searching the database
Your data matches 77 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000255
St000255: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 3
[1,3,2,4] => 2
[1,3,4,2] => 3
[1,4,2,3] => 3
[1,4,3,2] => 5
[2,1,3,4] => 1
[2,1,4,3] => 3
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 4
[1,2,4,3,5] => 3
[1,2,4,5,3] => 6
[1,2,5,3,4] => 6
[1,2,5,4,3] => 14
[1,3,2,4,5] => 2
[1,3,2,5,4] => 8
[1,3,4,2,5] => 3
[1,3,4,5,2] => 4
[1,3,5,2,4] => 8
[1,3,5,4,2] => 11
[1,4,2,3,5] => 3
[1,4,2,5,3] => 8
[1,4,3,2,5] => 5
[1,4,3,5,2] => 7
[1,4,5,2,3] => 6
Description
The number of reduced Kogan faces with the permutation as type.
This is equivalent to finding the number of ways to represent the permutation $\pi \in S_{n+1}$ as a reduced subword of $s_n (s_{n-1} s_n) (s_{n-2} s_{n-1} s_n) \dotsm (s_1 \dotsm s_n)$, or the number of reduced pipe dreams for $\pi$.
Matching statistic: St000772
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 33%●distinct values known / distinct values provided: 9%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 33%●distinct values known / distinct values provided: 9%
Values
[1] => [1] => ([],1)
=> 1
[1,2] => [2] => ([],2)
=> ? ∊ {1,1}
[2,1] => [2] => ([],2)
=> ? ∊ {1,1}
[1,2,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3] => ([],3)
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,3,1,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,3,4,1] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,4,1,3] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,2,4] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,4,1,2] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => [4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,5}
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,1,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,2,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,4,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,5,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,5,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,5,1,3,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,1,2,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5,1,3,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5,1,4,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5,2,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[5,3,1,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,1,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000815
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000815: Integer partitions ⟶ ℤResult quality: 23% ●values known / values provided: 31%●distinct values known / distinct values provided: 23%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000815: Integer partitions ⟶ ℤResult quality: 23% ●values known / values provided: 31%●distinct values known / distinct values provided: 23%
Values
[1] => [1,0]
=> [[1],[]]
=> []
=> ? = 1
[1,2] => [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {1,1}
[2,1] => [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 3
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 2
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 3
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 3
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 3
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> 2
[1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 3
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> 4
[1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> 2
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> 3
[1,3,4,6,2,5] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,3,4,6,5,2] => [1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 3
[1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 3
[1,3,5,6,2,4] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,3,5,6,4,2] => [1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,4,2,5,3,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 2
[1,4,3,2,5,6] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 2
[1,5,2,3,4,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 2
[1,5,2,4,3,6] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 2
Description
The number of semistandard Young tableaux of partition weight of given shape.
The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
Matching statistic: St000456
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],0)
=> ([],0)
=> ? = 1
[1,2] => ([],2)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1}
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1}
[1,2,3] => ([],3)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => ([],4)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => ([],5)
=> ([],0)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => ([(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 2
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7)
=> 2
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
[1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,2,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000771
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 29%●distinct values known / distinct values provided: 12%
Mp00149: Permutations —Lehmer code rotation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 29%●distinct values known / distinct values provided: 12%
Values
[1] => [1] => [1] => ([],1)
=> 1
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[2,1] => [2,1] => [1,2] => ([],2)
=> ? = 1
[1,2,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2] => [1,3,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1}
[2,1,3] => [2,1,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,3,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[3,1,2] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[3,2,1] => [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1}
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,2,4,3] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,3,2,4] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3,4,2] => [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,4,2,3] => [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,4,3,2] => [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[2,1,3,4] => [2,1,3,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[2,3,1,4] => [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,3,4,1] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[2,4,1,3] => [3,4,1,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,1,2,4] => [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,4,2] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,2,1,4] => [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,4,1] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,4,1,2] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[3,4,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,1,2,3] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,1,3,2] => [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,2,1,3] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,2,3,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,3,1,2] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,5}
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,4,5,3] => [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,3,2,4,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,5,4] => [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,4,5,2,3] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,2,3] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,4,5] => [2,1,3,4,5] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,3,5,4] => [2,1,3,5,4] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,3,5] => [2,1,4,3,5] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,4,5,3] => [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,3,4] => [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,4,3] => [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,1,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,1,5,4] => [3,2,1,5,4] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,4,1,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,5,1] => [5,2,3,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,1,4] => [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,4,1] => [5,2,4,3,1] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,1,3,5] => [3,4,1,2,5] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => [3,5,1,4,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,3,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,4,3,5,1] => [5,3,2,4,1] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,5,1,3] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,5,3,1] => [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,5,1,3,4] => [3,5,1,4,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,5,3,1,4] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,4,1,3] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,2,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,2,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,1,4,5] => [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,1,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,1,2,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,4,2,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[3,5,1,2,4] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,2,1,4] => [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,2,3,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,3,2,5] => [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,1,3,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,2,3,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,3,1,2,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[4,3,2,1,5] => [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,2,3,5,4,6] => [1,2,3,5,4,6] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,4,3,5,6] => [1,2,4,3,5,6] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,4,5,3,6] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,4,6,3,5] => [1,2,5,6,3,4] => [2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[1,2,5,3,4,6] => [1,2,5,4,3,6] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000454
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 28%●distinct values known / distinct values provided: 14%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 28%●distinct values known / distinct values provided: 14%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,2] => [2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[2,1] => [2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[1,2,3] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,3,2] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[2,1,3] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[2,3,1] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[3,1,2] => [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[1,2,3,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[2,1,3,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[2,3,1,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,3,4,1] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,4,1,3] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,1,2,4] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[3,4,1,2] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,1,2,3] => [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,3,3,3,3,5} - 1
[1,2,3,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,3,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,1,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,4,1,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,1,3,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,4,1,5,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,5,1,3] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,4,5,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,5,1,3,4] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[2,5,1,4,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,5,3,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,5,4,1,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,2,4,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,1,2,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,4,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,4,5,2] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,5,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,5,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,5,1,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,1,2,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,5,1,2,4] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[3,5,1,4,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,5,2,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,2,3,5] => [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001964
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 25%●distinct values known / distinct values provided: 5%
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 5% ●values known / values provided: 25%●distinct values known / distinct values provided: 5%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[2,1] => [1,2] => [2,1] => ([],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[1,3,2] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[2,1,3] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[2,3,1] => [1,2,3] => [3,2,1] => ([],3)
=> 0 = 1 - 1
[3,1,2] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,2} - 1
[3,2,1] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,2} - 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,2,4,3] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,3,2,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,3,4,2] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[1,4,2,3] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[1,4,3,2] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[2,1,3,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,1,4,3] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,3,1,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,3,4,1] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0 = 1 - 1
[2,4,1,3] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[2,4,3,1] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,1,2,4] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,1,4,2] => [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,2,4,1] => [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[3,4,2,1] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,1,2,3] => [1,4,3,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[4,1,3,2] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,2,1,3] => [1,4,3,2] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> 0 = 1 - 1
[4,2,3,1] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,3,1,2] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[4,3,2,1] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {1,1,2,2,2,2,2,3,3,3,3,5} - 1
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,2,5,4,3] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,3,5,4,2] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,2,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,2,5,3] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,3,5,2] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,4,5,3,2] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,2,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[1,5,2,4,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,3,2,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,4,2] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,4,2,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[1,5,4,3,2] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,1,5,3,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,1,5,4,3] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,1,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,1,5,3] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,3,5,1] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,4,5,3,1] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,1,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[2,5,1,4,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,3,1,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,4,1] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,4,1,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[2,5,4,3,1] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,2,5,4] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,4,2,5] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,5,2] => [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,1,5,2,4] => [1,3,5,4,2] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,1,5,4,2] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,1,5,4] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,4,1,5] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,2,4,5,1] => [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,2,5,1,4] => [1,3,5,4,2] => [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0 = 1 - 1
[3,2,5,4,1] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,1,2,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,1,5,2] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,2,1,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,4,2,5,1] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14} - 1
[3,5,4,1,2] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,2,1] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,2,3,5] => [1,4,3,2,5] => [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 0 = 1 - 1
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001605
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 18%●distinct values known / distinct values provided: 7%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 18%●distinct values known / distinct values provided: 7%
Values
[1] => [] => []
=> ?
=> ? = 1
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,4,5,6] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,3,4,6,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,3,5,4,6] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,6,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,6,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,3,6,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,5,6] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,3,6,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,4,6,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,3,6] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,4,6,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,5,6,4,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,6,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,2,6,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,6,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,2,6,5,4,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,4,5,6] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,4,6,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,5,4,6] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,5,6,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,6,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,2,6,5,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,6,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,3,6,2,5,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,4,3,2,5,6] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,2,6,5] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,6,2,5] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,5,2,3,6] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,2,6,3] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,6,2,3] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,6,3,2,5] => [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,6,5,2,3] => [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,5,3,4,2,6] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,4,6,2] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,6,4,2] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,3,2,6] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,4,3,6,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,4,6,3,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,6,3,4,2] => [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,6,4,3,2] => [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,6,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 6
[1,6,2,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,2,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,2,5,4,3] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 2
[1,6,3,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St001603
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00281: Signed permutations —rowmotion⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 18%●distinct values known / distinct values provided: 14%
Mp00281: Signed permutations —rowmotion⟶ Signed permutations
Mp00166: Signed permutations —even cycle type⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 18%●distinct values known / distinct values provided: 14%
Values
[1] => [1] => [-1] => []
=> ? = 1
[1,2] => [1,2] => [-2,1] => []
=> ? ∊ {1,1}
[2,1] => [2,1] => [1,-2] => [1]
=> ? ∊ {1,1}
[1,2,3] => [1,2,3] => [-3,1,2] => []
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,3,2] => [-3,2,1] => [1]
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [2,1,3] => [1,-3,2] => [1]
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [2,3,1] => [2,1,-3] => [2]
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [3,1,2] => [2,-3,1] => []
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [3,2,1] => [1,2,-3] => [1,1]
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,2,3,4] => [-4,1,2,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,4,3] => [1,2,4,3] => [-4,1,3,2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,2,4] => [1,3,2,4] => [-4,2,1,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,3,4,2] => [1,3,4,2] => [-4,2,3,1] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => [1,4,2,3] => [-4,3,1,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => [1,4,3,2] => [-4,3,2,1] => [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => [2,1,3,4] => [1,-4,2,3] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,4,3] => [2,1,4,3] => [1,-4,3,2] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,1,4] => [2,3,1,4] => [2,1,-4,3] => [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => [2,3,4,1] => [3,1,2,-4] => [3]
=> 1
[2,4,1,3] => [2,4,1,3] => [3,1,-4,2] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => [2,4,3,1] => [3,2,1,-4] => [2,1]
=> 1
[3,1,2,4] => [3,1,2,4] => [2,-4,1,3] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => [3,1,4,2] => [2,-4,3,1] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => [3,2,1,4] => [1,2,-4,3] => [1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => [3,2,4,1] => [1,3,2,-4] => [2,1]
=> 1
[3,4,1,2] => [3,4,1,2] => [3,2,-4,1] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => [3,4,2,1] => [2,1,3,-4] => [2,1]
=> 1
[4,1,2,3] => [4,1,2,3] => [3,-4,1,2] => [2]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => [4,1,3,2] => [3,-4,2,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => [4,2,1,3] => [1,3,-4,2] => [1]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => [4,2,3,1] => [2,3,1,-4] => [3]
=> 1
[4,3,1,2] => [4,3,1,2] => [2,3,-4,1] => []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => [4,3,2,1] => [1,2,3,-4] => [1,1,1]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [-5,1,2,3,4] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,3,5,4] => [1,2,3,5,4] => [-5,1,2,4,3] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,3,5] => [1,2,4,3,5] => [-5,1,3,2,4] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,4,5,3] => [1,2,4,5,3] => [-5,1,3,4,2] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,3,4] => [1,2,5,3,4] => [-5,1,4,2,3] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,2,5,4,3] => [1,2,5,4,3] => [-5,1,4,3,2] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,4,5] => [1,3,2,4,5] => [-5,2,1,3,4] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,2,5,4] => [1,3,2,5,4] => [-5,2,1,4,3] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,2,5] => [1,3,4,2,5] => [-5,2,3,1,4] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,4,5,2] => [1,3,4,5,2] => [-5,2,3,4,1] => [1,1,1]
=> 1
[1,3,5,2,4] => [1,3,5,2,4] => [-5,2,4,1,3] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => [1,3,5,4,2] => [-5,2,4,3,1] => [2,1]
=> 1
[1,4,2,3,5] => [1,4,2,3,5] => [-5,3,1,2,4] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,5,3] => [1,4,2,5,3] => [-5,3,1,4,2] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => [1,4,3,2,5] => [-5,3,2,1,4] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,5,2] => [1,4,3,5,2] => [-5,3,2,4,1] => [2,1]
=> 1
[1,4,5,2,3] => [1,4,5,2,3] => [-5,3,4,1,2] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => [1,4,5,3,2] => [-5,3,4,2,1] => [3]
=> 1
[1,5,2,3,4] => [1,5,2,3,4] => [-5,4,1,2,3] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => [1,5,2,4,3] => [-5,4,1,3,2] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => [1,5,3,2,4] => [-5,4,2,1,3] => []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => [1,5,3,4,2] => [-5,4,2,3,1] => [3]
=> 1
[1,5,4,2,3] => [1,5,4,2,3] => [-5,4,3,1,2] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => [1,5,4,3,2] => [-5,4,3,2,1] => [2,1]
=> 1
[2,1,3,4,5] => [2,1,3,4,5] => [1,-5,2,3,4] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,5,4] => [2,1,3,5,4] => [1,-5,2,4,3] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,3,5] => [2,1,4,3,5] => [1,-5,3,2,4] => [1,1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,4,5,3] => [2,1,4,5,3] => [1,-5,3,4,2] => [1,1,1]
=> 1
[2,1,5,3,4] => [2,1,5,3,4] => [1,-5,4,2,3] => [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,5,4,3] => [2,1,5,4,3] => [1,-5,4,3,2] => [2,1]
=> 1
[2,3,1,4,5] => [2,3,1,4,5] => [2,1,-5,3,4] => [2]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,1,5,4] => [2,3,1,5,4] => [2,1,-5,4,3] => [2,1]
=> 1
[2,3,4,1,5] => [2,3,4,1,5] => [3,1,2,-5,4] => [3]
=> 1
[2,3,4,5,1] => [2,3,4,5,1] => [4,1,2,3,-5] => [4]
=> 1
[2,3,5,4,1] => [2,3,5,4,1] => [4,1,3,2,-5] => [3,1]
=> 1
[2,4,3,1,5] => [2,4,3,1,5] => [3,2,1,-5,4] => [2,1]
=> 1
[2,4,3,5,1] => [2,4,3,5,1] => [4,2,1,3,-5] => [3,1]
=> 1
[2,4,5,3,1] => [2,4,5,3,1] => [4,2,3,1,-5] => [2,1,1]
=> 2
[2,5,1,3,4] => [2,5,1,3,4] => [4,1,-5,2,3] => [3]
=> 1
[2,5,3,4,1] => [2,5,3,4,1] => [4,3,1,2,-5] => [4]
=> 1
[2,5,4,3,1] => [2,5,4,3,1] => [4,3,2,1,-5] => [2,2]
=> 2
[3,2,1,5,4] => [3,2,1,5,4] => [1,2,-5,4,3] => [1,1,1]
=> 1
[3,2,4,1,5] => [3,2,4,1,5] => [1,3,2,-5,4] => [2,1]
=> 1
[3,2,4,5,1] => [3,2,4,5,1] => [1,4,2,3,-5] => [3,1]
=> 1
[3,2,5,4,1] => [3,2,5,4,1] => [1,4,3,2,-5] => [2,1,1]
=> 2
[3,4,2,1,5] => [3,4,2,1,5] => [2,1,3,-5,4] => [2,1]
=> 1
[3,4,2,5,1] => [3,4,2,5,1] => [2,1,4,3,-5] => [2,2]
=> 2
[3,4,5,2,1] => [3,4,5,2,1] => [3,1,2,4,-5] => [3,1]
=> 1
[3,5,1,2,4] => [3,5,1,2,4] => [4,2,-5,1,3] => [2,1]
=> 1
[3,5,2,4,1] => [3,5,2,4,1] => [3,1,4,2,-5] => [4]
=> 1
[3,5,4,2,1] => [3,5,4,2,1] => [3,2,1,4,-5] => [2,1,1]
=> 2
[4,1,2,5,3] => [4,1,2,5,3] => [3,-5,1,4,2] => [2,1]
=> 1
[4,1,5,2,3] => [4,1,5,2,3] => [3,-5,4,1,2] => [3]
=> 1
[4,2,3,1,5] => [4,2,3,1,5] => [2,3,1,-5,4] => [3]
=> 1
[4,2,3,5,1] => [4,2,3,5,1] => [2,4,1,3,-5] => [4]
=> 1
[4,2,5,3,1] => [4,2,5,3,1] => [2,4,3,1,-5] => [3,1]
=> 1
[4,3,2,1,5] => [4,3,2,1,5] => [1,2,3,-5,4] => [1,1,1]
=> 1
[4,3,2,5,1] => [4,3,2,5,1] => [1,2,4,3,-5] => [2,1,1]
=> 2
[4,3,5,2,1] => [4,3,5,2,1] => [1,3,2,4,-5] => [2,1,1]
=> 2
[4,5,2,3,1] => [4,5,2,3,1] => [3,2,4,1,-5] => [3,1]
=> 1
[4,5,3,2,1] => [4,5,3,2,1] => [2,1,3,4,-5] => [2,1,1]
=> 2
[5,1,2,4,3] => [5,1,2,4,3] => [4,-5,1,3,2] => [3]
=> 1
[5,1,4,2,3] => [5,1,4,2,3] => [4,-5,3,1,2] => [2,1]
=> 1
[5,2,1,3,4] => [5,2,1,3,4] => [1,4,-5,2,3] => [2,1]
=> 1
[5,2,3,4,1] => [5,2,3,4,1] => [3,4,1,2,-5] => [2,2]
=> 2
[5,2,4,3,1] => [5,2,4,3,1] => [3,4,2,1,-5] => [4]
=> 1
[5,3,1,2,4] => [5,3,1,2,4] => [2,4,-5,1,3] => [3]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000284
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 17%●distinct values known / distinct values provided: 7%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 7% ●values known / values provided: 17%●distinct values known / distinct values provided: 7%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 1
[1,2] => ([],2)
=> [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2}
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2}
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1,2}
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1,2}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,5}
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,1,3,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 4
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,7,7,8,8,8,8,8,9,9,10,11,11,14,14,14}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[1,2,3,4,5,6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,2,3,4,6,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 9
[1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,5,6,4,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
The following 67 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001845The number of join irreducibles minus the rank of a lattice. St000264The girth of a graph, which is not a tree. St001438The number of missing boxes of a skew partition. St001060The distinguishing index of a graph. St001846The number of elements which do not have a complement in the lattice. St001875The number of simple modules with projective dimension at most 1. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000527The width of the poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001770The number of facets of a certain subword complex associated with the signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000181The number of connected components of the Hasse diagram for the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001902The number of potential covers of a poset. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001890The maximum magnitude of the Möbius function of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!