searching the database
Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001308
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 0
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> 6
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 9
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 7
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 6
Description
The number of induced paths on three vertices in a graph.
Matching statistic: St000422
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,3}
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,3}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,3}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 8
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 8
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 8
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> 0
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000508
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000508: Standard tableaux ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 28%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000508: Standard tableaux ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 28%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0}
([(0,1)],2)
=> [2]
=> []
=> []
=> ? ∊ {0,0}
([],3)
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,1}
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {0,0,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {0,0,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,0,2,2,2,3}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,3}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [[1,2]]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,3}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,0,2,2,2,3}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,3}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,3}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,0,2,2,2,3}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [[1,2]]
=> 4
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [[1,2]]
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 4
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 9
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> ? ∊ {0,0,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 4
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [[1,3],[2]]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 9
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 9
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 4
Description
Eigenvalues of the random-to-random operator acting on a simple module.
The simple module of the symmetric group indexed by a partition $\lambda$ has dimension equal to the number of standard tableaux of shape $\lambda$. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape $\lambda$; this statistic gives all the eigenvalues of the operator acting on the module [1].
Matching statistic: St000674
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 22%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 22%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0}
([(0,1)],2)
=> [2]
=> []
=> []
=> ? ∊ {0,0}
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,1}
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {0,0,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {0,0,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> ? ∊ {2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
Description
The number of hills of a Dyck path.
A hill is a peak with up step starting and down step ending at height zero.
Matching statistic: St001097
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001097: Integer partitions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 22%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St001097: Integer partitions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 22%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {0,0}
([(0,1)],2)
=> [2]
=> []
=> []
=> ? ∊ {0,0}
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {0,0,1}
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {0,0,1}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? ∊ {0,0,1}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? ∊ {0,0,0,1,2,2,3,4}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? ∊ {0,0,0,1,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 6
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 6
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 6
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
Description
The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders.
For a generating function $f$ the associated formal group law is the symmetric function $f(f^{(-1)}(x_1) + f^{(-1)}(x_2), \dots)$, see [1].
This statistic records the coefficient of the monomial symmetric function $m_\lambda$ in the formal group law for linear orders, with generating function $f(x) = x/(1-x)$, see [1, sec. 3.4].
This statistic gives the number of Smirnov arrangements of a set of letters with $\lambda_i$ of the $i$th letter, where a Smirnov word is a word with no repeated adjacent letters. e.g., [3,2,1] = > 10 since there are 10 Smirnov rearrangements of the word 'aaabbc': 'ababac', 'ababca', 'abacab', 'abacba', 'abcaba', 'acabab', 'acbaba', 'babaca', 'bacaba', 'cababa'.
Matching statistic: St000259
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,4}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,7,9}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 6
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000771
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,4} + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,7,9} + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,12,12,12,12,12,13,13,13,14,14,15,16,18} + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2 = 1 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001396Number of triples of incomparable elements in a finite poset. St001964The interval resolution global dimension of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001961The sum of the greatest common divisors of all pairs of parts.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!