Your data matches 77 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000255
St000255: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 3
[1,3,2,4] => 2
[1,3,4,2] => 3
[1,4,2,3] => 3
[1,4,3,2] => 5
[2,1,3,4] => 1
[2,1,4,3] => 3
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 4
[1,2,4,3,5] => 3
[1,2,4,5,3] => 6
[1,2,5,3,4] => 6
[1,2,5,4,3] => 14
[1,3,2,4,5] => 2
[1,3,2,5,4] => 8
[1,3,4,2,5] => 3
[1,3,4,5,2] => 4
[1,3,5,2,4] => 8
[1,3,5,4,2] => 11
[1,4,2,3,5] => 3
[1,4,2,5,3] => 8
[1,4,3,2,5] => 5
[1,4,3,5,2] => 7
[1,4,5,2,3] => 6
Description
The number of reduced Kogan faces with the permutation as type. This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000772: Graphs ⟶ ℤResult quality: 9% values known / values provided: 33%distinct values known / distinct values provided: 9%
Values
[1] => [1] => ([],1)
=> 1
[1,2] => [2] => ([],2)
=> ? ∊ {1,1}
[2,1] => [2] => ([],2)
=> ? ∊ {1,1}
[1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,3,1,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,3,4,1] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,4,1,3] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,2,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,4,1,2] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,1,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,2,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,4,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,5,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,5,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,1,3,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,1,2,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5,1,3,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5,1,4,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5,2,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5,3,1,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,1,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000815: Integer partitions ⟶ ℤResult quality: 23% values known / values provided: 31%distinct values known / distinct values provided: 23%
Values
[1] => [1,0]
=> [[1],[]]
=> []
=> ? = 1
[1,2] => [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {1,1}
[2,1] => [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 3
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 2
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 3
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 3
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 3
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> 2
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 3
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> 4
[1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> 3
[1,3,4,6,2,5] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,3,4,6,5,2] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 3
[1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 3
[1,3,5,6,2,4] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,3,5,6,4,2] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,4,2,5,3,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 2
[1,4,3,2,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 2
[1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 2
[1,5,2,4,3,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 2
Description
The number of semistandard Young tableaux of partition weight of given shape. The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence. Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
Mp00160: Permutations graph of inversionsGraphs
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000456: Graphs ⟶ ℤResult quality: 14% values known / values provided: 30%distinct values known / distinct values provided: 14%
Values
[1] => ([],1)
=> ([],0)
=> ([],0)
=> ? = 1
[1,2] => ([],2)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1}
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
[1,2,3] => ([],3)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => ([],4)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => ([],5)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00159: Permutations Demazure product with inversePermutations
Mp00149: Permutations Lehmer code rotationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 12% values known / values provided: 29%distinct values known / distinct values provided: 12%
Values
[1] => [1] => [1] => ([],1)
=> 1
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[2,1] => [2,1] => [1,2] => ([],2)
=> ? = 1
[1,2,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2] => [1,3,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1}
[2,1,3] => [2,1,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,3,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[3,1,2] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[3,2,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,2,4,3] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,3,2,4] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3,4,2] => [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,4,2,3] => [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,4,3,2] => [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[2,1,3,4] => [2,1,3,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[2,3,1,4] => [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,3,4,1] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[2,4,1,3] => [3,4,1,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,1,2,4] => [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,4,2] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,2,1,4] => [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,4,1] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,4,1,2] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,4,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,1,2,3] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,1,3,2] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,2,1,3] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,2,3,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,3,1,2] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,4,5,3] => [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,3,2,4,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,4,5,2,3] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,2,3] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,4,5] => [2,1,3,4,5] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,3,5,4] => [2,1,3,5,4] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,3,5] => [2,1,4,3,5] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,3,4] => [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,4,3] => [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,1,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,1,5,4] => [3,2,1,5,4] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,4,1,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,5,1] => [5,2,3,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,1,4] => [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,4,1] => [5,2,4,3,1] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,1,3,5] => [3,4,1,2,5] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => [3,5,1,4,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,3,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,4,3,5,1] => [5,3,2,4,1] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,5,1,3] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,5,3,1] => [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,5,1,3,4] => [3,5,1,4,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,5,3,1,4] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,4,1,3] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,2,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,2,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,1,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,1,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,1,2,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,4,2,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,5,1,2,4] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,2,1,4] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,2,3,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,3,2,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,1,3,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,2,3,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,3,1,2,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,3,2,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,2,3,5,4,6] => [1,2,3,5,4,6] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,4,3,5,6] => [1,2,4,3,5,6] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,4,5,3,6] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,4,6,3,5] => [1,2,5,6,3,4] => [2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[1,2,5,3,4,6] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00117: Graphs Ore closureGraphs
St000454: Graphs ⟶ ℤResult quality: 14% values known / values provided: 28%distinct values known / distinct values provided: 14%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,2] => [2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[2,1] => [2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[1,2,3] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,3,2] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[2,1,3] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[2,3,1] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[3,1,2] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[1,2,3,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[2,1,3,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[2,3,1,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,3,4,1] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,4,1,3] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,1,2,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,4,1,2] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,1,2,3] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[1,2,3,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,3,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,1,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,4,1,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,1,3,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,4,1,5,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,5,1,3] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,5,1,3,4] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,5,3,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,5,4,1,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,2,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,1,2,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,4,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,4,5,2] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,5,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,5,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,5,1,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,1,2,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,5,1,2,4] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,5,2,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,2,3,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00069: Permutations complementPermutations
Mp00065: Permutations permutation posetPosets
St001964: Posets ⟶ ℤResult quality: 5% values known / values provided: 25%distinct values known / distinct values provided: 5%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[2,1] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[1,3,2] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[2,1,3] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[2,3,1] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[3,1,2] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,2} - 1
[3,2,1] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,2} - 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,2,4,3] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,3,2,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,3,4,2] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,4,2,3] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[1,4,3,2] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[2,1,3,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,1,4,3] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,3,1,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,3,4,1] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,4,1,3] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[2,4,3,1] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,1,2,4] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,1,4,2] => [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,2,4,1] => [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,4,2,1] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,1,2,3] => [1,4,3,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[4,1,3,2] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,2,1,3] => [1,4,3,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[4,2,3,1] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,3,1,2] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,3,2,1] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,5,4,3] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,5,4,2] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,2,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,2,5,3] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,3,5,2] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,5,3,2] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,2,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[1,5,2,4,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,3,2,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,4,2] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,4,2,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,4,3,2] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,5,3,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,5,4,3] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,1,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,1,5,3] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,3,5,1] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,5,3,1] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,1,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[2,5,1,4,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,3,1,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,4,1] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,4,1,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,4,3,1] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,2,5,4] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,4,2,5] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,5,2] => [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,5,2,4] => [1,3,5,4,2] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,1,5,4,2] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,5,4] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,4,1,5] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,2,4,5,1] => [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,5,1,4] => [1,3,5,4,2] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,2,5,4,1] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,1,2,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,1,5,2] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,2,1,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,2,5,1] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,5,4,1,2] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,2,1] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,2,3,5] => [1,4,3,2,5] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Mp00252: Permutations restrictionPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 7% values known / values provided: 18%distinct values known / distinct values provided: 7%
Values
[1] => [] => []
=> ?
=> ? = 1
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,4,5,6] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,3,4,6,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,3,5,4,6] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,6,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,6,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,3,6,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5,6] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,6,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,6,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,3,6] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,6,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,6,4,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,6,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,6,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,6,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,6,5,4,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,4,5,6] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,4,6,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,5,4,6] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,5,6,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,6,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,6,5,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,6,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,6,2,5,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,4,3,2,5,6] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,2,6,5] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,6,2,5] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,5,2,3,6] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,2,6,3] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,6,2,3] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,6,3,2,5] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,6,5,2,3] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,5,3,4,2,6] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,4,6,2] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,6,4,2] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,3,2,6] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,4,3,6,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,4,6,3,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,6,3,4,2] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,6,4,3,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,6,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,6,2,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,2,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,2,5,4,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,3,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00170: Permutations to signed permutationSigned permutations
Mp00281: Signed permutations rowmotionSigned permutations
Mp00166: Signed permutations even cycle typeInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 14% values known / values provided: 18%distinct values known / distinct values provided: 14%
Values
[1] => [1] => [-1] => []
=> ? = 1
[1,2] => [1,2] => [-2,1] => []
=> ? ∊ {1,1}
[2,1] => [2,1] => [1,-2] => [1]
=> ? ∊ {1,1}
[1,2,3] => [1,2,3] => [-3,1,2] => []
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,3,2] => [-3,2,1] => [1]
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [2,1,3] => [1,-3,2] => [1]
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [2,3,1] => [2,1,-3] => [2]
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [3,1,2] => [2,-3,1] => []
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [3,2,1] => [1,2,-3] => [1,1]
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,2,3,4] => [-4,1,2,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => [1,2,4,3] => [-4,1,3,2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => [1,3,2,4] => [-4,2,1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => [1,3,4,2] => [-4,2,3,1] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => [1,4,2,3] => [-4,3,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => [1,4,3,2] => [-4,3,2,1] => [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => [2,1,3,4] => [1,-4,2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,4,3] => [2,1,4,3] => [1,-4,3,2] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,1,4] => [2,3,1,4] => [2,1,-4,3] => [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => [2,3,4,1] => [3,1,2,-4] => [3]
=> 1
[2,4,1,3] => [2,4,1,3] => [3,1,-4,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => [2,4,3,1] => [3,2,1,-4] => [2,1]
=> 1
[3,1,2,4] => [3,1,2,4] => [2,-4,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => [3,1,4,2] => [2,-4,3,1] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => [3,2,1,4] => [1,2,-4,3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => [3,2,4,1] => [1,3,2,-4] => [2,1]
=> 1
[3,4,1,2] => [3,4,1,2] => [3,2,-4,1] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => [3,4,2,1] => [2,1,3,-4] => [2,1]
=> 1
[4,1,2,3] => [4,1,2,3] => [3,-4,1,2] => [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => [4,1,3,2] => [3,-4,2,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => [4,2,1,3] => [1,3,-4,2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => [4,2,3,1] => [2,3,1,-4] => [3]
=> 1
[4,3,1,2] => [4,3,1,2] => [2,3,-4,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => [4,3,2,1] => [1,2,3,-4] => [1,1,1]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [-5,1,2,3,4] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => [1,2,3,5,4] => [-5,1,2,4,3] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [1,2,4,3,5] => [-5,1,3,2,4] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [1,2,4,5,3] => [-5,1,3,4,2] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,2,5,3,4] => [-5,1,4,2,3] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [1,2,5,4,3] => [-5,1,4,3,2] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,3,2,4,5] => [-5,2,1,3,4] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => [1,3,2,5,4] => [-5,2,1,4,3] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,3,4,2,5] => [-5,2,3,1,4] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => [1,3,4,5,2] => [-5,2,3,4,1] => [1,1,1]
=> 1
[1,3,5,2,4] => [1,3,5,2,4] => [-5,2,4,1,3] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,3,5,4,2] => [-5,2,4,3,1] => [2,1]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [-5,3,1,2,4] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,4,2,5,3] => [-5,3,1,4,2] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,4,3,2,5] => [-5,3,2,1,4] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,4,3,5,2] => [-5,3,2,4,1] => [2,1]
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [-5,3,4,1,2] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,4,5,3,2] => [-5,3,4,2,1] => [3]
=> 1
[1,5,2,3,4] => [1,5,2,3,4] => [-5,4,1,2,3] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,5,2,4,3] => [-5,4,1,3,2] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,5,3,2,4] => [-5,4,2,1,3] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => [1,5,3,4,2] => [-5,4,2,3,1] => [3]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-5,4,3,1,2] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => [1,5,4,3,2] => [-5,4,3,2,1] => [2,1]
=> 1
[2,1,3,4,5] => [2,1,3,4,5] => [1,-5,2,3,4] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,5,4] => [2,1,3,5,4] => [1,-5,2,4,3] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,3,5] => [2,1,4,3,5] => [1,-5,3,2,4] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,5,3] => [2,1,4,5,3] => [1,-5,3,4,2] => [1,1,1]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [1,-5,4,2,3] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,4,3] => [2,1,5,4,3] => [1,-5,4,3,2] => [2,1]
=> 1
[2,3,1,4,5] => [2,3,1,4,5] => [2,1,-5,3,4] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,1,5,4] => [2,3,1,5,4] => [2,1,-5,4,3] => [2,1]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [3,1,2,-5,4] => [3]
=> 1
[2,3,4,5,1] => [2,3,4,5,1] => [4,1,2,3,-5] => [4]
=> 1
[2,3,5,4,1] => [2,3,5,4,1] => [4,1,3,2,-5] => [3,1]
=> 1
[2,4,3,1,5] => [2,4,3,1,5] => [3,2,1,-5,4] => [2,1]
=> 1
[2,4,3,5,1] => [2,4,3,5,1] => [4,2,1,3,-5] => [3,1]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [4,2,3,1,-5] => [2,1,1]
=> 2
[2,5,1,3,4] => [2,5,1,3,4] => [4,1,-5,2,3] => [3]
=> 1
[2,5,3,4,1] => [2,5,3,4,1] => [4,3,1,2,-5] => [4]
=> 1
[2,5,4,3,1] => [2,5,4,3,1] => [4,3,2,1,-5] => [2,2]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [1,2,-5,4,3] => [1,1,1]
=> 1
[3,2,4,1,5] => [3,2,4,1,5] => [1,3,2,-5,4] => [2,1]
=> 1
[3,2,4,5,1] => [3,2,4,5,1] => [1,4,2,3,-5] => [3,1]
=> 1
[3,2,5,4,1] => [3,2,5,4,1] => [1,4,3,2,-5] => [2,1,1]
=> 2
[3,4,2,1,5] => [3,4,2,1,5] => [2,1,3,-5,4] => [2,1]
=> 1
[3,4,2,5,1] => [3,4,2,5,1] => [2,1,4,3,-5] => [2,2]
=> 2
[3,4,5,2,1] => [3,4,5,2,1] => [3,1,2,4,-5] => [3,1]
=> 1
[3,5,1,2,4] => [3,5,1,2,4] => [4,2,-5,1,3] => [2,1]
=> 1
[3,5,2,4,1] => [3,5,2,4,1] => [3,1,4,2,-5] => [4]
=> 1
[3,5,4,2,1] => [3,5,4,2,1] => [3,2,1,4,-5] => [2,1,1]
=> 2
[4,1,2,5,3] => [4,1,2,5,3] => [3,-5,1,4,2] => [2,1]
=> 1
[4,1,5,2,3] => [4,1,5,2,3] => [3,-5,4,1,2] => [3]
=> 1
[4,2,3,1,5] => [4,2,3,1,5] => [2,3,1,-5,4] => [3]
=> 1
[4,2,3,5,1] => [4,2,3,5,1] => [2,4,1,3,-5] => [4]
=> 1
[4,2,5,3,1] => [4,2,5,3,1] => [2,4,3,1,-5] => [3,1]
=> 1
[4,3,2,1,5] => [4,3,2,1,5] => [1,2,3,-5,4] => [1,1,1]
=> 1
[4,3,2,5,1] => [4,3,2,5,1] => [1,2,4,3,-5] => [2,1,1]
=> 2
[4,3,5,2,1] => [4,3,5,2,1] => [1,3,2,4,-5] => [2,1,1]
=> 2
[4,5,2,3,1] => [4,5,2,3,1] => [3,2,4,1,-5] => [3,1]
=> 1
[4,5,3,2,1] => [4,5,3,2,1] => [2,1,3,4,-5] => [2,1,1]
=> 2
[5,1,2,4,3] => [5,1,2,4,3] => [4,-5,1,3,2] => [3]
=> 1
[5,1,4,2,3] => [5,1,4,2,3] => [4,-5,3,1,2] => [2,1]
=> 1
[5,2,1,3,4] => [5,2,1,3,4] => [1,4,-5,2,3] => [2,1]
=> 1
[5,2,3,4,1] => [5,2,3,4,1] => [3,4,1,2,-5] => [2,2]
=> 2
[5,2,4,3,1] => [5,2,4,3,1] => [3,4,2,1,-5] => [4]
=> 1
[5,3,1,2,4] => [5,3,1,2,4] => [2,4,-5,1,3] => [3]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00160: Permutations graph of inversionsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000284: Integer partitions ⟶ ℤResult quality: 7% values known / values provided: 17%distinct values known / distinct values provided: 7%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 1
[1,2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2}
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2}
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1,2}
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1,2}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[1,2,3,4,5,6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,2,3,4,6,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 9
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
Description
The Plancherel distribution on integer partitions. This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions. Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
The following 67 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001845The number of join irreducibles minus the rank of a lattice. St000264The girth of a graph, which is not a tree. St001438The number of missing boxes of a skew partition. St001060The distinguishing index of a graph. St001846The number of elements which do not have a complement in the lattice. St001875The number of simple modules with projective dimension at most 1. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000527The width of the poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001770The number of facets of a certain subword complex associated with the signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000181The number of connected components of the Hasse diagram for the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001902The number of potential covers of a poset. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001890The maximum magnitude of the Möbius function of a poset.