Your data matches 95 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000121: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> 0 = 1 - 1
[.,[.,.]]
=> 0 = 1 - 1
[[.,.],.]
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> 0 = 1 - 1
[.,[[.,.],.]]
=> 0 = 1 - 1
[[.,.],[.,.]]
=> 0 = 1 - 1
[[.,[.,.]],.]
=> 0 = 1 - 1
[[[.,.],.],.]
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> 1 = 2 - 1
[.,[.,[[.,.],.]]]
=> 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> 0 = 1 - 1
[.,[[.,[.,.]],.]]
=> 0 = 1 - 1
[.,[[[.,.],.],.]]
=> 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> 0 = 1 - 1
[[.,.],[[.,.],.]]
=> 0 = 1 - 1
[[.,[.,.]],[.,.]]
=> 0 = 1 - 1
[[[.,.],.],[.,.]]
=> 0 = 1 - 1
[[.,[.,[.,.]]],.]
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> 0 = 1 - 1
[[[.,.],[.,.]],.]
=> 0 = 1 - 1
[[[.,[.,.]],.],.]
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> 2 = 3 - 1
[.,[.,[.,[[.,.],.]]]]
=> 1 = 2 - 1
[.,[.,[[.,.],[.,.]]]]
=> 1 = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> 0 = 1 - 1
[.,[.,[[[.,.],.],.]]]
=> 0 = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> 1 = 2 - 1
[.,[[.,.],[[.,.],.]]]
=> 0 = 1 - 1
[.,[[.,[.,.]],[.,.]]]
=> 0 = 1 - 1
[.,[[[.,.],.],[.,.]]]
=> 0 = 1 - 1
[.,[[.,[.,[.,.]]],.]]
=> 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> 0 = 1 - 1
[.,[[[.,[.,.]],.],.]]
=> 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> 1 = 2 - 1
[[.,.],[.,[[.,.],.]]]
=> 0 = 1 - 1
[[.,.],[[.,.],[.,.]]]
=> 0 = 1 - 1
[[.,.],[[.,[.,.]],.]]
=> 0 = 1 - 1
[[.,.],[[[.,.],.],.]]
=> 0 = 1 - 1
[[.,[.,.]],[.,[.,.]]]
=> 0 = 1 - 1
[[.,[.,.]],[[.,.],.]]
=> 0 = 1 - 1
[[[.,.],.],[.,[.,.]]]
=> 0 = 1 - 1
[[[.,.],.],[[.,.],.]]
=> 0 = 1 - 1
[[.,[.,[.,.]]],[.,.]]
=> 0 = 1 - 1
[[.,[[.,.],.]],[.,.]]
=> 0 = 1 - 1
[[[.,.],[.,.]],[.,.]]
=> 0 = 1 - 1
[[[.,[.,.]],.],[.,.]]
=> 0 = 1 - 1
[[[[.,.],.],.],[.,.]]
=> 0 = 1 - 1
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[.,[.,.]]]]}}} in a binary tree. [[oeis:A036765]] counts binary trees avoiding this pattern.
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001063: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [.,.]
=> [1,0]
=> 1
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 1
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> 1
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
Description
Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra.
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001064: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [.,.]
=> [1,0]
=> 1
[.,[.,.]]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 1
[[.,.],.]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> 1
[.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 2
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
Description
Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules.
Matching statistic: St001934
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001934: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 82%distinct values known / distinct values provided: 40%
Values
[.,.]
=> [1] => [1]
=> []
=> ? = 1
[.,[.,.]]
=> [2,1] => [2]
=> []
=> ? = 1
[[.,.],.]
=> [1,2] => [1,1]
=> [1]
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => [2,1]
=> [1]
=> 1
[.,[[.,.],.]]
=> [2,3,1] => [3]
=> []
=> ? ∊ {1,1}
[[.,.],[.,.]]
=> [3,1,2] => [3]
=> []
=> ? ∊ {1,1}
[[.,[.,.]],.]
=> [2,1,3] => [2,1]
=> [1]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [2,2]
=> [2]
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [4]
=> []
=> ? ∊ {1,1,1,2}
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,1]
=> [1]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,2}
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {1,1,1,2}
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [2,2]
=> [2]
=> 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,1]
=> [1]
=> 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {1,1,1,2}
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,1]
=> [1]
=> 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,1]
=> [1]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [2,2,1]
=> [2,1]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,1]
=> [1]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [3,2]
=> [2]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,2]
=> [2]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [3,2]
=> [2]
=> 1
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [2,2,1]
=> [2,1]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [3,2]
=> [2]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [3,1,1]
=> [1,1]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [4,1]
=> [1]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [4,1]
=> [1]
=> 1
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [2,2,1]
=> [2,1]
=> 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [3,2]
=> [2]
=> 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [3,2]
=> [2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 1
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [3,2]
=> [2]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [3,1,1]
=> [1,1]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [4,1]
=> [1]
=> 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,3}
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [2,2,1]
=> [2,1]
=> 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [4,1]
=> [1]
=> 1
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> 1
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [4,1]
=> [1]
=> 1
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [2,2,2]
=> [2,2]
=> 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [4,2]
=> [2]
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [5,3,4,6,2,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,.],[.,[[.,.],.]]]]
=> [5,6,4,2,3,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,.],[[[.,.],.],.]]]
=> [4,5,6,2,3,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,.],.],[[.,.],.]]]
=> [5,6,2,3,4,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[.,[.,.]],.]],.]]
=> [4,3,5,2,6,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,.],[[.,.],.]],.]]
=> [4,5,2,3,6,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,[[.,.],.]],.],.]]
=> [3,4,2,5,6,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[.,[[.,.],[.,.]]]]
=> [6,4,5,3,1,2] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[.,[[[.,.],.],.]]]
=> [4,5,6,3,1,2] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[[[.,.],.],[.,.]]]
=> [6,3,4,5,1,2] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[[[.,[.,.]],.],.]]
=> [4,3,5,6,1,2] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[.,[.,[.,.]]]]
=> [6,5,4,2,1,3] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[.,[[.,.],.]]]
=> [5,6,4,1,2,3] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[[.,.],[.,.]]]
=> [6,4,5,1,2,3] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[[.,.],.]],[.,[.,.]]]
=> [6,5,2,3,1,4] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,[.,.]],.],[[.,.],.]]
=> [5,6,2,1,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[[.,.],.],.],[.,[.,.]]]
=> [6,5,1,2,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],[[.,.],.]],[.,.]]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,[.,.]],[.,.]],[.,.]]
=> [6,4,2,1,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[[.,.],[.,.]],.],[.,.]]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[[[.,.],.],.],.],[.,.]]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [6,5,7,3,4,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [6,4,5,3,7,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[.,[[[[.,.],.],[.,.]],.]]]
=> [6,3,4,5,7,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[.,[[.,.],[[.,.],[[.,.],.]]]]
=> [6,7,4,5,2,3,1] => [7]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type. A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions $$ (a_1, b_1),\dots,(a_r, b_r) $$ with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$. For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001933: Integer partitions ⟶ ℤResult quality: 60% values known / values provided: 80%distinct values known / distinct values provided: 60%
Values
[.,.]
=> ([],1)
=> [1]
=> []
=> ? = 1
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,1}
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {1,1}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {1,1,1,1}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 2
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 2
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4}
Description
The largest multiplicity of a part in an integer partition.
Mp00013: Binary trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001095: Posets ⟶ ℤResult quality: 40% values known / values provided: 71%distinct values known / distinct values provided: 40%
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2} - 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2} - 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3} - 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3} - 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3} - 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3} - 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3} - 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3} - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[.,[[[.,.],[.,.]],.]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4} - 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5} - 1
Description
The number of non-isomorphic posets with precisely one further covering relation.
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 68%distinct values known / distinct values provided: 20%
Values
[.,.]
=> [1] => [1] => [1,0]
=> ? = 1
[.,[.,.]]
=> [2,1] => [2,1] => [1,1,0,0]
=> ? = 1
[[.,.],.]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> ? ∊ {1,1}
[.,[[.,.],.]]
=> [2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[[.,.],[.,.]]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1}
[[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,2}
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,2}
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,2}
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,2}
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,2}
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [5,6,4,3,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [6,4,5,3,2,1] => [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [5,4,6,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [4,6,5,3,2,1] => [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [6,5,3,4,2,1] => [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[.,.],[[.,.],.]]]]
=> [5,6,3,4,2,1] => [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [6,4,3,5,2,1] => [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[.,.],.],[.,.]]]]
=> [6,3,4,5,2,1] => [6,3,5,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => [5,4,3,6,2,1] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => [4,6,3,5,2,1] => [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[.,[.,[[[.,.],[.,.]],.]]]
=> [5,3,4,6,2,1] => [5,3,6,4,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => [4,3,6,5,2,1] => [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => [3,6,5,4,2,1] => [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[.,[[.,.],[.,[.,[.,.]]]]]
=> [6,5,4,2,3,1] => [6,5,4,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,.],[[.,.],[.,.]]]]
=> [6,4,5,2,3,1] => [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[.,.]],[.,[.,.]]]]
=> [6,5,3,2,4,1] => [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,.],.],[.,[.,.]]]]
=> [6,5,2,3,4,1] => [6,5,2,4,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[.,[.,.]]],[.,.]]]
=> [6,4,3,2,5,1] => [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[.,.],.]],[.,.]]]
=> [6,3,4,2,5,1] => [6,3,5,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,.],[.,.]],[.,.]]]
=> [6,4,2,3,5,1] => [6,4,2,5,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,[.,.]],.],[.,.]]]
=> [6,3,2,4,5,1] => [6,3,2,5,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[.,.],.],.],[.,.]]]
=> [6,2,3,4,5,1] => [6,2,5,4,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[.,[.,[.,[.,.]]]]]
=> [6,5,4,3,1,2] => [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[.,[[.,.],[.,.]]]]
=> [6,4,5,3,1,2] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[[.,.],[.,[.,.]]]]
=> [6,5,3,4,1,2] => [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[[.,[.,.]],[.,.]]]
=> [6,4,3,5,1,2] => [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[[[.,.],.],[.,.]]]
=> [6,3,4,5,1,2] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[.,[.,[.,.]]]]
=> [6,5,4,2,1,3] => [6,5,4,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[[.,.],[.,.]]]
=> [6,4,5,2,1,3] => [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[.,[.,[.,.]]]]
=> [6,5,4,1,2,3] => [6,5,4,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[[.,.],[.,.]]]
=> [6,4,5,1,2,3] => [6,4,5,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,[.,.]]],[.,[.,.]]]
=> [6,5,3,2,1,4] => [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[[.,.],.]],[.,[.,.]]]
=> [6,5,2,3,1,4] => [6,5,2,4,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],[.,.]],[.,[.,.]]]
=> [6,5,3,1,2,4] => [6,5,3,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,[.,.]],.],[.,[.,.]]]
=> [6,5,2,1,3,4] => [6,5,2,1,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00013: Binary trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001890: Posets ⟶ ℤResult quality: 20% values known / values provided: 58%distinct values known / distinct values provided: 20%
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3}
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3}
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3}
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3}
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3}
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {2,2,2,2,2,3}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,.]],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[.,[.,.]]],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[.,[[.,.],.]],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,[.,.]],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[.,[.,.]],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
[[[[.,.],.],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4}
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Mp00013: Binary trees to posetPosets
Mp00307: Posets promotion cycle typeInteger partitions
St000706: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 54%distinct values known / distinct values provided: 40%
Values
[.,.]
=> ([],1)
=> [1]
=> ? = 1
[.,[.,.]]
=> ([(0,1)],2)
=> [1]
=> ? ∊ {1,1}
[[.,.],.]
=> ([(0,1)],2)
=> [1]
=> ? ∊ {1,1}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2]
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [8]
=> 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [15]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [15]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [15]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
Description
The product of the factorials of the multiplicities of an integer partition.
Mp00013: Binary trees to posetPosets
Mp00307: Posets promotion cycle typeInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 40% values known / values provided: 54%distinct values known / distinct values provided: 40%
Values
[.,.]
=> ([],1)
=> [1]
=> ? = 1
[.,[.,.]]
=> ([(0,1)],2)
=> [1]
=> ? ∊ {1,1}
[[.,.],.]
=> ([(0,1)],2)
=> [1]
=> ? ∊ {1,1}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2]
=> 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [1]
=> ? ∊ {1,1,1,1}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [2]
=> 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,2}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> 1
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> 1
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [3]
=> 1
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> 1
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [8]
=> 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> 1
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [15]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [15]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
[[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [15]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,4}
Description
The multiplicity of the largest part of an integer partition.
The following 85 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001128The exponens consonantiae of a partition. St000031The number of cycles in the cycle decomposition of a permutation. St001568The smallest positive integer that does not appear twice in the partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000732The number of double deficiencies of a permutation. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000358The number of occurrences of the pattern 31-2. St001549The number of restricted non-inversions between exceedances. St000456The monochromatic index of a connected graph. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St001256Number of simple reflexive modules that are 2-stable reflexive. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001271The competition number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001964The interval resolution global dimension of a poset. St000655The length of the minimal rise of a Dyck path. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St001520The number of strict 3-descents. St001811The Castelnuovo-Mumford regularity of a permutation. St001845The number of join irreducibles minus the rank of a lattice. St000068The number of minimal elements in a poset. St000741The Colin de Verdière graph invariant. St000842The breadth of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000181The number of connected components of the Hasse diagram for the poset. St001862The number of crossings of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000629The defect of a binary word. St001875The number of simple modules with projective dimension at most 1. St000383The last part of an integer composition. St001867The number of alignments of type EN of a signed permutation. St000805The number of peaks of the associated bargraph. St000900The minimal number of repetitions of a part in an integer composition. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001162The minimum jump of a permutation. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001344The neighbouring number of a permutation. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St000445The number of rises of length 1 of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001172The number of 1-rises at odd height of a Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001584The area statistic between a Dyck path and its bounce path. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices.