searching the database
Your data matches 34 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000637
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00160: Permutations —graph of inversions⟶ Graphs
St000637: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000637: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,2] => ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> 0
[1,2,3] => ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> 0
[2,1,3] => ([(1,2)],3)
=> 0
[2,3,1] => ([(0,2),(1,2)],3)
=> 0
[3,1,2] => ([(0,2),(1,2)],3)
=> 0
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> 0
[1,3,2,4] => ([(2,3)],4)
=> 0
[1,3,4,2] => ([(1,3),(2,3)],4)
=> 0
[1,4,2,3] => ([(1,3),(2,3)],4)
=> 0
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[2,1,3,4] => ([(2,3)],4)
=> 0
[2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> 0
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 0
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> 0
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 0
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> 0
[1,2,4,3,5] => ([(3,4)],5)
=> 0
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 0
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 0
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,3,2,4,5] => ([(3,4)],5)
=> 0
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 0
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 0
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 0
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 0
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
Description
The length of the longest cycle in a graph.
This statistic is zero for acyclic graphs.
Matching statistic: St000422
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 40%
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 40%
Values
[1] => [[1]]
=> [1] => ([],1)
=> 0
[1,2] => [[1,2]]
=> [2] => ([],2)
=> 0
[2,1] => [[1],[2]]
=> [2] => ([],2)
=> 0
[1,2,3] => [[1,2,3]]
=> [3] => ([],3)
=> 0
[1,3,2] => [[1,2],[3]]
=> [3] => ([],3)
=> 0
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,3}
[2,3,1] => [[1,2],[3]]
=> [3] => ([],3)
=> 0
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> ? ∊ {0,3}
[3,2,1] => [[1],[2],[3]]
=> [3] => ([],3)
=> 0
[1,2,3,4] => [[1,2,3,4]]
=> [4] => ([],4)
=> 0
[1,2,4,3] => [[1,2,3],[4]]
=> [4] => ([],4)
=> 0
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2] => [[1,2,3],[4]]
=> [4] => ([],4)
=> 0
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,2] => [[1,2],[3],[4]]
=> [4] => ([],4)
=> 0
[2,1,3,4] => [[1,3,4],[2]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,4,3] => [[1,3],[2,4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,4,1] => [[1,2,3],[4]]
=> [4] => ([],4)
=> 0
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1] => [[1,2],[3],[4]]
=> [4] => ([],4)
=> 0
[3,1,2,4] => [[1,3,4],[2]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,4,2] => [[1,3],[2,4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1] => [[1,3],[2],[4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,1] => [[1,2],[3],[4]]
=> [4] => ([],4)
=> 0
[4,1,2,3] => [[1,3,4],[2]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2] => [[1,3],[2],[4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,1] => [[1,3],[2],[4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,2,1] => [[1],[2],[3],[4]]
=> [4] => ([],4)
=> 0
[1,2,3,4,5] => [[1,2,3,4,5]]
=> [5] => ([],5)
=> 0
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> [5] => ([],5)
=> 0
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,4,5,3] => [[1,2,3,4],[5]]
=> [5] => ([],5)
=> 0
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,5,4,3] => [[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[1,3,2,4,5] => [[1,2,4,5],[3]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [[1,2,4],[3,5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,4,5,2] => [[1,2,3,4],[5]]
=> [5] => ([],5)
=> 0
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,5,4,2] => [[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[1,4,2,3,5] => [[1,2,4,5],[3]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [[1,2,4],[3,5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,3,5,2] => [[1,2,4],[3],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,4,5,3,2] => [[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[1,5,2,3,4] => [[1,2,4,5],[3]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [[1,2,4],[3],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,3,4,2] => [[1,2,4],[3],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[2,1,3,4,5] => [[1,3,4,5],[2]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,5,4] => [[1,3,4],[2,5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,5,3] => [[1,3,4],[2,5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,4,3] => [[1,3],[2,4],[5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,4,5] => [[1,2,4,5],[3]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,5,4] => [[1,2,4],[3,5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,3,4,5,1] => [[1,2,3,4],[5]]
=> [5] => ([],5)
=> 0
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,3,5,4,1] => [[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[2,4,1,3,5] => [[1,2,5],[3,4]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => [[1,2,4],[3,5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,4,3,5,1] => [[1,2,4],[3],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,4,5,3,1] => [[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[2,5,1,3,4] => [[1,2,5],[3,4]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,5,1,4,3] => [[1,2],[3,4],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,5,3,4,1] => [[1,2,4],[3],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[3,1,2,4,5] => [[1,3,4,5],[2]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,1,2,5,4] => [[1,3,4],[2,5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,1,4,5,2] => [[1,3,4],[2,5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,1,5,4,2] => [[1,3],[2,4],[5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,2,1,4,5] => [[1,4,5],[2],[3]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,2,1,5,4] => [[1,4],[2,5],[3]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,2,4,5,1] => [[1,3,4],[2],[5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[3,4,5,2,1] => [[1,2,3],[4],[5]]
=> [5] => ([],5)
=> 0
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[3,5,4,2,1] => [[1,2],[3],[4],[5]]
=> [5] => ([],5)
=> 0
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000264
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 40%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 22% ●values known / values provided: 22%●distinct values known / distinct values provided: 40%
Values
[1] => [] => ([],0)
=> ?
=> ? = 0
[1,2] => [1] => ([],1)
=> ([],1)
=> ? ∊ {0,0}
[2,1] => [1] => ([],1)
=> ([],1)
=> ? ∊ {0,0}
[1,2,3] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[1,3,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[2,1,3] => [2,1] => ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,3}
[2,3,1] => [2,1] => ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,3}
[3,1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,2,1] => [2,1] => ([],2)
=> ([],2)
=> ? ∊ {0,0,0,0,0,3}
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,4,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,1,4] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,1] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,2,1] => [3,2,1] => ([],3)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,3,4,2,5] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,3,5,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,4,3,5] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,4,5,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,1,5,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,5,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[5,1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[5,2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,2,4,3,5,6] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,4,3,6,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,4,6,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,6,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,4,5,6] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,4,6,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,5,4,6] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,2,5,6,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,2,6,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,6,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,4,2,5,6] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,4,2,6,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,4,6,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,6,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,6,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,3,6,4,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,2,3,5,6] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,2,3,6,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,2,6,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,3,2,5,6] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,3,2,6,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,3,5,2,6] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,3,5,6,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,3,6,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,3,6,5,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,6,2,3,5] => [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
[1,4,6,2,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,4,6,3,2,5] => [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,4,6,3,5,2] => [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,3,2,4,6] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,3,2,6,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,3,6,2,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,5,6,3,2,4] => [1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St000777
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 80%
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 80%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => [2] => ([],2)
=> ? ∊ {0,0} + 1
[2,1] => [1,2] => [2] => ([],2)
=> ? ∊ {0,0} + 1
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0,0,3} + 1
[1,3,2] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0,0,3} + 1
[2,1,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0,0,3} + 1
[2,3,1] => [1,2,3] => [3] => ([],3)
=> ? ∊ {0,0,0,0,0,3} + 1
[3,1,2] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,3} + 1
[3,2,1] => [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,3} + 1
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[1,2,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[1,3,2,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[1,3,4,2] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[1,4,2,3] => [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[1,4,3,2] => [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[2,1,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[2,1,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[2,3,1,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[2,3,4,1] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[2,4,1,3] => [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[2,4,3,1] => [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[3,1,2,4] => [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[3,1,4,2] => [1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[3,2,1,4] => [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[3,2,4,1] => [1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[3,4,1,2] => [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[3,4,2,1] => [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[4,1,2,3] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,1,3,2] => [1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[4,2,1,3] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,2,3,1] => [1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[4,3,1,2] => [1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[4,3,2,1] => [1,4,2,3] => [1,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,4,4,4,4,4} + 1
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,5,3,4] => [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,5,4,3] => [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,2,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,2,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,4,2,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,4,5,2] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,5,2,4] => [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,5,4,2] => [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,2,3,5] => [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,2,5,3] => [1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,3,2,5] => [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,3,5,2] => [1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,5,2,3] => [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,5,3,2] => [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,2,3,4] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,5,2,4,3] => [1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,3,2,4] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[1,5,3,4,2] => [1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,5,1,3,4] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[2,5,3,1,4] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[3,1,5,2,4] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[3,2,5,1,4] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[4,1,2,5,3] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[4,2,1,5,3] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,1,2,3,4] => [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,1,4,2,3] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,2,1,3,4] => [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,2,4,1,3] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,4,1,3,2] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,4,2,3,1] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,4,3,1,2] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,4,3,2,1] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,2,6,3,4,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,2,6,4,3,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,3,6,2,4,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,3,6,4,2,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,4,2,6,3,5] => [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,4,3,6,2,5] => [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,5,2,3,6,4] => [1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,5,3,2,6,4] => [1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,2,3,4,5] => [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,2,5,3,4] => [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,3,2,4,5] => [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,3,5,2,4] => [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,5,2,4,3] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,5,3,4,2] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,5,4,2,3] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,6,5,4,3,2] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,1,6,3,4,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,1,6,4,3,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,3,6,1,4,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,3,6,4,1,5] => [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,4,1,6,3,5] => [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,4,3,6,1,5] => [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,5,1,3,6,4] => [1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,5,3,1,6,4] => [1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,1,3,4,5] => [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,1,5,3,4] => [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,3,1,4,5] => [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,3,5,1,4] => [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,5,1,4,3] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,5,3,4,1] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,6,5,4,1,3] => [1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001563
Mp00065: Permutations —permutation poset⟶ Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St001563: Integer partitions ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 40%
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St001563: Integer partitions ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 40%
Values
[1] => ([],1)
=> [1]
=> 1 = 0 + 1
[1,2] => ([(0,1)],2)
=> [1]
=> 1 = 0 + 1
[2,1] => ([],2)
=> [2]
=> 1 = 0 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [1]
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2)],3)
=> [2]
=> 1 = 0 + 1
[2,1,3] => ([(0,2),(1,2)],3)
=> [2]
=> 1 = 0 + 1
[2,3,1] => ([(1,2)],3)
=> [3]
=> 1 = 0 + 1
[3,1,2] => ([(1,2)],3)
=> [3]
=> 1 = 0 + 1
[3,2,1] => ([],3)
=> [3,3]
=> 4 = 3 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [1]
=> 1 = 0 + 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [2]
=> 1 = 0 + 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> 1 = 0 + 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 1 = 0 + 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> 1 = 0 + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> 4 = 3 + 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 1 = 0 + 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 4 = 3 + 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1 = 0 + 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> [4]
=> 1 = 0 + 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 4 = 3 + 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> [8]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1 = 0 + 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 4 = 3 + 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 4 = 3 + 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> [8]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> [4,2]
=> 4 = 3 + 1
[3,4,2,1] => ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> [4]
=> 1 = 0 + 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> [8]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> [8]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[4,2,3,1] => ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[4,3,1,2] => ([(2,3)],4)
=> [4,4,4]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[4,3,2,1] => ([],4)
=> [4,4,4,4,4,4]
=> ? ∊ {0,0,0,4,4,4,4,4} + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> 1 = 0 + 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> 1 = 0 + 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 1 = 0 + 1
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> 1 = 0 + 1
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> 4 = 3 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> 1 = 0 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> 4 = 3 + 1
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 1 = 0 + 1
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 1 = 0 + 1
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 4 = 3 + 1
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> 1 = 0 + 1
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 4 = 3 + 1
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 4 = 3 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> 4 = 3 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> 1 = 0 + 1
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1 = 0 + 1
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> 4 = 3 + 1
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> 4 = 3 + 1
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> 1 = 0 + 1
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> 1 = 0 + 1
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1 = 0 + 1
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> 1 = 0 + 1
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1 = 0 + 1
[2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> [5]
=> 1 = 0 + 1
[2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,5,3,1,4] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,5,2,1,4] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[3,5,4,2,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[4,1,3,2,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [8]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[4,1,3,5,2] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
Description
The value of the power-sum symmetric function evaluated at 1.
The statistic is $p_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k$,
where $\lambda$ has $k$ parts.
Matching statistic: St001875
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 40%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 40%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 0
[1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
[2,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {0,0}
[1,2,3] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,3}
[1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,3}
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,3}
[2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,3}
[1,2,3,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[1,2,4,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[1,3,2,4] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[1,3,4,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[1,4,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[1,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[2,1,3,4] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[2,1,4,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[2,3,1,4] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,4,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,3,1] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[3,1,2,4] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,1,4] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[3,2,4,1] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,2,1] => [3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[4,1,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[4,1,3,2] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[4,2,1,3] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[4,2,3,1] => [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[4,3,1,2] => [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[4,3,2,1] => [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,4,4,4,4}
[1,2,3,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,4,2] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[3,4,2,5,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,4,1] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,5,1] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,3,1] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[4,5,2,3,1] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,5,3,1,2] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[5,2,3,1,4] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,2,4,1,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,4,2] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,4,1,2] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,2,4,5,1,6] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,4,6,1,5] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,5,4,1,6] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,5,6,1,4] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,6,4,1,5] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,2,6,5,1,4] => [3,2,6,5,1,4] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1,5,6] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,1,6,5] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,2,5,1,6] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,4,2,6,1,5] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,5,2,1,4,6] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,1,6,4] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,2,4,1,6] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,5,2,6,1,4] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,6,2,1,4,5] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,6,2,1,5,4] => [3,6,2,1,5,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[3,6,2,4,1,5] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[3,6,2,5,1,4] => [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,3,5,1,6] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,3,6,1,5] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,3,1,6] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,5,6,1,3] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,6,3,1,5] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,2,6,5,1,3] => [4,2,6,5,1,3] => ([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2,5,6] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,2,6,5] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,5,2,6] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,5,6,2] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,6,2,5] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,1,6,5,2] => [4,3,1,6,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,1,2,6] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,1,6,2] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[4,3,5,6,1,2] => [4,3,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,3,6,1,2,5] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001964
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 20%
Mp00069: Permutations —complement⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001964: Posets ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 20%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2,1] => ([],2)
=> 0
[2,1] => [1,2] => [2,1] => ([],2)
=> 0
[1,2,3] => [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,3,2] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,3}
[2,1,3] => [1,3,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {0,3}
[2,3,1] => [1,2,3] => [3,2,1] => ([],3)
=> 0
[3,1,2] => [1,2,3] => [3,2,1] => ([],3)
=> 0
[3,2,1] => [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,4] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2] => [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0
[1,4,2,3] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,2] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,3,4] => [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 0
[2,1,4,3] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,4] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,4,1] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[2,4,1,3] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,4] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,4,2] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,1,4] => [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1] => [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,1,2] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[3,4,2,1] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[4,1,2,3] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[4,1,3,2] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3] => [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> ? ∊ {0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,1] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[4,3,1,2] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[4,3,2,1] => [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0
[1,2,5,3,4] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => [1,3,2,5,4] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0
[1,3,4,5,2] => [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => [1,4,2,3,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,5,3] => [1,4,2,5,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => [1,4,2,5,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => [1,4,2,3,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,3,4,2] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,2,3] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,4,3,2] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,4,5] => [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,3,5,4] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,3,5] => [1,4,2,3,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,4,5,3] => [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,3,4] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,1,5,4,3] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,4,5] => [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,1,5,4] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,1,5] => [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[2,3,5,1,4] => [1,4,2,3,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,3,5,4,1] => [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,3,5] => [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,5,3,1] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0
[2,5,1,3,4] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0
[3,1,2,4,5] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0
[3,2,4,5,1] => [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 0
[3,4,5,1,2] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[3,4,5,2,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[4,5,1,2,3] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[4,5,2,3,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[4,5,3,1,2] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[4,5,3,2,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,1,2,3,4] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,1,3,4,2] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0
[5,2,1,3,4] => [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 0
[5,2,3,4,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,3,4,1,2] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,3,4,2,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,4,1,2,3] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,4,2,3,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,4,3,1,2] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[5,4,3,2,1] => [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([],6)
=> 0
[1,2,3,5,6,4] => [1,2,3,5,6,4] => [6,5,4,2,1,3] => ([(3,5),(4,5)],6)
=> 0
[1,2,4,5,3,6] => [1,2,4,5,3,6] => [6,5,3,2,4,1] => ([(3,5),(4,5)],6)
=> 0
[1,3,2,5,6,4] => [1,3,2,5,6,4] => [6,4,5,2,1,3] => ([(1,5),(2,5),(3,4)],6)
=> 0
[1,3,4,2,5,6] => [1,3,4,2,5,6] => [6,4,3,5,2,1] => ([(3,5),(4,5)],6)
=> 0
[1,3,4,2,6,5] => [1,3,4,2,6,5] => [6,4,3,5,1,2] => ([(1,5),(2,5),(3,4)],6)
=> 0
[1,3,5,2,6,4] => [1,3,5,2,6,4] => [6,4,2,5,1,3] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
[1,3,5,4,2,6] => [1,3,5,2,6,4] => [6,4,2,5,1,3] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0
[2,3,4,5,6,1] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => ([],6)
=> 0
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Matching statistic: St001060
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
[2,1] => ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,2,1] => ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,3}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,2,1] => ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001570
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
[2,1] => ([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {0,0}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,3}
[3,2,1] => ([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,0,3}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[4,3,2,1] => ([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4,4,4}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,4,2,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,4,6,2,5] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,5,2,6,4] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,5,4,2,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,3,6,4,2,5] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,2,3,6,5] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,2,6,3,5] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,5,2,6,3] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,5,3,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,5,3,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,2,3,6,4] => ([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,2,4,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,2,4,6,3] => ([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,3,4,2,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,3,4,6,2] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,5,4,2,3,6] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,6,3,4,2,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[1,6,4,2,3,5] => ([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,1,4,5,3,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,1,5,3,4,6] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,3,5,1,6,4] => ([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,1,5,3,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,1,5,6,3] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,1,6,3,5] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,1,6,5,3] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,5,1,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,5,3,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,5,3,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,4,6,1,5,3] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,1,6,3,4] => ([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,1,6,4,3] => ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,3,1,4,6] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,3,4,1,6] => ([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,3,4,6,1] => ([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,5,4,1,6,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[2,6,4,1,5,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[3,1,4,5,2,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
[3,1,5,2,4,6] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
Description
The minimal number of edges to add to make a graph Hamiltonian.
A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Matching statistic: St001877
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 1
[1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,3} + 1
[2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,3} + 1
[2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,3} + 1
[3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,3} + 1
[3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 4 + 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> 5 = 4 + 1
[3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,4,4,4} + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,2,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,9),(3,11),(4,9),(4,10),(5,8),(5,11),(7,8),(8,6),(9,7),(10,7),(11,6)],12)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,4,5,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,9),(4,8),(5,7),(6,8),(6,9),(8,10),(9,10),(10,7)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,6),(3,7),(4,7),(5,6),(5,8),(6,10),(7,8),(8,10),(10,9)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,4,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,5,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,1,5,4,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,3,1,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,3,1,5,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(8,9)],10)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,3,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} + 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 5 + 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 5 + 1
[3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 5 + 1
[3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 5 + 1
[4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 5 + 1
[4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6 = 5 + 1
[5,2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,10),(4,9),(5,9),(5,10),(7,6),(8,6),(9,11),(10,11),(11,7),(11,8)],12)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,7),(5,9),(6,9),(7,10),(8,10),(9,7),(9,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(2,12),(3,12),(4,9),(5,10),(5,11),(7,6),(8,6),(9,8),(10,7),(11,7),(11,8),(12,9),(12,11)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(2,17),(3,13),(4,12),(5,12),(5,15),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,8),(13,9),(14,10),(14,11),(15,8),(15,14),(16,9),(16,14),(17,15),(17,16)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,5,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,5,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,4,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,17),(3,17),(4,12),(5,15),(5,16),(6,13),(6,16),(8,10),(9,11),(10,7),(11,7),(12,9),(13,8),(14,10),(14,11),(15,9),(15,14),(16,8),(16,14),(17,12),(17,15)],18)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,10),(3,13),(4,13),(5,14),(6,14),(8,7),(9,7),(10,8),(11,9),(12,8),(12,9),(13,10),(13,12),(14,11),(14,12)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,4,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,3,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,11),(2,14),(3,12),(4,12),(5,10),(6,11),(6,13),(8,7),(9,7),(10,9),(11,8),(12,14),(13,8),(13,9),(14,10),(14,13)],15)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,2,5,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,10),(3,10),(4,10),(5,8),(6,7),(7,9),(8,9),(10,7),(10,8)],11)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,2,5,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,13),(2,12),(3,11),(4,10),(5,12),(5,13),(6,11),(6,15),(8,7),(9,7),(10,9),(11,8),(12,14),(13,14),(14,10),(14,15),(15,8),(15,9)],16)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,3,5,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,5,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,8),(4,8),(5,7),(6,7),(7,11),(8,11),(9,12),(10,12),(11,9),(11,10)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,4,5,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,2,3,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,12),(4,11),(5,13),(6,11),(6,12),(8,13),(9,7),(10,7),(11,8),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,2,4,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,3,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,9),(4,8),(5,11),(6,10),(7,10),(8,12),(9,12),(10,11),(11,8),(11,9)],13)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,3,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(2,8),(3,11),(4,10),(5,13),(6,13),(8,12),(9,12),(10,7),(11,7),(12,10),(12,11),(13,8),(13,9)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5,4,2,3,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,10),(2,9),(3,11),(4,12),(5,12),(6,8),(6,11),(8,13),(9,7),(10,7),(11,13),(12,8),(13,9),(13,10)],14)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
Description
Number of indecomposable injective modules with projective dimension 2.
The following 24 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000635The number of strictly order preserving maps of a poset into itself. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!