Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001106: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 6
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 24
([(2,3)],4)
=> 6
([(1,2),(1,3)],4)
=> 4
([(0,1),(0,2),(0,3)],4)
=> 6
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 120
([(3,4)],5)
=> 24
([(2,3),(2,4)],5)
=> 12
([(1,2),(1,3),(1,4)],5)
=> 12
([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 6
([(1,3),(1,4),(4,2)],5)
=> 4
([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
([(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(2,3),(3,4)],5)
=> 6
([(1,4),(4,2),(4,3)],5)
=> 4
([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
([(2,4),(3,4)],5)
=> 24
([(1,4),(2,4),(4,3)],5)
=> 6
([(0,4),(1,4),(4,2),(4,3)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,3)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> 8
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 10
Description
The number of supergreedy linear extensions of a poset. A linear extension of a poset P with elements {x1,,xn} is supergreedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element x1. * Step 2. Suppose X={x1,,xi} have been chosen, let M be the set of minimal elements of PX. If there is an element of M which covers an element xj in X, then let xi+1 be one of these such that j is maximal; otherwise, choose xi+1 to be any element of M. This statistic records the number of supergreedy linear extensions.
Matching statistic: St000454
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00074: Posets to graphGraphs
St000454: Graphs ⟶ ℤResult quality: 12% values known / values provided: 16%distinct values known / distinct values provided: 12%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? = 6 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,6,6,6,6,24} - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120} - 1
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001488: Skew partitions ⟶ ℤResult quality: 12% values known / values provided: 14%distinct values known / distinct values provided: 12%
Values
([],2)
=> [2]
=> [[2],[]]
=> 2
([(0,1)],2)
=> [1]
=> [[1],[]]
=> 1
([],3)
=> [3,3]
=> [[3,3],[]]
=> ? = 6
([(1,2)],3)
=> [3]
=> [[3],[]]
=> 2
([(0,1),(0,2)],3)
=> [2]
=> [[2],[]]
=> 2
([(0,2),(2,1)],3)
=> [1]
=> [[1],[]]
=> 1
([(0,2),(1,2)],3)
=> [2]
=> [[2],[]]
=> 2
([],4)
=> [4,4,4,4,4,4]
=> [[4,4,4,4,4,4],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(2,3)],4)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> [8]
=> [[8],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [[3],[]]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [[2],[]]
=> 2
([(1,2),(2,3)],4)
=> [4]
=> [[4],[]]
=> 2
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [[2],[]]
=> 2
([(1,3),(2,3)],4)
=> [8]
=> [[8],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [[2],[]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? ∊ {4,4,6,6,6,6,24}
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [[3,2],[]]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [[1],[]]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [[3],[]]
=> 2
([],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
=> [[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> [[5,5,5,5,5,5,5,5,5,5,5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> [10,10,10,10]
=> [[10,10,10,10],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> [[4,4,4,4,4,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> [[8],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> [15]
=> [[15],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> [[8],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [[5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [[2],[]]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [[4,2],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [[2,2],[]]
=> 2
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> [10,10,10,10]
=> [[10,10,10,10],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [[5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [[2,2],[]]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [[15,15],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [[3,3],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> [[4,4,4,4,4,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> [[14],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [[2],[]]
=> 2
([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> [[8],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [[4,4,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> [[5,5,5,5,5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [[15,5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [[5,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [[3,2],[]]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [[5,5,5,5],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [[6],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [[7],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [[10,10],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [[10,4,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [[4],[]]
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [[4,4,3],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [[3],[]]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [8]
=> [[8],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [[12,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> [[14],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [[6,6],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [[5,3],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [[5,4],[]]
=> ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(3,2),(4,3)],5)
=> [5]
=> [[5],[]]
=> 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [[2],[]]
=> 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> [[3],[]]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [[3],[]]
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> [[1],[]]
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> [[4],[]]
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> [[2],[]]
=> 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> [[2],[]]
=> 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 3
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [[3,2],[]]
=> 3
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [3]
=> [[3],[]]
=> 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [4]
=> [[4],[]]
=> 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [2]
=> [[2],[]]
=> 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> [5]
=> [[5],[]]
=> 2
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [2]
=> [[2],[]]
=> 2
([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> [4]
=> [[4],[]]
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [2]
=> [[2],[]]
=> 2
([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> [[4],[]]
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [[2,2],[]]
=> 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [[3,2],[]]
=> 3
([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> [3]
=> [[3],[]]
=> 2
Description
The number of corners of a skew partition. This is also known as the number of removable cells of the skew partition.
Matching statistic: St000264
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00074: Posets to graphGraphs
St000264: Graphs ⟶ ℤResult quality: 4% values known / values provided: 11%distinct values known / distinct values provided: 4%
Values
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,6}
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,6}
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,6,6,6,6,24}
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> 4
([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
([(0,5),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Mp00074: Posets to graphGraphs
Mp00154: Graphs coreGraphs
St000699: Graphs ⟶ ℤResult quality: 4% values known / values provided: 9%distinct values known / distinct values provided: 4%
Values
([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,6}
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph. A graph G is t-tough if G cannot be split into k different connected components by the removal of fewer than tk vertices for all integers k>1. The toughness of G is the maximal number t such that G is t-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero. This statistic is the toughness multiplied by the least common multiple of 1,,n1, where n is the number of vertices of G.
Matching statistic: St001629
Mp00074: Posets to graphGraphs
Mp00154: Graphs coreGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St001629: Integer compositions ⟶ ℤResult quality: 4% values known / values provided: 9%distinct values known / distinct values provided: 4%
Values
([],2)
=> ([],2)
=> ([],1)
=> [1] => ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2}
([],3)
=> ([],3)
=> ([],1)
=> [1] => ? ∊ {1,2,2,2,6}
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,6}
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,6}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,6}
([],4)
=> ([],4)
=> ([],1)
=> [1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([],5)
=> ([],5)
=> ([],1)
=> [1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(1,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 4
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Matching statistic: St001879
Mp00206: Posets antichains of maximal sizeLattices
Mp00263: Lattices join irreduciblesPosets
St001879: Posets ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 12%
Values
([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2}
([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,6}
([(0,1),(0,2)],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([(0,2),(1,2)],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,6}
([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,4,4,6,6,6,6,24}
([],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
Mp00206: Posets antichains of maximal sizeLattices
Mp00263: Lattices join irreduciblesPosets
St001880: Posets ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 12%
Values
([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2}
([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,6}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,6}
([(0,1),(0,2)],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,6}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,6}
([(0,2),(1,2)],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,6}
([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,4,4,6,6,6,6,24}
([],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001200
Mp00307: Posets promotion cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001200: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 12%
Values
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,2}
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,6}
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,6}
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,2,2,6}
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,6}
([],4)
=> [4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(1,3),(2,3)],4)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,3,4,4,6,6,6,6,24}
([],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> [10,10,10,10]
=> [1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(2,4),(3,4)],5)
=> [10,10,10,10]
=> [1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(3,4)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0]
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
Description
The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St000098
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000098: Graphs ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 12%
Values
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 6
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 2
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(2,5),(2,7),(2,8),(2,9),(2,11),(2,14),(2,15),(3,4),(3,6),(3,7),(3,9),(3,11),(3,13),(3,15),(4,6),(4,7),(4,8),(4,11),(4,12),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(6,7),(6,10),(6,14),(6,15),(7,10),(7,12),(7,13),(8,9),(8,10),(8,13),(8,15),(9,10),(9,12),(9,14),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(2,8),(2,9),(2,11),(3,6),(3,7),(3,10),(4,5),(4,7),(4,9),(4,10),(4,11),(5,6),(5,8),(5,10),(5,11),(6,7),(6,9),(6,11),(7,8),(7,11),(8,9),(8,10),(9,10),(10,11)],12)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7)],9)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 2
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 2
([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7)],9)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {3,4,4,6,6,6,6,24}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 2
([],5)
=> ?
=> ?
=> ?
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(3,4)],5)
=> ?
=> ?
=> ?
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ([(2,10),(2,11),(2,19),(3,4),(3,8),(3,9),(3,13),(3,16),(3,17),(3,18),(4,8),(4,9),(4,12),(4,14),(4,15),(4,18),(5,6),(5,9),(5,11),(5,12),(5,13),(5,15),(5,17),(5,18),(5,19),(6,8),(6,10),(6,12),(6,13),(6,14),(6,16),(6,18),(6,19),(7,8),(7,9),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(8,9),(8,11),(8,15),(8,17),(8,19),(9,10),(9,14),(9,16),(9,19),(10,11),(10,12),(10,13),(10,15),(10,17),(10,18),(11,12),(11,13),(11,14),(11,16),(11,18),(12,13),(12,16),(12,17),(12,19),(13,14),(13,15),(13,19),(14,15),(14,16),(14,17),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ([(2,11),(3,7),(3,8),(3,9),(3,10),(3,15),(3,16),(3,17),(4,5),(4,6),(4,9),(4,10),(4,14),(4,16),(4,17),(5,6),(5,8),(5,10),(5,13),(5,15),(5,17),(6,7),(6,10),(6,12),(6,15),(6,16),(7,8),(7,9),(7,11),(7,13),(7,14),(7,17),(8,9),(8,11),(8,12),(8,14),(8,16),(9,11),(9,12),(9,13),(9,15),(10,11),(10,12),(10,13),(10,14),(11,15),(11,16),(11,17),(12,13),(12,14),(12,15),(12,16),(12,17),(13,14),(13,15),(13,16),(13,17),(14,15),(14,16),(14,17),(15,16),(15,17),(16,17)],18)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ([(3,6),(3,8),(3,9),(3,10),(3,12),(3,15),(3,16),(4,5),(4,7),(4,8),(4,10),(4,12),(4,14),(4,16),(5,7),(5,8),(5,9),(5,12),(5,13),(5,15),(6,7),(6,9),(6,10),(6,12),(6,13),(6,14),(7,8),(7,11),(7,15),(7,16),(8,11),(8,13),(8,14),(9,10),(9,11),(9,14),(9,16),(10,11),(10,13),(10,15),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(3,9),(3,10),(3,12),(4,7),(4,8),(4,11),(5,6),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,8),(7,10),(7,12),(8,9),(8,12),(9,10),(9,11),(10,11),(11,12)],13)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ([(2,12),(3,7),(3,11),(3,13),(4,6),(4,9),(4,10),(4,12),(5,8),(5,9),(5,10),(5,11),(5,13),(6,8),(6,10),(6,11),(6,13),(7,8),(7,9),(7,10),(7,11),(8,9),(8,12),(8,13),(9,11),(9,13),(10,12),(10,13),(11,12),(12,13)],14)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ([(2,11),(3,10),(4,5),(4,7),(4,9),(4,10),(5,7),(5,8),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ([(2,12),(2,13),(2,15),(3,10),(3,11),(3,14),(4,5),(4,6),(4,7),(4,10),(4,11),(4,14),(5,8),(5,9),(5,12),(5,13),(5,15),(6,7),(6,9),(6,11),(6,13),(6,14),(6,15),(7,8),(7,10),(7,12),(7,14),(7,15),(8,9),(8,11),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,15),(12,13),(12,14),(13,14),(14,15)],16)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,6),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(7,10),(8,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ([(2,10),(2,11),(2,19),(3,4),(3,8),(3,9),(3,13),(3,16),(3,17),(3,18),(4,8),(4,9),(4,12),(4,14),(4,15),(4,18),(5,6),(5,9),(5,11),(5,12),(5,13),(5,15),(5,17),(5,18),(5,19),(6,8),(6,10),(6,12),(6,13),(6,14),(6,16),(6,18),(6,19),(7,8),(7,9),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(8,9),(8,11),(8,15),(8,17),(8,19),(9,10),(9,14),(9,16),(9,19),(10,11),(10,12),(10,13),(10,15),(10,17),(10,18),(11,12),(11,13),(11,14),(11,16),(11,18),(12,13),(12,16),(12,17),(12,19),(13,14),(13,15),(13,19),(14,15),(14,16),(14,17),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,6),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(7,10),(8,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(4,7),(5,6)],8)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ([(2,11),(3,7),(3,8),(3,9),(3,10),(3,15),(3,16),(3,17),(4,5),(4,6),(4,9),(4,10),(4,14),(4,16),(4,17),(5,6),(5,8),(5,10),(5,13),(5,15),(5,17),(6,7),(6,10),(6,12),(6,15),(6,16),(7,8),(7,9),(7,11),(7,13),(7,14),(7,17),(8,9),(8,11),(8,12),(8,14),(8,16),(9,11),(9,12),(9,13),(9,15),(10,11),(10,12),(10,13),(10,14),(11,15),(11,16),(11,17),(12,13),(12,14),(12,15),(12,16),(12,17),(13,14),(13,15),(13,16),(13,17),(14,15),(14,16),(14,17),(15,16),(15,17),(16,17)],18)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(3,6),(3,8),(3,9),(3,10),(3,12),(3,15),(3,16),(4,5),(4,7),(4,8),(4,10),(4,12),(4,14),(4,16),(5,7),(5,8),(5,9),(5,12),(5,13),(5,15),(6,7),(6,9),(6,10),(6,12),(6,13),(6,14),(7,8),(7,11),(7,15),(7,16),(8,11),(8,13),(8,14),(9,10),(9,11),(9,14),(9,16),(10,11),(10,13),(10,15),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ([(2,5),(2,14),(3,11),(3,12),(3,13),(3,14),(4,6),(4,7),(4,8),(4,14),(5,11),(5,12),(5,13),(6,7),(6,10),(6,12),(6,13),(7,9),(7,11),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,12),(9,13),(9,14),(10,11),(10,13),(10,14),(11,12),(11,14),(12,14),(13,14)],15)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ([(2,11),(2,12),(3,4),(3,12),(4,11),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,12),(8,9),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ([(2,11),(3,4),(4,11),(5,6),(5,8),(5,10),(6,8),(6,9),(7,8),(7,9),(7,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ([(3,4),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9)],11)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 2
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ([(2,5),(3,8),(3,9),(3,10),(4,11),(4,12),(4,13),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,9),(8,12),(8,13),(9,11),(9,13),(10,11),(10,12),(10,13),(11,12)],14)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(3,9),(3,10),(3,12),(4,7),(4,8),(4,11),(5,6),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,8),(7,10),(7,12),(8,9),(8,12),(9,10),(9,11),(10,11),(11,12)],13)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ([(2,3),(2,8),(2,11),(2,15),(2,17),(3,8),(3,10),(3,14),(3,16),(4,5),(4,9),(4,13),(4,14),(4,16),(5,9),(5,12),(5,15),(5,17),(6,9),(6,12),(6,13),(6,14),(6,15),(6,16),(6,17),(7,8),(7,10),(7,11),(7,14),(7,15),(7,16),(7,17),(8,9),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,16),(9,17),(10,11),(10,12),(10,13),(10,14),(10,15),(10,17),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,16),(12,17),(13,15),(13,16),(13,17),(14,15),(14,17),(15,16),(16,17)],18)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ([(2,7),(2,11),(2,15),(3,6),(3,10),(3,14),(4,8),(4,10),(4,12),(4,13),(4,14),(5,9),(5,11),(5,12),(5,13),(5,15),(6,8),(6,10),(6,12),(6,13),(7,9),(7,11),(7,12),(7,13),(8,9),(8,11),(8,12),(8,14),(8,15),(9,10),(9,13),(9,14),(9,15),(10,11),(10,12),(10,15),(11,13),(11,14),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ([(2,8),(3,4),(3,10),(4,9),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ([(2,3),(2,8),(2,11),(3,8),(3,10),(4,5),(4,9),(4,13),(5,9),(5,12),(6,9),(6,12),(6,13),(7,8),(7,10),(7,11),(8,9),(8,12),(8,13),(9,10),(9,11),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(3,4),(5,8),(6,7),(7,8)],9)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(4,7),(5,6)],8)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(2,9),(3,8),(4,5),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,3)],5)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ([(2,5),(2,14),(3,11),(3,12),(3,13),(3,14),(4,6),(4,7),(4,8),(4,14),(5,11),(5,12),(5,13),(6,7),(6,10),(6,12),(6,13),(7,9),(7,11),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,12),(9,13),(9,14),(10,11),(10,13),(10,14),(11,12),(11,14),(12,14),(13,14)],15)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ([(2,5),(3,8),(3,9),(3,10),(4,11),(4,12),(4,13),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,9),(8,12),(8,13),(9,11),(9,13),(10,11),(10,12),(10,13),(11,12)],14)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ([(2,9),(3,8),(4,6),(4,10),(4,11),(5,7),(5,10),(5,11),(6,7),(6,8),(6,10),(7,9),(7,11),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ([(2,11),(2,12),(3,4),(3,12),(4,11),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,12),(8,9),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> ([(2,11),(3,4),(4,11),(5,6),(5,8),(5,10),(6,8),(6,9),(7,8),(7,9),(7,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,8,9,10,12,12,12,12,12,24,24,24,24,24,120}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> 3
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13)
=> ([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> 3
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 1
Description
The chromatic number of a graph. The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.