Your data matches 248 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 3
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
Description
The number of edges of a graph.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0
([],2)
=> []
=> 0
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 0
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([],4)
=> []
=> 0
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 6
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0
([],2)
=> []
=> 0
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 0
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([],4)
=> []
=> 0
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 6
Description
The maximal part of the shifted composition of an integer partition. A partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ is shifted into a composition by adding $i-1$ to the $i$-th part. The statistic is then $\operatorname{max}_i\{ \lambda_i + i - 1 \}$. See also [[St000380]].
Mp00203: Graphs coneGraphs
St000448: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 6
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The number of pairs of vertices of a graph with distance 2. This is the coefficient of the quadratic term of the Wiener polynomial.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000459: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0
([],2)
=> []
=> 0
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 0
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([],4)
=> []
=> 0
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 6
Description
The hook length of the base cell of a partition. This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000784: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0
([],2)
=> []
=> 0
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 0
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([],4)
=> []
=> 0
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 6
Description
The maximum of the length and the largest part of the integer partition. This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1]. See also [[St001214]].
Mp00203: Graphs coneGraphs
St001311: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
Description
The cyclomatic number of a graph. This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as $c + m - n$, where $c$ is the number of connected components, $m$ is the number of edges and $n$ is the number of vertices.
Matching statistic: St001341
Mp00259: Graphs vertex additionGraphs
St001341: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],2)
=> 0
([],2)
=> ([],3)
=> 0
([(0,1)],2)
=> ([(1,2)],3)
=> 1
([],3)
=> ([],4)
=> 0
([(1,2)],3)
=> ([(2,3)],4)
=> 1
([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([],4)
=> ([],5)
=> 0
([(2,3)],4)
=> ([(3,4)],5)
=> 1
([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
Description
The number of edges in the center of a graph. The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
Mp00203: Graphs coneGraphs
St001646: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 6
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
Description
The number of edges that can be added without increasing the maximal degree of a graph. This statistic is (except for the degenerate case of two vertices) maximized by the star-graph on $n$ vertices, which has maximal degree $n-1$ and therefore has statistic $\binom{n-1}{2}$.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 1 = 0 + 1
([],2)
=> []
=> 1 = 0 + 1
([(0,1)],2)
=> [1]
=> 2 = 1 + 1
([],3)
=> []
=> 1 = 0 + 1
([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> [2]
=> 3 = 2 + 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4 = 3 + 1
([],4)
=> []
=> 1 = 0 + 1
([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> [2]
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,3),(1,2)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5 = 4 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 5 = 4 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 6 = 5 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 7 = 6 + 1
Description
The number of linear extensions of a certain poset defined for an integer partition. The poset is constructed in David Speyer's answer to Matt Fayers' question [3]. The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment. This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
The following 238 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000108The number of partitions contained in the given partition. St000450The number of edges minus the number of vertices plus 2 of a graph. St000532The total number of rook placements on a Ferrers board. St001400The total number of Littlewood-Richardson tableaux of given shape. St000013The height of a Dyck path. St000171The degree of the graph. St000645The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001034The area of the parallelogram polyomino associated with the Dyck path. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St000456The monochromatic index of a connected graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001746The coalition number of a graph. St001800The number of 3-Catalan paths having this Dyck path as first and last coordinate projections. St000011The number of touch points (or returns) of a Dyck path. St000012The area of a Dyck path. St000025The number of initial rises of a Dyck path. St000479The Ramsey number of a graph. St000676The number of odd rises of a Dyck path. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001391The disjunction number of a graph. St001645The pebbling number of a connected graph. St001725The harmonious chromatic number of a graph. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001360The number of covering relations in Young's lattice below a partition. St001622The number of join-irreducible elements of a lattice. St000144The pyramid weight of the Dyck path. St000293The number of inversions of a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000444The length of the maximal rise of a Dyck path. St000519The largest length of a factor maximising the subword complexity. St000531The leading coefficient of the rook polynomial of an integer partition. St000636The hull number of a graph. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St000922The minimal number such that all substrings of this length are unique. St000982The length of the longest constant subword. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001523The degree of symmetry of a Dyck path. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001672The restrained domination number of a graph. St000117The number of centered tunnels of a Dyck path. St000290The major index of a binary word. St000393The number of strictly increasing runs in a binary word. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000682The Grundy value of Welter's game on a binary word. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000983The length of the longest alternating subword. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001161The major index north count of a Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001485The modular major index of a binary word. St001498The normalised height of a Nakayama algebra with magnitude 1. St001733The number of weak left to right maxima of a Dyck path. St001809The index of the step at the first peak of maximal height in a Dyck path. St001910The height of the middle non-run of a Dyck path. St001929The number of meanders with top half given by the noncrossing matching corresponding to the Dyck path. St001955The number of natural descents for set-valued two row standard Young tableaux. St000335The difference of lower and upper interactions. St000443The number of long tunnels of a Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001959The product of the heights of the peaks of a Dyck path. St000015The number of peaks of a Dyck path. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001480The number of simple summands of the module J^2/J^3. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001530The depth of a Dyck path. St001621The number of atoms of a lattice. St000454The largest eigenvalue of a graph if it is integral. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000667The greatest common divisor of the parts of the partition. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001279The sum of the parts of an integer partition that are at least two. St001389The number of partitions of the same length below the given integer partition. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000674The number of hills of a Dyck path. St000993The multiplicity of the largest part of an integer partition. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St000675The number of centered multitunnels of a Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001118The acyclic chromatic index of a graph. St000477The weight of a partition according to Alladi. St001330The hat guessing number of a graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000910The number of maximal chains of minimal length in a poset. St001570The minimal number of edges to add to make a graph Hamiltonian. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001637The number of (upper) dissectors of a poset. St001644The dimension of a graph. St001060The distinguishing index of a graph. St001281The normalized isoperimetric number of a graph. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000455The second largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St000422The energy of a graph, if it is integral. St001545The second Elser number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000264The girth of a graph, which is not a tree. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000706The product of the factorials of the multiplicities of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001568The smallest positive integer that does not appear twice in the partition. St001845The number of join irreducibles minus the rank of a lattice. St001875The number of simple modules with projective dimension at most 1. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001613The binary logarithm of the size of the center of a lattice. St001617The dimension of the space of valuations of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000418The number of Dyck paths that are weakly below a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000438The position of the last up step in a Dyck path. St000478Another weight of a partition according to Alladi. St000508Eigenvalues of the random-to-random operator acting on a simple module. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000707The product of the factorials of the parts. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000978The sum of the positions of double down-steps of a Dyck path. St000981The length of the longest zigzag subpath. St000984The number of boxes below precisely one peak. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001808The box weight or horizontal decoration of a Dyck path. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001626The number of maximal proper sublattices of a lattice. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000137The Grundy value of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001593This is the number of standard Young tableaux of the given shifted shape. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001943The sum of the squares of the hook lengths of an integer partition. St001961The sum of the greatest common divisors of all pairs of parts.