,1]
=> 01 => 1
[[1],[2],[3]]
=> [1,1,1]
=> 111 => 3
[[1,1,1,2]]
=> [3,1]
=> 11 => 2
[[1,1,2,2]]
=> [2,2]
=> 00 => 0
[[1,2,2,2]]
=> [3,1]
=> 11 => 2
[[2,2,2,2]]
=> [4]
=> 0 => 0
[[1,1,1],[2]]
=> [3,1]
=> 11 => 2
[[1,1,2],[2]]
=> [2,2]
=> 00 => 0
[[1,2,2],[2]]
=> [3,1]
=> 11 => 2
[[1,1],[2,2]]
=> [2,2]
=> 00 => 0
[[1,5]]
=> [1,1]
=> 11 => 2
[[2,5]]
=> [1,1]
=> 11 => 2
[[3,5]]
=> [1,1]
=> 11 => 2
[[4,5]]
=> [1,1]
=> 11 => 2
[[5,5]]
=> [2]
=> 0 => 0
[[1],[5]]
=> [1,1]
=> 11 => 2
[[2],[5]]
=> [1,1]
=> 11 => 2
[[3],[5]]
=> [1,1]
=> 11 => 2
[[4],[5]]
=> [1,1]
=> 11 => 2
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Mp00225: Semistandard tableaux weightInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000992: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,1]
=> [2]
=> 2
[[2,2]]
=> [2]
=> [1,1]
=> 0
[[1],[2]]
=> [1,1]
=> [2]
=> 2
[[1,3]]
=> [1,1]
=> [2]
=> 2
[[2,3]]
=> [1,1]
=> [2]
=> 2
[[3,3]]
=> [2]
=> [1,1]
=> 0
[[1],[3]]
=> [1,1]
=> [2]
=> 2
[[2],[3]]
=> [1,1]
=> [2]
=> 2
[[1,1,2]]
=> [2,1]
=> [2,1]
=> 1
[[1,2,2]]
=> [2,1]
=> [2,1]
=> 1
[[2,2,2]]
=> [3]
=> [1,1,1]
=> 1
[[1,1],[2]]
=> [2,1]
=> [2,1]
=> 1
[[1,2],[2]]
=> [2,1]
=> [2,1]
=> 1
[[1,4]]
=> [1,1]
=> [2]
=> 2
[[2,4]]
=> [1,1]
=> [2]
=> 2
[[3,4]]
=> [1,1]
=> [2]
=> 2
[[4,4]]
=> [2]
=> [1,1]
=> 0
[[1],[4]]
=> [1,1]
=> [2]
=> 2
[[2],[4]]
=> [1,1]
=> [2]
=> 2
[[3],[4]]
=> [1,1]
=> [2]
=> 2
[[1,1,3]]
=> [2,1]
=> [2,1]
=> 1
[[1,2,3]]
=> [1,1,1]
=> [3]
=> 3
[[1,3,3]]
=> [2,1]
=> [2,1]
=> 1
[[2,2,3]]
=> [2,1]
=> [2,1]
=> 1
[[2,3,3]]
=> [2,1]
=> [2,1]
=> 1
[[3,3,3]]
=> [3]
=> [1,1,1]
=> 1
[[1,1],[3]]
=> [2,1]
=> [2,1]
=> 1
[[1,2],[3]]
=> [1,1,1]
=> [3]
=> 3
[[1,3],[2]]
=> [1,1,1]
=> [3]
=> 3
[[1,3],[3]]
=> [2,1]
=> [2,1]
=> 1
[[2,2],[3]]
=> [2,1]
=> [2,1]
=> 1
[[2,3],[3]]
=> [2,1]
=> [2,1]
=> 1
[[1],[2],[3]]
=> [1,1,1]
=> [3]
=> 3
[[1,1,1,2]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1,2,2]]
=> [2,2]
=> [2,2]
=> 0
[[1,2,2,2]]
=> [3,1]
=> [2,1,1]
=> 2
[[2,2,2,2]]
=> [4]
=> [1,1,1,1]
=> 0
[[1,1,1],[2]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1,2],[2]]
=> [2,2]
=> [2,2]
=> 0
[[1,2,2],[2]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1],[2,2]]
=> [2,2]
=> [2,2]
=> 0
[[1,5]]
=> [1,1]
=> [2]
=> 2
[[2,5]]
=> [1,1]
=> [2]
=> 2
[[3,5]]
=> [1,1]
=> [2]
=> 2
[[4,5]]
=> [1,1]
=> [2]
=> 2
[[5,5]]
=> [2]
=> [1,1]
=> 0
[[1],[5]]
=> [1,1]
=> [2]
=> 2
[[2],[5]]
=> [1,1]
=> [2]
=> 2
[[3],[5]]
=> [1,1]
=> [2]
=> 2
[[4],[5]]
=> [1,1]
=> [2]
=> 2
Description
The alternating sum of the parts of an integer partition. For a partition $\lambda = (\lambda_1,\ldots,\lambda_k)$, this is $\lambda_1 - \lambda_2 + \cdots \pm \lambda_k$.
Mp00225: Semistandard tableaux weightInteger partitions
Mp00317: Integer partitions odd partsBinary words
St001372: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,1]
=> 11 => 2
[[2,2]]
=> [2]
=> 0 => 0
[[1],[2]]
=> [1,1]
=> 11 => 2
[[1,3]]
=> [1,1]
=> 11 => 2
[[2,3]]
=> [1,1]
=> 11 => 2
[[3,3]]
=> [2]
=> 0 => 0
[[1],[3]]
=> [1,1]
=> 11 => 2
[[2],[3]]
=> [1,1]
=> 11 => 2
[[1,1,2]]
=> [2,1]
=> 01 => 1
[[1,2,2]]
=> [2,1]
=> 01 => 1
[[2,2,2]]
=> [3]
=> 1 => 1
[[1,1],[2]]
=> [2,1]
=> 01 => 1
[[1,2],[2]]
=> [2,1]
=> 01 => 1
[[1,4]]
=> [1,1]
=> 11 => 2
[[2,4]]
=> [1,1]
=> 11 => 2
[[3,4]]
=> [1,1]
=> 11 => 2
[[4,4]]
=> [2]
=> 0 => 0
[[1],[4]]
=> [1,1]
=> 11 => 2
[[2],[4]]
=> [1,1]
=> 11 => 2
[[3],[4]]
=> [1,1]
=> 11 => 2
[[1,1,3]]
=> [2,1]
=> 01 => 1
[[1,2,3]]
=> [1,1,1]
=> 111 => 3
[[1,3,3]]
=> [2,1]
=> 01 => 1
[[2,2,3]]
=> [2,1]
=> 01 => 1
[[2,3,3]]
=> [2,1]
=> 01 => 1
[[3,3,3]]
=> [3]
=> 1 => 1
[[1,1],[3]]
=> [2,1]
=> 01 => 1
[[1,2],[3]]
=> [1,1,1]
=> 111 => 3
[[1,3],[2]]
=> [1,1,1]
=> 111 => 3
[[1,3],[3]]
=> [2,1]
=> 01 => 1
[[2,2],[3]]
=> [2,1]
=> 01 => 1
[[2,3],[3]]
=> [2,1]
=> 01 => 1
[[1],[2],[3]]
=> [1,1,1]
=> 111 => 3
[[1,1,1,2]]
=> [3,1]
=> 11 => 2
[[1,1,2,2]]
=> [2,2]
=> 00 => 0
[[1,2,2,2]]
=> [3,1]
=> 11 => 2
[[2,2,2,2]]
=> [4]
=> 0 => 0
[[1,1,1],[2]]
=> [3,1]
=> 11 => 2
[[1,1,2],[2]]
=> [2,2]
=> 00 => 0
[[1,2,2],[2]]
=> [3,1]
=> 11 => 2
[[1,1],[2,2]]
=> [2,2]
=> 00 => 0
[[1,5]]
=> [1,1]
=> 11 => 2
[[2,5]]
=> [1,1]
=> 11 => 2
[[3,5]]
=> [1,1]
=> 11 => 2
[[4,5]]
=> [1,1]
=> 11 => 2
[[5,5]]
=> [2]
=> 0 => 0
[[1],[5]]
=> [1,1]
=> 11 => 2
[[2],[5]]
=> [1,1]
=> 11 => 2
[[3],[5]]
=> [1,1]
=> 11 => 2
[[4],[5]]
=> [1,1]
=> 11 => 2
Description
The length of a longest cyclic run of ones of a binary word. Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Matching statistic: St001645
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001645: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 67%
Values
[[1,2]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2}
[[2,2]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2}
[[1],[2]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[1,3]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2}
[[2,3]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2}
[[3,3]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2}
[[1],[3]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[2],[3]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[1,1,2]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1}
[[1,2,2]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1}
[[2,2,2]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1}
[[1,1],[2]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1}
[[1,2],[2]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1}
[[1,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2}
[[2,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2}
[[3,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2}
[[4,4]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2}
[[1],[4]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[2],[4]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[3],[4]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[1,1,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,2,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,3,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,2,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,3,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[3,3,3]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,1],[3]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,2],[3]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,3],[2]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,3],[3]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,2],[3]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,3],[3]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1],[2],[3]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,1,1,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,2,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,2,2,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[2,2,2,2]]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,1],[2]]
=> [4,1,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,2],[2]]
=> [3,1,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,2,2],[2]]
=> [2,1,3,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1],[2,2]]
=> [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[2,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[3,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[4,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[5,5]]
=> [1,2] => [2] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[1],[5]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[2],[5]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[3],[5]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[4],[5]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[1,1,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[1,2,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[1,3,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[1,4,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[2,2,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[2,3,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[2,4,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[3,3,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[3,4,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[4,4,4]]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[1,1],[4]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[1],[2],[4]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[3],[4]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[3],[4]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[6]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[2],[6]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[3],[6]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[4],[6]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[5],[6]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[1],[2],[5]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[3],[5]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[4],[5]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[3],[5]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[4],[5]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[3],[4],[5]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1],[7]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[2],[7]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[3],[7]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[4],[7]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[5],[7]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[6],[7]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[1],[2],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[3],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[4],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[5],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[3],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[4],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[2],[5],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[3],[4],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[3],[5],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[4],[5],[6]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1],[2],[3],[5]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[4],[5]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1],[3],[4],[5]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[2],[3],[4],[5]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1],[8]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[2],[8]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[3],[8]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[[4],[8]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
Description
The pebbling number of a connected graph.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00310: Permutations toric promotionPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 50%
Values
[[1,2]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2}
[[2,2]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2}
[[1],[2]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2}
[[1,3]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2}
[[2,3]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2}
[[3,3]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2}
[[1],[3]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[2],[3]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2}
[[1,1,2]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1}
[[1,2,2]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1}
[[2,2,2]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1}
[[1,1],[2]]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1}
[[1,2],[2]]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1}
[[1,4]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[2,4]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[3,4]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[4,4]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[1],[4]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[2],[4]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[3],[4]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2}
[[1,1,3]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,2,3]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,3,3]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,2,3]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,3,3]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[3,3,3]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,1],[3]]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,2],[3]]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,3],[2]]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1,3],[3]]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,2],[3]]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[2,3],[3]]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3}
[[1],[2],[3]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,1,2]]
=> [1,2,3,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,2,2]]
=> [1,2,3,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,2,2,2]]
=> [1,2,3,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[2,2,2,2]]
=> [1,2,3,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,1],[2]]
=> [4,1,2,3] => [3,4,2,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,2],[2]]
=> [3,1,2,4] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,2,2],[2]]
=> [2,1,3,4] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1],[2,2]]
=> [3,4,1,2] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,5]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[2,5]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[3,5]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[4,5]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[5,5]]
=> [1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[1],[5]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[2],[5]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[3],[5]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[4],[5]]
=> [2,1] => [2,1] => ([],2)
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[1,1,4]]
=> [1,2,3] => [3,2,1] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3}
[[1],[2],[4]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[3],[4]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[3],[4]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[2],[5]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[3],[5]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[4],[5]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[3],[5]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[4],[5]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3],[4],[5]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[3],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[4],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[5],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[3],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[4],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[5],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3],[4],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3],[5],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[4],[5],[6]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[2],[3],[5]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[4],[5]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[3],[4],[5]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[2],[3],[4],[5]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[3],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[4],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[5],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[6],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[3],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[4],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[5],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2],[6],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3],[4],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3],[5],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3],[6],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[4],[5],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[4],[6],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[5],[6],[7]]
=> [3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1],[2],[3],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[4],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[5],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[3],[4],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[3],[5],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[1],[4],[5],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[2],[3],[4],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[2],[3],[5],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[2],[4],[5],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[3],[4],[5],[6]]
=> [4,3,2,1] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001603
Mp00225: Semistandard tableaux weightInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 17%
Values
[[1,2]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2}
[[2,2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,2,2}
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2}
[[1,3]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2}
[[2,3]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2}
[[3,3]]
=> [2]
=> []
=> ?
=> ? ∊ {0,2,2,2,2}
[[1],[3]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2}
[[2],[3]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2}
[[1,1,2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[[1,2,2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[[2,2,2]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1}
[[1,1],[2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[[1,2],[2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1}
[[1,4]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2}
[[2,4]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2}
[[3,4]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2}
[[4,4]]
=> [2]
=> []
=> ?
=> ? ∊ {0,2,2,2,2,2,2}
[[1],[4]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2}
[[2],[4]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2}
[[3],[4]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2}
[[1,1,3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,2,3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,3,3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[2,2,3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[2,3,3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[3,3,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,1],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[2,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[2,3],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3}
[[1,1,1,2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,2,2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,2,2,2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[2,2,2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,1],[2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1,2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,2,2],[2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,1],[2,2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,2,2,2,2}
[[1,5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[2,5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[3,5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[4,5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[5,5]]
=> [2]
=> []
=> ?
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[1],[5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[2],[5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[3],[5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[4],[5]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,2,2,2,2,2,2,2,2}
[[1,2,3,4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,4,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,4,5],[2]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3],[4,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,4],[3,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,5],[3,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,4],[2,5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,5],[2,4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,4],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2,5],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,4],[2],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,5],[2],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,4,5],[2],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2],[3,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2],[3,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3],[2,4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3],[2,5],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,4],[2,5],[3]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3],[2],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,4],[2],[3],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,5],[2],[3],[4]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.