searching the database
Your data matches 200 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001871
(load all 20 compositions to match this statistic)
(load all 20 compositions to match this statistic)
Values
([],1)
=> 0 = 2 - 2
([],2)
=> 0 = 2 - 2
([(0,1)],2)
=> 0 = 2 - 2
([],3)
=> 0 = 2 - 2
([(1,2)],3)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([],4)
=> 0 = 2 - 2
([(2,3)],4)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> 0 = 2 - 2
([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([],5)
=> 0 = 2 - 2
([(3,4)],5)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> 0 = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0 = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1 = 3 - 2
Description
The number of triconnected components of a graph.
A connected graph is '''triconnected''' or '''3-vertex connected''' if it cannot be disconnected by removing two or fewer vertices. An arbitrary connected graph can be decomposed as a union of biconnected (2-vertex connected) graphs, known as '''blocks''', and each biconnected graph can be decomposed as a union of components with are either a cycle (type "S"), a cocyle (type "P"), or triconnected (type "R"). The decomposition of a biconnected graph into these components is known as the '''SPQR-tree''' of the graph.
Matching statistic: St001261
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> ([(0,1)],2)
=> 2
([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The Castelnuovo-Mumford regularity of a graph.
Matching statistic: St001323
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> 0 = 2 - 2
([],2)
=> ([],2)
=> 0 = 2 - 2
([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 2 - 2
([],3)
=> ([],3)
=> 0 = 2 - 2
([(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([],4)
=> ([],4)
=> 0 = 2 - 2
([(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([],5)
=> ([],5)
=> 0 = 2 - 2
([(3,4)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0 = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
Description
The independence gap of a graph.
This is the difference between the independence number [[St000093]] and the minimal size of a maximally independent set of a graph.
In particular, this statistic is 0 for well covered graphs
Matching statistic: St000318
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00250: Graphs āclique graphā¶ Graphs
Mp00037: Graphs āto partition of connected componentsā¶ Integer partitions
St000318: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00037: Graphs āto partition of connected componentsā¶ Integer partitions
St000318: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 2
([],2)
=> ([],2)
=> [1,1]
=> 2
([(0,1)],2)
=> ([],1)
=> [1]
=> 2
([],3)
=> ([],3)
=> [1,1,1]
=> 2
([(1,2)],3)
=> ([],2)
=> [1,1]
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1]
=> 2
([],4)
=> ([],4)
=> [1,1,1,1]
=> 2
([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> 2
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
([(0,3),(1,2)],4)
=> ([],2)
=> [1,1]
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [3]
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1]
=> 2
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 2
([(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> 2
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> [2,1,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 2
([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [6]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 2
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Matching statistic: St000159
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00250: Graphs āclique graphā¶ Graphs
Mp00037: Graphs āto partition of connected componentsā¶ Integer partitions
St000159: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00037: Graphs āto partition of connected componentsā¶ Integer partitions
St000159: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],2)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],3)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [6]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
Description
The number of distinct parts of the integer partition.
This statistic is also the number of removeable cells of the partition, and the number of valleys of the Dyck path tracing the shape of the partition.
Matching statistic: St000183
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00243: Graphs āweak duplicate orderā¶ Posets
Mp00110: Posets āGreene-Kleitman invariantā¶ Integer partitions
St000183: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00110: Posets āGreene-Kleitman invariantā¶ Integer partitions
St000183: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],2)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([],3)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([],4)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([],5)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
Description
The side length of the Durfee square of an integer partition.
Given a partition Ī»=(Ī»1,ā¦,Ī»n), the Durfee square is the largest partition (ss) whose diagram fits inside the diagram of Ī». In symbols, s=max.
This is also known as the Frobenius rank.
Matching statistic: St000287
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],3)
=> ([],3)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],4)
=> ([],4)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],5)
=> ([],5)
=> ([],1)
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
Description
The number of connected components of a graph.
Matching statistic: St000533
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00250: Graphs āclique graphā¶ Graphs
Mp00037: Graphs āto partition of connected componentsā¶ Integer partitions
St000533: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00037: Graphs āto partition of connected componentsā¶ Integer partitions
St000533: Integer partitions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],2)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],3)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1]
=> 1 = 2 - 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [6]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Matching statistic: St000723
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([],4)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([],5)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
Description
The maximal cardinality of a set of vertices with the same neighbourhood in a graph.
The set of so called mating graphs, for which this statistic equals 1, is enumerated by [1].
Matching statistic: St000758
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00250: Graphs āclique graphā¶ Graphs
Mp00324: Graphs āchromatic difference sequenceā¶ Integer compositions
St000758: Integer compositions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Mp00324: Graphs āchromatic difference sequenceā¶ Integer compositions
St000758: Integer compositions ā¶ ā¤Result quality: 100% āvalues known / values provided: 100%ādistinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => 1 = 2 - 1
([],2)
=> ([],2)
=> [2] => 1 = 2 - 1
([(0,1)],2)
=> ([],1)
=> [1] => 1 = 2 - 1
([],3)
=> ([],3)
=> [3] => 1 = 2 - 1
([(1,2)],3)
=> ([],2)
=> [2] => 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> [1,1] => 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1] => 1 = 2 - 1
([],4)
=> ([],4)
=> [4] => 1 = 2 - 1
([(2,3)],4)
=> ([],3)
=> [3] => 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],2)
=> [2] => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [2] => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> [1,1] => 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1] => 1 = 2 - 1
([],5)
=> ([],5)
=> [5] => 1 = 2 - 1
([(3,4)],5)
=> ([],4)
=> [4] => 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> [3,1] => 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> [3] => 1 = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1] => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [3] => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => 2 = 3 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 2 = 3 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> [1,1] => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1 = 2 - 1
Description
The length of the longest staircase fitting into an integer composition.
For a given composition c_1,\dots,c_n, this is the maximal number \ell such that there are indices i_1 < \dots < i_\ell with c_{i_k} \geq k, see [def.3.1, 1]
The following 190 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000783The side length of the largest staircase partition fitting into a partition. St000785The number of distinct colouring schemes of a graph. St000897The number of different multiplicities of parts of an integer partition. St001432The order dimension of the partition. St001624The breadth of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001720The minimal length of a chain of small intervals in a lattice. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St000386The number of factors DDU in a Dyck path. St001175The size of a partition minus the hook length of the base cell. St001214The aft of an integer partition. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001350Half of the Albertson index of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001689The number of celebrities in a graph. St001797The number of overfull subgraphs of a graph. St000001The number of reduced words for a permutation. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000764The number of strong records in an integer composition. St001196The global dimension of A minus the global dimension of eAe for the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001220The width of a permutation. St001732The number of peaks visible from the left. St000052The number of valleys of a Dyck path not on the x-axis. St000091The descent variation of a composition. St000370The genus of a graph. St000480The number of lower covers of a partition in dominance order. St000552The number of cut vertices of a graph. St000761The number of ascents in an integer composition. St000769The major index of a composition regarded as a word. St000872The number of very big descents of a permutation. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001584The area statistic between a Dyck path and its bounce path. St001638The book thickness of a graph. St000286The number of connected components of the complement of a graph. St001393The induced matching number of a graph. St001471The magnitude of a Dyck path. St001286The annihilation number of a graph. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St000671The maximin edge-connectivity for choosing a subgraph. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St000024The number of double up and double down steps of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001256Number of simple reflexive modules that are 2-stable reflexive. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of Ext_A^1(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000939The number of characters of the symmetric group whose value on the partition is positive. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000983The length of the longest alternating subword. St001271The competition number of a graph. St000982The length of the longest constant subword. St000553The number of blocks of a graph. St000444The length of the maximal rise of a Dyck path. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c_0,c_1,...,c_{n-1}] by adding c_0 to c_{n-1}. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001809The index of the step at the first peak of maximal height in a Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St001353The number of prime nodes in the modular decomposition of a graph. St000678The number of up steps after the last double rise of a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n-1}] such that n=c_0 < c_i for all i > 0 a Dyck path as follows:
St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001964The interval resolution global dimension of a poset. St000026The position of the first return of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001500The global dimension of magnitude 1 Nakayama algebras. St001272The number of graphs with the same degree sequence. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001765The number of connected components of the friends and strangers graph. St000322The skewness of a graph. St000422The energy of a graph, if it is integral. St000454The largest eigenvalue of a graph if it is integral. St001307The number of induced stars on four vertices in a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001530The depth of a Dyck path. St000256The number of parts from which one can substract 2 and still get an integer partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001568The smallest positive integer that does not appear twice in the partition. St000015The number of peaks of a Dyck path. St000335The difference of lower and upper interactions. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module S_0 in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{nā1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001846The number of elements which do not have a complement in the lattice. St000443The number of long tunnels of a Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St000069The number of maximal elements of a poset. St001330The hat guessing number of a graph. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000881The number of short braid edges in the graph of braid moves of a permutation. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001481The minimal height of a peak of a Dyck path. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000570The Edelman-Greene number of a permutation. St001208The number of connected components of the quiver of A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra A of K[x]/(x^n). St000407The number of occurrences of the pattern 2143 in a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001856The number of edges in the reduced word graph of a permutation. St001845The number of join irreducibles minus the rank of a lattice. St001545The second Elser number of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000068The number of minimal elements in a poset. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000455The second largest eigenvalue of a graph if it is integral. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000439The position of the first down step of a Dyck path. St000630The length of the shortest palindromic decomposition of a binary word. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000464The Schultz index of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000775The multiplicity of the largest eigenvalue in a graph. St000916The packing number of a graph. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001739The number of graphs with the same edge polytope as the given graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St000447The number of pairs of vertices of a graph with distance 3. St000449The number of pairs of vertices of a graph with distance 4. St001577The minimal number of edges to add or remove to make a graph a cograph. St001793The difference between the clique number and the chromatic number of a graph. St000181The number of connected components of the Hasse diagram for the poset. St000908The length of the shortest maximal antichain in a poset. St001301The first Betti number of the order complex associated with the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001118The acyclic chromatic index of a graph. St001060The distinguishing index of a graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St000937The number of positive values of the symmetric group character corresponding to the partition. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001722The number of minimal chains with small intervals between a binary word and the top element. St000264The girth of a graph, which is not a tree. St001875The number of simple modules with projective dimension at most 1. St000782The indicator function of whether a given perfect matching is an L & P matching.
Sorry, this statistic was not found in the database
or
add this statistic to the database ā it's very simple and we need your support!