Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000973: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> 2
[[],[]]
=> 2
[[[]]]
=> 4
[[],[],[]]
=> 2
[[],[[]]]
=> 3
[[[]],[]]
=> 3
[[[],[]]]
=> 4
[[[[]]]]
=> 6
[[],[],[],[]]
=> 2
[[],[],[[]]]
=> 3
[[],[[]],[]]
=> 2
[[],[[],[]]]
=> 3
[[],[[[]]]]
=> 4
[[[]],[],[]]
=> 3
[[[]],[[]]]
=> 4
[[[],[]],[]]
=> 3
[[[[]]],[]]
=> 4
[[[],[],[]]]
=> 4
[[[],[[]]]]
=> 5
[[[[]],[]]]
=> 5
[[[[],[]]]]
=> 6
[[[[[]]]]]
=> 8
[[],[],[],[],[]]
=> 2
[[],[],[],[[]]]
=> 3
[[],[],[[]],[]]
=> 2
[[],[],[[],[]]]
=> 3
[[],[],[[[]]]]
=> 4
[[],[[]],[],[]]
=> 2
[[],[[]],[[]]]
=> 3
[[],[[],[]],[]]
=> 2
[[],[[[]]],[]]
=> 2
[[],[[],[],[]]]
=> 3
[[],[[],[[]]]]
=> 4
[[],[[[]],[]]]
=> 3
[[],[[[],[]]]]
=> 4
[[],[[[[]]]]]
=> 5
[[[]],[],[],[]]
=> 3
[[[]],[],[[]]]
=> 4
[[[]],[[]],[]]
=> 3
[[[]],[[],[]]]
=> 4
[[[]],[[[]]]]
=> 5
[[[],[]],[],[]]
=> 3
[[[[]]],[],[]]
=> 4
[[[],[]],[[]]]
=> 4
[[[[]]],[[]]]
=> 5
[[[],[],[]],[]]
=> 3
[[[],[[]]],[]]
=> 3
[[[[]],[]],[]]
=> 4
[[[[],[]]],[]]
=> 4
[[[[[]]]],[]]
=> 5
Description
The length of the boundary of an ordered tree. This is the sum of the number of edges to the left most and the right most leaf.
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 50%
Values
[[]]
=> [.,.]
=> [1] => ([],1)
=> 1 = 2 - 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[[]]]
=> [[.,.],.]
=> [1,2] => ([],2)
=> ? = 4 - 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {3,4,6} - 1
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {3,4,6} - 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ? ∊ {3,4,6} - 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[],[[]]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[]],[]]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[],[]]]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[[]]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]],[],[]]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]],[[]]]]
=> [[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[]],[]]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[]]],[]]]
=> [[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[],[]]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[[]]]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[]],[]]]]
=> [[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[],[]]]]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[[]]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[[],[],[],[],[[]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[[],[],[],[[]],[]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[],[],[[],[]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[],[],[[[]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[],[[]],[],[]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[]],[[]]]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[],[]],[]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[[]]],[]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[],[],[]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[],[[]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[[]],[]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[[],[]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[[[]]]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[[]],[],[],[]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[[]],[],[[]]]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [2,5,6,4,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[]],[[]],[]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [2,4,6,5,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[]],[[],[]]]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[]],[[[]]]]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[],[]],[],[]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[[]]],[],[]]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[],[]],[[]]]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [3,2,5,6,4,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[[]]],[[]]]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[],[],[]],[]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[],[[]]],[]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [3,4,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[[]],[]],[]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[[],[]]],[]]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[[]],[],[],[],[]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[],[],[[]]]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> [1,5,6,4,3,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[],[[]],[]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [1,4,6,5,3,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[],[[],[]]]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[],[[[]]]]
=> [[.,.],[.,[[[.,.],.],.]]]
=> [1,4,5,6,3,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[[]],[],[]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> [1,3,6,5,4,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[[]],[[]]]
=> [[.,.],[[.,.],[[.,.],.]]]
=> [1,3,5,6,4,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[[],[]],[]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> [1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[[]],[[[]]],[]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> [1,3,4,6,5,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000772: Graphs ⟶ ℤResult quality: 32% values known / values provided: 32%distinct values known / distinct values provided: 50%
Values
[[]]
=> [1,0]
=> [1] => ([],1)
=> 1 = 2 - 1
[[],[]]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[[]]]
=> [1,1,0,0]
=> [2] => ([],2)
=> ? = 4 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? ∊ {3,4,6} - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [3] => ([],3)
=> ? ∊ {3,4,6} - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [3] => ([],3)
=> ? ∊ {3,4,6} - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {3,3,4,4,4,5,5,6,8} - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[]]],[]]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[],[]]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[],[[]]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[]],[]]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[],[]]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10} - 1
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,10,12} - 1
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[[],[]],[],[],[]]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[[[]]],[],[],[]]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[],[],[]],[],[]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[[],[[]]],[],[]]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[[[]],[]],[],[]]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[[[],[]]],[],[]]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001875
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00192: Skew partitions dominating sublatticeLattices
St001875: Lattices ⟶ ℤResult quality: 17% values known / values provided: 17%distinct values known / distinct values provided: 33%
Values
[[]]
=> [1,0]
=> [[1],[]]
=> ([],1)
=> ? = 2
[[],[]]
=> [1,0,1,0]
=> [[1,1],[]]
=> ([],1)
=> ? ∊ {2,4}
[[[]]]
=> [1,1,0,0]
=> [[2],[]]
=> ([],1)
=> ? ∊ {2,4}
[[],[],[]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ? ∊ {2,3,3,4,6}
[[],[[]]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ? ∊ {2,3,3,4,6}
[[[]],[]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ? ∊ {2,3,3,4,6}
[[[],[]]]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> ([],1)
=> ? ∊ {2,3,3,4,6}
[[[[]]]]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> ([],1)
=> ? ∊ {2,3,3,4,6}
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ([],1)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,5,5,6,8}
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ([],1)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[]],[[],[[]]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[]],[[[]],[]]]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [[4,3,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[],[]],[[]],[]]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]],[[]],[]]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[],[[]]],[[]]]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [[4,3,3],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[[]],[]],[[]]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[4,3,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[[[],[[]],[]],[]]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [[4,4,3],[3,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[[]],[[]]],[]]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[],[[]],[[]]]]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[[[]],[],[[]]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3
[[[[]],[[]],[]]]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[],[[]],[],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[],[[]],[[]]]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[]],[],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[]],[],[[]]]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4
[[],[],[[]],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1,1],[2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 5
[[],[],[[]],[[],[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[],[]],[],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[],[[],[]],[[]]]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[],[[]],[],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[],[[]],[],[[]],[]]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2,1],[2,1,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 5
[[],[[]],[],[[],[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[[],[[]],[[]],[],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2,1],[2,2,1]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 5
[[],[[]],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2,1],[2,1]]
=> ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> 6
[[],[[]],[[],[]],[]]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2,1],[3,1]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[[],[[]],[[],[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> 3
[[],[[],[]],[],[[]]]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[],[[],[]],[[]],[]]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3,1],[3,2]]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[[],[[],[]],[[],[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [[5,3,1],[2]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St001880
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 42%
Values
[[]]
=> [1,0]
=> [1] => ([],1)
=> ? = 2
[[],[]]
=> [1,0,1,0]
=> [2,1] => ([],2)
=> ? ∊ {2,4}
[[[]]]
=> [1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ? ∊ {2,4}
[[],[],[]]
=> [1,0,1,0,1,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {2,3,4,6}
[[],[[]]]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ? ∊ {2,3,4,6}
[[[]],[]]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ? ∊ {2,3,4,6}
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ? ∊ {2,3,4,6}
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ? ∊ {2,2,3,3,3,3,4,4,5,5,6,8}
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,7,7,8,10}
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[[[],[],[]]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[[],[],[],[[]]]]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[[[],[[[]]],[]]]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
[[[],[[[]],[]]]]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[[[],[[[],[]]]]]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[[[]],[],[],[]]]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
[[[[]],[],[[]]]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 4
[[[[],[[]]],[]]]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,2,3,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> 5
[[[[[],[]]],[]]]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,2,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> 4
[[[[],[[]],[]]]]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
[[[[],[[],[]]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[[[[[],[]],[]]]]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,5,3,4,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> 5
[[[[[],[],[]]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
[[[[[[[]]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[[[],[],[[]],[[]]]]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,2,4,6,7] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 7
[[[],[],[[],[[]]]]]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,6,2,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> 6
[[[],[[],[]],[[]]]]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> 6
[[[],[[],[],[]],[]]]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 7
[[[],[[[[]]]],[]]]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 7
[[[],[[],[],[[]]]]]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> 6
[[[],[[[[]]],[]]]]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> 6
[[[],[[[[]],[]]]]]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> 5
[[[],[[[[],[]]]]]]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> 4
[[[[]],[[]],[],[]]]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3,6,7] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 7
[[[[]],[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> 5
[[[[]],[[],[]],[]]]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,4,2,5,6,3,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> 6
[[[[]],[[],[],[]]]]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,5,2,6,3,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> 6
[[[[]],[[],[[]]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> 4
[[[[[]],[]],[],[]]]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,3,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> 6
[[[[],[],[]],[[]]]]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)
=> 6
[[[[[]],[]],[[]]]]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,5,6,2,3,4,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)
=> 4
[[[[],[[[]]]],[]]]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,4,2,3,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> 6
[[[[[]],[],[]],[]]]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)
=> 6
[[[[[],[[]]]],[]]]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,5,2,3,4,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> 5
[[[[[[],[]]]],[]]]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,5,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> 4
[[[[],[],[],[[]]]]]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5,7] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 7
[[[[],[[[]]],[]]]]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 7
[[[[],[[[]],[]]]]]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> 6
[[[[],[[[],[]]]]]]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> 5
[[[[[]],[],[],[]]]]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4,7] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 7
[[[[[]],[],[[]]]]]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> 5
[[[[[],[[]]],[]]]]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,2,5,3,4,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> 6
[[[[[[],[]]],[]]]]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,2,6,3,4,5,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> 5
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001232
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 67%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 4 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {2,3,6} - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,3,6} - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {2,3,6} - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3,3,4,4,4,5,6,8} - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 5 = 6 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 5 = 6 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 5 = 6 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 6 = 7 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 6 - 1
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[[]]],[]]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[],[],[]]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[],[[]]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[[]],[]]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[[],[]]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,7,8,10} - 1
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 6 = 7 - 1
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> 5 = 6 - 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,9,10,12} - 1
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> 7 = 8 - 1
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> 8 = 9 - 1
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> 7 = 8 - 1
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> 7 = 8 - 1
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> 5 = 6 - 1
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> 6 = 7 - 1
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> 7 = 8 - 1
[[[],[],[]],[],[]]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> 5 = 6 - 1
[[[],[],[],[]],[]]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> 6 = 7 - 1
[[[],[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> 4 = 5 - 1
[[[],[],[],[[]]]]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> 6 = 7 - 1
[[[[],[],[],[]]]]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 6 - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.