Your data matches 141 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000930: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. The $k$-Gorenstein degree is the maximal number $k$ such that the algebra is $k$-Gorenstein. We apply the convention that the value is equal to the global dimension of the algebra in case the $k$-Gorenstein degree is greater than or equal to the global dimension.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> [1,1,0,0]
=> ? = 1
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ? = 2
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,3}
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {2,3}
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3,4}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3,4}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3,4}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [7,3,4,1,2,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000772: Graphs ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 2
[1,0,1,0,1,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,3}
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3}
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,4}
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,4}
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [6,1,5,2,4,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [5,2,6,1,4,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [3,4,6,1,5,2] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [3,5,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => [3,5,1,4,2,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => [4,2,3,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => [5,1,4,2,3,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => [4,2,5,1,3,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => [4,3,2,5,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => [5,1,4,3,2,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => [3,2,4,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => [3,2,5,1,4,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => [5,1,3,2,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => [3,5,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => [5,2,3,4,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => [4,1,5,2,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => [4,1,5,3,2,6] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => [3,2,5,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => [4,1,3,2,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => [2,3,5,4,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00100: Dyck paths touch compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001498: Dyck paths ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> ? ∊ {2,2,3}
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {2,2,3}
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? ∊ {2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? ∊ {2,2,2,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [3] => [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
Description
The normalised height of a Nakayama algebra with magnitude 1. We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 83%
Values
[1,0]
=> []
=> []
=> []
=> ? = 1
[1,0,1,0]
=> [1]
=> [1,0]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> []
=> []
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> []
=> ? ∊ {1,1,2,3}
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [1]
=> ? ∊ {1,1,2,3}
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> []
=> ? ∊ {1,1,2,3}
[1,1,1,0,0,0]
=> []
=> []
=> []
=> ? ∊ {1,1,2,3}
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1]
=> ? ∊ {1,2,2,3,3,4}
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,4}
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> []
=> ? ∊ {1,2,2,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [1]
=> ? ∊ {1,2,2,3,3,4}
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> []
=> ? ∊ {1,2,2,3,3,4}
[1,1,1,1,0,0,0,0]
=> []
=> []
=> []
=> ? ∊ {1,2,2,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,2,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2,1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,1,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,1,1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,2,1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> []
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1]
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> []
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> []
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> []
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [7,4,2,2,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [7,4,2,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,2]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,3,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,3,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,3,3,3,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [6,3,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,1,1,1]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [7,6,2,2,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [6,5,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [7,6,2,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [6,5,1,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [7,6,3,3,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [7,6,3,3,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [7,6,3,3,3,3,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [7,6,5,3,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [7,6,5,3,2,2,2,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,1,1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,1,1,1]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 47%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1] => [[1],[]]
=> []
=> ? = 1
[1,0,1,0]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => [[2],[]]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,1,0,0]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,1,0,0,1,0]
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,1,1,0,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001901: Integer partitions ⟶ ℤResult quality: 17% values known / values provided: 47%distinct values known / distinct values provided: 17%
Values
[1,0]
=> [1] => [[1],[]]
=> []
=> ? = 1
[1,0,1,0]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => [[2],[]]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,1,0,0]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,1,0,0,1,0]
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,1,1,0,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 1
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001908: Integer partitions ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => [[1],[]]
=> []
=> ? = 1
[1,0,1,0]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => [[2],[]]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,1,0,0]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,1,0,0,1,0]
=> [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,1,1,0,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [[3,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 3
Description
The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. For example, there are eight tableaux of shape $[3,2,1]$ with maximal entry $3$, but two of them have the same weight.
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000704: Integer partitions ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [[1],[]]
=> []
=> ? = 1
[1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {1,1,2,2,3}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {1,1,2,2,3}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3}
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {1,1,2,2,3}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {1,1,2,2,3}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 3
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> [2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> [3,1]
=> 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> [2,1]
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> [2,1,1]
=> 3
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [[4,3,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [[4,4,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> [3,2]
=> 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [[5,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [[4,4,3],[2,2]]
=> [2,2]
=> 1
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry. This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$. Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly, $$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$ where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell. See [Theorem 6.3, 1] for details.
Matching statistic: St000100
Mp00233: Dyck paths skew partitionSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
Mp00193: Lattices to posetPosets
St000100: Posets ⟶ ℤResult quality: 33% values known / values provided: 46%distinct values known / distinct values provided: 33%
Values
[1,0]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[1,1,0,0]
=> [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3}
[1,1,0,1,0,0]
=> [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,2,2,3}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The number of linear extensions of a poset.
The following 131 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000635The number of strictly order preserving maps of a poset into itself. St000640The rank of the largest boolean interval in a poset. St000735The last entry on the main diagonal of a standard tableau. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000815The number of semistandard Young tableaux of partition weight of given shape. St000729The minimal arc length of a set partition. St001568The smallest positive integer that does not appear twice in the partition. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000352The Elizalde-Pak rank of a permutation. St000054The first entry of the permutation. St000647The number of big descents of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000260The radius of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000456The monochromatic index of a connected graph. St000374The number of exclusive right-to-left minima of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000996The number of exclusive left-to-right maxima of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000528The height of a poset. St000911The number of maximal antichains of maximal size in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000080The rank of the poset. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000460The hook length of the last cell along the main diagonal of an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000706The product of the factorials of the multiplicities of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000284The Plancherel distribution on integer partitions. St000618The number of self-evacuating tableaux of given shape. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000934The 2-degree of an integer partition. St001128The exponens consonantiae of a partition. St001280The number of parts of an integer partition that are at least two. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St000383The last part of an integer composition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000455The second largest eigenvalue of a graph if it is integral. St000939The number of characters of the symmetric group whose value on the partition is positive. St001052The length of the exterior of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001889The size of the connectivity set of a signed permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001875The number of simple modules with projective dimension at most 1. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001686The order of promotion on a Gelfand-Tsetlin pattern. St001820The size of the image of the pop stack sorting operator. St001060The distinguishing index of a graph. St000075The orbit size of a standard tableau under promotion. St001613The binary logarithm of the size of the center of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001881The number of factors of a lattice as a Cartesian product of lattices. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000264The girth of a graph, which is not a tree. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001964The interval resolution global dimension of a poset. St001904The length of the initial strictly increasing segment of a parking function. St001413Half the length of the longest even length palindromic prefix of a binary word. St000800The number of occurrences of the vincular pattern |231 in a permutation. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001937The size of the center of a parking function. St000181The number of connected components of the Hasse diagram for the poset. St000648The number of 2-excedences of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001557The number of inversions of the second entry of a permutation. St001948The number of augmented double ascents of a permutation. St000234The number of global ascents of a permutation. St001621The number of atoms of a lattice. St000035The number of left outer peaks of a permutation. St000834The number of right outer peaks of a permutation. St000534The number of 2-rises of a permutation. St001115The number of even descents of a permutation.