Your data matches 292 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001172: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 0
[1,2] => [1,0,1,0]
=> 0
[2,1] => [1,1,0,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 0
Description
The number of 1-rises at odd height of a Dyck path.
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St001604: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 87%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,1}
[1,3,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[2,1,3] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[2,3,1] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[3,1,2] => [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,1}
[3,2,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,3,4,2] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,2,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,4,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,3,4,1] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,1,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,1,4,2] => [2,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,1,4] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,1,2] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[3,4,2,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,2,3] => [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,2,3,1] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,1,2] => [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[4,3,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,4,5,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,5,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[1,3,4,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,3,4,5,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,3,5,2,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,4,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,4,2,5,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,4,5,2,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,5,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,5,3,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,5,4,2,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,5,4,3,2] => [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,1,4,5,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,1,5,3,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,1,5,4,3] => [3,2]
=> [2]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,3,1,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,3,4,1,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,3,4,5,1] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,3,5,1,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,3,5,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,4,1,5,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,3,5,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,5,1,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,4,5,3,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,1,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[2,5,1,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,3,1,4] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[3,1,2,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[3,1,4,2,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[3,1,4,5,2] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[3,1,5,2,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[3,4,1,5,2] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[3,4,5,1,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[3,5,1,2,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[4,1,2,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[4,1,2,5,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[4,1,5,2,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[4,5,1,2,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[5,1,2,3,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,5,6,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,6,4,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
[1,2,3,6,5,4] => [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 0
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000749: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 85%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> 0
[2,1] => [2]
=> []
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> 0
[2,1,3] => [2,1]
=> [1]
=> 0
[2,3,1] => [3]
=> []
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> 0
[2,3,4,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> 0
[3,1,4,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> 0
[3,4,2,1] => [4]
=> []
=> ? ∊ {0,1,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> ? ∊ {0,1,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 0
[4,3,1,2] => [4]
=> []
=> ? ∊ {0,1,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. For example, restricting $S_{(6,3)}$ to $\mathfrak S_8$ yields $$S_{(5,3)}\oplus S_{(6,2)}$$ of degrees (number of standard Young tableaux) 28 and 20, none of which are odd. Restricting to $\mathfrak S_7$ yields $$S_{(4,3)}\oplus 2S_{(5,2)}\oplus S_{(6,1)}$$ of degrees 14, 14 and 6. However, restricting to $\mathfrak S_6$ yields $$S_{(3,3)}\oplus 3S_{(4,2)}\oplus 3S_{(5,1)}\oplus S_6$$ of degrees 5,9,5 and 1. Therefore, the statistic on the partition $(6,3)$ gives 3. This is related to $2$-saturations of Welter's game, see [1, Corollary 1.2].
Matching statistic: St000481
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000481: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 85%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> 0
[2,1] => [2]
=> []
=> ?
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> 0
[2,1,3] => [2,1]
=> [1]
=> []
=> 0
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> []
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> []
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> []
=> 0
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> 0
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> 0
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> []
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
The number of upper covers of a partition in dominance order.
Matching statistic: St000547
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000547: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 85%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> []
=> 0
[2,1] => [2]
=> []
=> ?
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> []
=> 0
[2,1,3] => [2,1]
=> [1]
=> []
=> 0
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> []
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> []
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> []
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> []
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> []
=> 0
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> []
=> 0
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> []
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> []
=> 0
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> []
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 0
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
The number of even non-empty partial sums of an integer partition.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000966: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 85%distinct values known / distinct values provided: 50%
Values
[1] => [1,0]
=> []
=> []
=> ? = 0
[1,2] => [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 0
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 0
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,1}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,1}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
Number of peaks minus the global dimension of the corresponding LNakayama algebra.
Matching statistic: St001089
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001089: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 85%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 0
[2,1] => [2]
=> []
=> []
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 0
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 0
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 0
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 0
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St001214: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 85%distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> 0
[2,1] => [2]
=> []
=> ?
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1]
=> 0
[2,1,3] => [2,1]
=> [1]
=> [1]
=> 0
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> [1]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1]
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> [1]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,1]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> [1]
=> 0
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> [1]
=> 0
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> [1,1]
=> 0
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [2]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,1]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1]
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> [1]
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1]
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> [1]
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [2]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1]
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,1,1]
=> 0
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
The aft of an integer partition. The aft is the size of the partition minus the length of the first row or column, whichever is larger. See also [[St000784]].
Matching statistic: St001229
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001229: Dyck paths ⟶ ℤResult quality: 83% values known / values provided: 85%distinct values known / distinct values provided: 83%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 0
[2,1] => [2]
=> []
=> []
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 0
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 0
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 0
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 0
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,1,1,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4}
Description
The vector space dimension of the first extension group between the Jacobson radical J and J^2. The vector space dimension of $Ext_A^1(J,J^2)$.
Matching statistic: St001252
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St001252: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 85%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> ?
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1]
=> 0
[2,1] => [2]
=> []
=> ?
=> ? = 0
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1]
=> 0
[2,1,3] => [2,1]
=> [1]
=> [1]
=> 0
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,1}
[3,2,1] => [2,1]
=> [1]
=> [1]
=> 0
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1]
=> 0
[1,4,2,3] => [3,1]
=> [1]
=> [1]
=> 0
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [2]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1]
=> 0
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,2}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,2}
[2,4,3,1] => [3,1]
=> [1]
=> [1]
=> 0
[3,1,2,4] => [3,1]
=> [1]
=> [1]
=> 0
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,2}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1]
=> 0
[3,4,1,2] => [2,2]
=> [2]
=> [2]
=> 1
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,2}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,2}
[4,1,3,2] => [3,1]
=> [1]
=> [1]
=> 0
[4,2,1,3] => [3,1]
=> [1]
=> [1]
=> 0
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1]
=> 0
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,1,2}
[4,3,2,1] => [2,2]
=> [2]
=> [2]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1]
=> 0
[1,3,5,2,4] => [4,1]
=> [1]
=> [1]
=> 0
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1]
=> 0
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [3]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1]
=> 0
[1,5,2,3,4] => [4,1]
=> [1]
=> [1]
=> 0
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> [1]
=> 0
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [3]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,1]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [3]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [3]
=> 0
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[3,5,4,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,2,5,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[4,1,5,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,1,5,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[4,3,5,2,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,1,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[4,5,2,3,1] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,2,3,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[5,1,4,2,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,1,2,4] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[5,3,4,1,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,1,3,2] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[5,4,2,1,3] => [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3}
[2,3,4,5,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,4,6,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,1,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,5,6,4,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,1,4,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,3,6,5,1,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,5,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,1,6,3,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,3,6,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,5,6,1,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,3,1,5] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,4,6,5,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,3,6,4] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,1,6,4,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,1,6,3] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
[2,5,4,6,3,1] => [6]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
Description
Half the sum of the even parts of a partition.
The following 282 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001524The degree of symmetry of a binary word. St001584The area statistic between a Dyck path and its bounce path. St001587Half of the largest even part of an integer partition. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001657The number of twos in an integer partition. St001730The number of times the path corresponding to a binary word crosses the base line. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000929The constant term of the character polynomial of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000661The number of rises of length 3 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001141The number of occurrences of hills of size 3 in a Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St000934The 2-degree of an integer partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000936The number of even values of the symmetric group character corresponding to the partition. St000699The toughness times the least common multiple of 1,. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000454The largest eigenvalue of a graph if it is integral. St001877Number of indecomposable injective modules with projective dimension 2. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001651The Frankl number of a lattice. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001330The hat guessing number of a graph. St000095The number of triangles of a graph. St000268The number of strongly connected orientations of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000323The minimal crossing number of a graph. St000344The number of strongly connected outdegree sequences of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St000482The (zero)-forcing number of a graph. St000537The cutwidth of a graph. St000552The number of cut vertices of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000778The metric dimension of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001073The number of nowhere zero 3-flows of a graph. St001270The bandwidth of a graph. St001305The number of induced cycles on four vertices in a graph. St001306The number of induced paths on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001353The number of prime nodes in the modular decomposition of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001478The number of nowhere zero 4-flows of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001638The book thickness of a graph. St001689The number of celebrities in a graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001691The number of kings in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001736The total number of cycles in a graph. St001742The difference of the maximal and the minimal degree in a graph. St001783The number of odd automorphisms of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001797The number of overfull subgraphs of a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001871The number of triconnected components of a graph. St001949The rigidity index of a graph. St001962The proper pathwidth of a graph. St001969The difference in the number of possibilities of choosing a pair of negative eigenvalues and the signature of a graph. St001970The signature of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000260The radius of a connected graph. St000534The number of 2-rises of a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St000171The degree of the graph. St000259The diameter of a connected graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000272The treewidth of a graph. St000273The domination number of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000287The number of connected components of a graph. St000310The minimal degree of a vertex of a graph. St000362The size of a minimal vertex cover of a graph. St000387The matching number of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000450The number of edges minus the number of vertices plus 2 of a graph. St000456The monochromatic index of a connected graph. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000544The cop number of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000916The packing number of a graph. St000948The chromatic discriminant of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001057The Grundy value of the game of creating an independent set in a graph. St001111The weak 2-dynamic chromatic number of a graph. St001112The 3-weak dynamic number of a graph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001272The number of graphs with the same degree sequence. St001277The degeneracy of a graph. St001322The size of a minimal independent dominating set in a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001349The number of different graphs obtained from the given graph by removing an edge. St001350Half of the Albertson index of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001358The largest degree of a regular subgraph of a graph. St001363The Euler characteristic of a graph according to Knill. St001393The induced matching number of a graph. St001395The number of strictly unfriendly partitions of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001479The number of bridges of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001592The maximal number of simple paths between any two different vertices of a graph. St001642The Prague dimension of a graph. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001716The 1-improper chromatic number of a graph. St001743The discrepancy of a graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001792The arboricity of a graph. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001812The biclique partition number of a graph. St001826The maximal number of leaves on a vertex of a graph. St001828The Euler characteristic of a graph. St001829The common independence number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001971The number of negative eigenvalues of the adjacency matrix of the graph. St001972The a-number of a graph. St000741The Colin de Verdière graph invariant. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001432The order dimension of the partition. St001964The interval resolution global dimension of a poset. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001525The number of symmetric hooks on the diagonal of a partition. St001571The Cartan determinant of the integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St000256The number of parts from which one can substract 2 and still get an integer partition. St001820The size of the image of the pop stack sorting operator. St001060The distinguishing index of a graph. St001845The number of join irreducibles minus the rank of a lattice. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001249Sum of the odd parts of a partition. St001383The BG-rank of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001846The number of elements which do not have a complement in the lattice. St001335The cardinality of a minimal cycle-isolating set of a graph. St000527The width of the poset. St001889The size of the connectivity set of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001864The number of excedances of a signed permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001902The number of potential covers of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001472The permanent of the Coxeter matrix of the poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001779The order of promotion on the set of linear extensions of a poset. St000732The number of double deficiencies of a permutation. St001948The number of augmented double ascents of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S.